Returning intermediate results from function in Python - python

Imagine I've got a Python module with some function in it:
def sumvars(x, y, z):
s = x
s += y
s += z
return s
But sometimes I want to get results of some intermediate calculations (for example, I could have a function which reverses a matrix and would like to know the determinant which has been calculated as an intermediate step as well). Obviously, I wouldn't want to redo those calculations again if they were already done within that function.
My first idea is to return a dict:
def sumvars(x, y, z):
d = {}
s = x
d['first_step'] = s
s += y
d['second_step'] = s
s += z
d['final'] = s
return d
But I don't recall any functions in numpy or scipy which return dicts and so it seems like this might be not a good idea. (Why?) Also routinely I'll always have to type sumvars(x,y,z)['final'] for a default return value...
Another option I see is creating global variables but seems wrong having a bunch of them in my module, I would need to remember their names and in addition not being attached to the function itself looks like a bad design choice.
What would be the proper function design for such situation?

Generally when you have two different ways you want to return data, go ahead and make two different functions. "Flat is better than nested", after all. Just have one call the other so that you Don't Repeat Yourself.
For example, in the standard library, urllib.parse has parse_qs (which returns a dict) and parse_qsl (which returns a list). parse_qs just then calls the other:
def parse_qs(...):
parsed_result = {}
pairs = parse_qsl(qs, keep_blank_values, strict_parsing,
encoding=encoding, errors=errors)
for name, value in pairs:
if name in parsed_result:
parsed_result[name].append(value)
else:
parsed_result[name] = [value]
return parsed_result
Pretty straightforward. So in your example it seems fine to have
def sumvars(x, y, z):
return sumvars_with_intermediates(x, y, z).final
def sumvars_with_intermediates(x, y, z):
...
return my_namedtuple(final, first_step, second_step)
(I favor returning namedtuples instead of dicts from my APIs, it's just prettier)
Another obvious example is in re: re.findall is its own function, not some configuration flag to search.
Now, the standard library is a sprawling thing made by many authors, so you'll find counterexamples to every example. You'll far more often see the above pattern rather than one omnibus function that accepts some configuration flags, though, and I find it far more readable.

Put the common calculation into its own function as Jayanth Koushik recommended if that calculation can be named appropriately. If you want to return many values (an intermediate result and a final result) from a single function then a dict may be an overkill depending on what is your goal but in python it is much more natural to simply return a tuple if your function has many values to return:
def myfunc():
intermediate = 5
result = 6
return intermediate, result
# using the function:
intermediate, result = myfunc()

Not sure if function attributes is a good idea:
In [569]: def sumvars(x, y, z):
...: s = x
...: sumvars.first_step = s
...: s += y
...: sumvars.second_step = s
...: s += z
...: return s
In [570]: res=sumvars(1,2,3)
...: print res, sumvars.first_step, sumvars.second_step
...:
6 1 3
Note: as #BrenBarn mentioned, this idea is just like global variables, your previously calculated "intermediate results" could not be stored when you want to reuse them.

Just came up with this idea which could be a better solution:
def sumvars(x, y, z, mode = 'default'):
d = {}
s = x
d['first_step'] = s
s += y
d['second_step'] = s
s += z
d['final'] = s
if mode == 'default':
return s
else:
return d

I belive the proper solution is to use a class, to have a better grasp of what you are modeling. For example in the case of the Matrix, you could simply store the determinant in the "determinant" attribute.
Here is an example using your matrix example.
class Matrix:
determinant = 0
def calculate_determinant(self):
#calculations
return determinant
def some_method(self, args):
# some calculations here
self.determinant = self.calculate_determinant()
# other calculations
matrix = Matrix()
matrix.some_method(x, y, z)
print matrix.determinant
This also allows you to separate your method into simpler methods, like one for calculating the determinant of your matrix.

Another variation:
def sumvars(x, y, z, d=None):
s = x
if not d is None:
d['first_step'] = s
s += y
if not d is None:
d['second_step'] = s
s += z
return s
The function always returns the desired value without packing it into a tuple or dictionary. The intermediate results are still available, but only if requested. The call
sumvars(1, 2, 3)
just returns 6 without storing intermediate values. But the call
d = {}
sumvars(1, 2, 3, d)
returns the same answer 6 and inserts the intermediate calculations into the supplied dictionary.

