I have an arbitrary signal and I need to know the frequency spectrum of the signal, which I obtain by doing an FFT. The issue is, I need lots of resolution only around this one particular frequency. The issue is, if I increase my window width, or if I up the sample rate, it goes too slow and I end up with a lot of detail everywhere. I only want a lot of detail in one point, and minimal detail everywhere else.
I tried using a Goertzel filter around just the area I need, and then FFT everywhere else, but that didn't get me any more resolution, which I suppose was to be expected.
Any ideas? My only idea at the moment is to sweep and innerproduct around the value I want.
Thanks.
Increasing the sample rate will not give you a higher spectral resolution, it will only give you more high-frequency information, which you are not interested in. The only way to increase spectral resolution is to increase the window length. There is a way to increase the length of your window artificially by zero-padding, but this only gives you 'fake resolution', it will just yield a smooth curve between the normal points. So the only way is to measure data over a longer period, there is no free lunch.
For the problem you described, the standard way to reduce computation time of the FFT is to use demodulation (or heterodyning, not sure what the official name is). Multiply your data with a sine with a frequency close to your frequency of interest (could be the exact frequency, but that is not necessary), and then decimate your date (low-pass filtering with corner frequency just below the Nyquist frequency of your down-sampled sample rate, followed by down-sampling). In this way, you have much less points, so your FFT will be faster. The resulting spectrum will be similar to your original spectrum, but simply shifted by the demodulation frequency. So when making a plot, simply add f_demod to your x-axis.
One thing to be careful about is that if you multiply with a real sine, your down-sampled spectrum will actually be the sum of two mirrored spectra, since a real sine consists of positive and negative frequencies. There are two solutions to this
demodulate by both a sine and a cosine of the same frequency, so that you obtain 2 spectra, after which taking the sum or difference will get you your spectrum.
demodulate by multiplying with a complex sine of the form exp(2*pi*i*f_demod*t). The input for your FFT will now be complex, so you will have to calculate a two-sided spectrum. But this is exactly what you want, you will get both the frequencies below and above f_demod.
I prefer the second solution. Quick example:
from __future__ import division
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.mlab import psd
from scipy.signal import decimate
f_line = 123.456
f_demod = 122
f_sample = 1000
t_total = 100
t_win = 10
ratio = 10
t = np.arange(0, t_total, 1 / f_sample)
x = np.sin(2*np.pi*f_line * t) + np.random.randn(len(t)) # sine plus white noise
lo = 2**.5 * np.exp(-2j*np.pi*f_demod * t) # local oscillator
y = decimate(x * lo, ratio) # demodulate and decimate to 100 Hz
z = decimate(y, ratio) # decimate further to 10 Hz
nfft = int(round(f_sample * t_win))
X, fx = psd(x, NFFT = nfft, noverlap = nfft/2, Fs = f_sample)
nfft = int(round(f_sample * t_win / ratio))
Y, fy = psd(y, NFFT = nfft, noverlap = nfft/2, Fs = f_sample / ratio)
nfft = int(round(f_sample * t_win / ratio**2))
Z, fz = psd(z, NFFT = nfft, noverlap = nfft/2, Fs = f_sample / ratio**2)
plt.semilogy(fx, X, fy + f_demod, Y, fz + f_demod, Z)
plt.xlabel('Frequency (Hz)')
plt.ylabel('PSD (V^2/Hz)')
plt.legend(('Full bandwidth FFT', '100 Hz FFT', '10 Hz FFT'))
plt.show()
Result:
If you zoom in, you will note that the results are virtually