Option 1. Make two separate functions.
Option 2. Use a generator:
>>> def my_func():
... yield 1
... yield 2
...
>>> result_gen = my_func()
>>> result_gen
<generator object my_func at 0x7f62a8449370>
>>> next(result_gen)
1
>>> next(result_gen)
2
>>> next(result_gen)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration
>>>

Inspired by #zhangxaochen solution, here's my take on your problem using class attributes:
class MyClass():
def __init__(self):
self.i = 4
def f(self):
s = self.i
MyClass.first_step = s
print(MyClass.first_step)
s += self.i
MyClass.second_step = s
print(MyClass.second_step)
s += self.i
return s
def main():
x = MyClass()
print(x.f()) # print final s
print(x.first_step)
print(x.second_step)
print(MyClass.second_step)
Note: I included several prints to make it more explicit how attribute values can be retrieved.
Result:
4
8
12
4
8
8

Related

is there any way to write a function such that when call it save the passing data

Is it possible to write a function such that in every call it save data; for example- the following function takes two arguments x & y; where x is a data and y is the array size.
Call the function first time, it would create y dimensional array, fill the first position with x value and in the second call it would fill the 2nd position of the array and continue and it will return a average when at least 2 values are in that array. The array size would be fixed, if call the function more than y times, it will delete first data (FIFO).
def storedata(x,y):
return z
you can use global variables to keep your data in them and call them between your functions.
check out this page: What is the pythonic way of saving data between function calls? maybe solve your problem if you want to use the class and attribute solution.
You should use a class when you want to store data.
An small example is given below, but please look online for tutorial and examples to fully understand the working of classes and OOP in python.
class Storedata:
def __init__(self, x, y):
self.arr = []
self.max_arr_size = y
self.add_data(x)
def add_data(self, x):
if len(self.arr) < self.max_arr_size:
self.arr.append(x)
def __call__(self):
return sum(self.arr)/len(self.arr)
storedata = Storedata(3, 5)
print(storedata.arr)
>>> [3]
print( storedata() )
>>> 3.0
storedata.add_data(5)
print( storedata() )
>>> 4.0
Thanks everyone for the solutions. Using a class is a good way but I think I was looking for the following code.
def storedata(x, y):
if not hasattr(storedata, 'z'):
storedata.z = np.zeros(y, dtype=float)
storedata.z = np.roll(storedata.z, 1)
storedata.z[0] = x
storedata.z[storedata.z == 0] = np.nan
return storedata.z, np.nanmean(storedata.z)
for i in range(1, 11):
print(storedata(x=i, y=10))

Python- np.random.choice

I am using the numpy.random.choice module to generate an 'array' of choices based on an array of functions:
def f(x):
return np.sin(x)
def g(x):
return np.cos(x)
base=[f, g]
funcs=np.random.choice(base,size=2)
This code will produce an 'array' of 2 items referencing a function from the base array.
The reason for this post is, I have printed the outcome of funcs and recieved:
[<function f at 0x00000225AC94F0D0> <function f at 0x00000225AC94F0D0>]
Clearly this returns a reference to the functions in some form, not that I understand what that form is or how to manipulate it, this is where the problem comes in. I want to change the choice of function, so that it is no longer random and instead depends on some conditions, so it might be:
for i in range(2):
if testvar=='true':
choice[i] = 0
if testvar== 'false':
choice[i] = 1
This would return an array of indicies to be put in later function
The problem is, the further operations of the code (I think) require this previous form of function reference: [ ] as an input, instead of a simple array of 0,1 Indicies and I don't know how I can get an array of form [ ] by using if statements.
I could be completely wrong about the rest of the code requiring this input, but I don't know how I can amend it, so am hence posting it here. The full code is as follows: (it is a slight variation of code provided by #Attack68 on Evolving functions in python) It aims to store a function that is multiplied by a random function on each iteration and integrates accordingly. (I have put a comment on the code above the function that is causing the problem)
import numpy as np
import scipy.integrate as int
def f(x):
return np.sin(x)
def g(x):
return np.cos(x)
base = [f, g]
funcs = np.random.choice(base, size=2)
print(funcs)
#The below function is where I believe the [<function...>] input to be required
def apply(x, funcs):
y = 1
for func in funcs:
y *= func(x)
return y
print('function value at 1.5 ', apply(1.5, funcs))
answer = int.quad(apply, 1, 2, args=(funcs,))
print('integration over [1,2]: ', answer)
Here is my attempt of implementing a non-random event:
import numpy as np
import scipy.integrate as int
import random
def f(x):
return np.sin(x)
def g(x):
return np.cos(x)
base = [f, g]
funcs = list()
for i in range(2):
testvar=random.randint(0,100) #In my actual code, this would not be random but dependent on some other situation I have not accounted for here
if testvar>50:
func_idx = 0 # choose a np.random operation: 0=f, 1=g
else:
func_idx= 1
funcs.append(func_idx)
#funcs = np.random.choice(base, size=10)
print(funcs)
def apply(x, funcs):
y = 1
for func in funcs:
y *= func(x)
return y
print('function value at 1.5 ', apply(1.5, funcs))
answer = int.quad(apply, 1, 2, args=(funcs,))
print('integration over [1,2]: ', answer)
This returns the following error:
TypeError: 'int' object is not callable
If: You are trying to refactor your original code that operates on a list of randomly chosen functions to a version that operates with random indices which correspond to items in a list of functions. Refactor apply.
def apply(x,indices,base=base):
y = 1
for i in indices:
f = base[i]
y *= f(x)
return y
...this returns a reference to the functions in some form, not that I understand what that form is or how to manipulate it...
Functions are objects, the list contains a reference to the objects themselves. They can be used by either assigning them to a name then calling them or indexing the list and calling the object:
>>> def f():
... return 'f'
>>> def g():
... return 'g'
>>> a = [f,g]
>>> q = a[0]
>>> q()
'f'
>>> a[1]()
'g'
>>> for thing in a:
print(thing())
f
g
Or you can pass them around:
>>> def h(thing):
... return thing()
>>> h(a[1])
'g'
>>>
If you still want to use your function apply as-is, you need to keep your input a list of functions. Instead of providing a list of indices, you can use those indices to create your list of functions.
Instead of apply(1.5, funcs), try:
apply(1.5, [base(n) for n in funcs])

python callback function returning None

I have a simple class that adds 2 nos. Before adding 2 nos I pass a helper function that appends 2 zeros and passes the result.
When I try to print the add_nos.provide(append_zeros) it always shows None.
def append_zeros(x,y):
x = int(str(x) + '00' )
y = int(str(y) + '00')
print x+y
return x + y
class Add_Nos():
def __init__(self,input_array):
self.input_array = input_array
def provide(self,callback):
for each in self.input_array:
x,y = each
callback(x,y)
add_nos = Add_Nos([(1,2),(3,4)])
print add_nos.provide(append_zeros)
The method add_nos.provide(self, callback) has no return statement, thus it returns nothing, which in python means that it returns None.
To avoid this, either add a return statement to provide() or simply call the method without print.
It's not entirely clear what you are trying to do, but provide does not return anything. In python, the default return type of any function is None, so implicitly printing add_nos.provide(append_zeros) will do the function call, and then return None behind the scenes.
One option you have is to return self.input_array:
class Add_Nos():
def __init__(self,input_array):
self.input_array = input_array
def provide(self,callback):
for each in self.input_array:
x,y = each
callback(x,y)
return self.input_array
Note that you can also do for x, y in self.input_array: :)
Presumably, you actually want to be getting a new list out with the result of the computation. In this case, this is an excellent candidate for a list comprehension:
def provide(self,callback):
return [callback(x, y) for x, y in self.input_array]
This is a one-line equivalent of doing
def provide(self, callback):
ret = []
for x, y in self.input_array:
ret.append(callback(x, y))
return ret
You said:
I want the result to be 300 in the first instance and 700 in the
next instance, kind of generate a iterator object.
So you simply need to turn the .provide method into a generator, and then call it appropriately. Like this:
def append_zeros(x,y):
x = int(str(x) + '00')
y = int(str(y) + '00')
#print x+y
return x + y
class Add_Nos():
def __init__(self,input_array):
self.input_array = input_array
def provide(self,callback):
for each in self.input_array:
x,y = each
yield callback(x,y)
add_nos = Add_Nos([(1,2),(3,4)])
for t in add_nos.provide(append_zeros):
print t
output
300
700
That append_zeros function is a bit strange. Rather than converting the args to strings so you can append the zeros and then converting the results back to ints to do the arithmetic yu should simply multiply each arg by one hundred.
Also, you can make the .provide method a little more streamlined by using "splat" unpacking. And as tyteen4a03 mentioned, in Python 2 your Add_Nos class ought to inherit from object so that you get a new-style class instead of the deprecated old-style class. So here's another version with those changes; it produces the same output as the above code.
def append_zeros(x, y):
return x * 100 + y * 100
class Add_Nos(object):
def __init__(self, input_array):
self.input_array = input_array
def provide(self, callback):
for each in self.input_array:
yield callback(*each)
add_nos = Add_Nos([(1,2),(3,4)])
for t in add_nos.provide(append_zeros):
print t

Using a list from one function, inside another function python

I am new to python. This might be a simple question, but if I have many functions that are dependent on each other how would I access lists from one function to use in another.
So...
def function_1():
list_1=[]
def function_2():
list_2= [2*x for x in list_1]
def function_3():
list_3= [x * y for x, y in zip(list_1, list_2)]
That is not the exact code but that is the idea of my problem. I would just put them all together in one function but I need them to be separate.
The correct way to do this would be to use a class. A class is an object that has internal variables (in your case, the three lists), and methods (functions that can access the internal methods). So, this would be:
class Foo(object):
def __init__(self, data=None):
self.list_1 = data if not data is None else []
def function_2():
self.list_2 = [2 * x for x in self.list_1]
And so on. For calling it:
foo = Foo() # list_1 is empty
foo2 = Foo([1,2,3]) # list_1 is not empty
foo2.function_2()
print foo2.list_2
# prints [2, 4, 6]
Make them arguments and return values:
def function_1():
return []
def function_2(list_1):
return [2*x for x in list_1]
def function_3(list_1, list_2):
return [x * y for x, y in zip(list_1, list_2)]
(this suggests that function_1 isn't much worth having...)
The exact way will depend on exactly how you want things to work, but here is a simple example:
def function_1():
return []
def function_2():
return [2*x for x in function_1()]
def function_3():
return [x * y for x, y in zip(function_1(), function_2())]
The key point is that functions do not generally just "do" things, they return things. If you have a value in one function that you want to use in another function, the first function should return that value. The second function should call the first function, and use its return value.
Functions are basically black boxes -- the outside world doesn't really know what goes on inside or what variables exist there. From the outside, other code only sees what goes in (the function's arguments) and what goes out (its return value).
So if your function computes some value that is to be used elsewhere, it should be returned as the result of the function.
E.g.,
def square(x):
return x * x
Takes a number, computes its square, and returns it.
Then you could do:
print(square(5))
and it will print 25.
So in your case you can return the lists and use them in the other functions, as the other answers showed:
def function_1():
return []
def function_2():
return [2*x for x in function_1()]
def function_3():
return [x * y for x, y in zip(function_1(), function_2())]

Ignore python multiple return value

Say I have a Python function that returns multiple values in a tuple:
def func():
return 1, 2
Is there a nice way to ignore one of the results rather than just assigning to a temporary variable? Say if I was only interested in the first value, is there a better way than this:
x, temp = func()
You can use x = func()[0] to return the first value, x = func()[1] to return the second, and so on.
If you want to get multiple values at a time, use something like x, y = func()[2:4].
One common convention is to use a "_" as a variable name for the elements of the tuple you wish to ignore. For instance:
def f():
return 1, 2, 3
_, _, x = f()
If you're using Python 3, you can you use the star before a variable (on the left side of an assignment) to have it be a list in unpacking.
# Example 1: a is 1 and b is [2, 3]
a, *b = [1, 2, 3]
# Example 2: a is 1, b is [2, 3], and c is 4
a, *b, c = [1, 2, 3, 4]
# Example 3: b is [1, 2] and c is 3
*b, c = [1, 2, 3]
# Example 4: a is 1 and b is []
a, *b = [1]
The common practice is to use the dummy variable _ (single underscore), as many have indicated here before.
However, to avoid collisions with other uses of that variable name (see this response) it might be a better practice to use __ (double underscore) instead as a throwaway variable, as pointed by ncoghlan. E.g.:
x, __ = func()
Remember, when you return more than one item, you're really returning a tuple. So you can do things like this:
def func():
return 1, 2
print func()[0] # prints 1
print func()[1] # prints 2
The best solution probably is to name things instead of returning meaningless tuples (unless there is some logic behind the order of the returned items). You can for example use a dictionary:
def func():
return {'lat': 1, 'lng': 2}
latitude = func()['lat']
You could even use namedtuple if you want to add extra information about what you are returning (it's not just a dictionary, it's a pair of coordinates):
from collections import namedtuple
Coordinates = namedtuple('Coordinates', ['lat', 'lng'])
def func():
return Coordinates(lat=1, lng=2)
latitude = func().lat
If the objects within your dictionary/tuple are strongly tied together then it may be a good idea to even define a class for it. That way you'll also be able to define more complex operations. A natural question that follows is: When should I be using classes in Python?
Most recent versions of python (≥ 3.7) have dataclasses which you can use to define classes with very few lines of code:
from dataclasses import dataclass
#dataclass
class Coordinates:
lat: float = 0
lng: float = 0
def func():
return Coordinates(lat=1, lng=2)
latitude = func().lat
The primary advantage of dataclasses over namedtuple is that its easier to extend, but there are other differences. Note that by default, dataclasses are mutable, but you can use #dataclass(frozen=True) instead of #dataclass to force them being immutable.
Here is a video that might help you pick the right data class for your use case.
Three simple choices.
Obvious
x, _ = func()
x, junk = func()
Hideous
x = func()[0]
And there are ways to do this with a decorator.
def val0( aFunc ):
def pick0( *args, **kw ):
return aFunc(*args,**kw)[0]
return pick0
func0= val0(func)
This seems like the best choice to me:
val1, val2, ignored1, ignored2 = some_function()
It's not cryptic or ugly (like the func()[index] method), and clearly states your purpose.
If this is a function that you use all the time but always discard the second argument, I would argue that it is less messy to create an alias for the function without the second return value using lambda.
def func():
return 1, 2
func_ = lambda: func()[0]
func_() # Prints 1
This is not a direct answer to the question. Rather it answers this question: "How do I choose a specific function output from many possible options?".
If you are able to write the function (ie, it is not in a library you cannot modify), then add an input argument that indicates what you want out of the function. Make it a named argument with a default value so in the "common case" you don't even have to specify it.
def fancy_function( arg1, arg2, return_type=1 ):
ret_val = None
if( 1 == return_type ):
ret_val = arg1 + arg2
elif( 2 == return_type ):
ret_val = [ arg1, arg2, arg1 * arg2 ]
else:
ret_val = ( arg1, arg2, arg1 + arg2, arg1 * arg2 )
return( ret_val )
This method gives the function "advanced warning" regarding the desired output. Consequently it can skip unneeded processing and only do the work necessary to get your desired output. Also because Python does dynamic typing, the return type can change. Notice how the example returns a scalar, a list or a tuple... whatever you like!
When you have many output from a function and you don't want to call it multiple times, I think the clearest way for selecting the results would be :
results = fct()
a,b = [results[i] for i in list_of_index]
As a minimum working example, also demonstrating that the function is called only once :
def fct(a):
b=a*2
c=a+2
d=a+b
e=b*2
f=a*a
print("fct called")
return[a,b,c,d,e,f]
results=fct(3)
> fct called
x,y = [results[i] for i in [1,4]]
And the values are as expected :
results
> [3,6,5,9,12,9]
x
> 6
y
> 12
For convenience, Python list indexes can also be used :
x,y = [results[i] for i in [0,-2]]
Returns : a = 3 and b = 12
It is possible to ignore every variable except the first with less syntax if you like. If we take your example,
# The function you are calling.
def func():
return 1, 2
# You seem to only be interested in the first output.
x, temp = func()
I have found the following to works,
x, *_ = func()
This approach "unpacks" with * all other variables into a "throwaway" variable _. This has the benefit of assigning the one variable you want and ignoring all variables behind it.
However, in many cases you may want an output that is not the first output of the function. In these cases, it is probably best to indicate this by using the func()[i] where i is the index location of the output you desire. In your case,
# i == 0 because of zero-index.
x = func()[0]
As a side note, if you want to get fancy in Python 3, you could do something like this,
# This works the other way around.
*_, y = func()
Your function only outputs two potential variables, so this does not look too powerful until you have a case like this,
def func():
return 1, 2, 3, 4
# I only want the first and last.
x, *_, d = func()

Categories

Resources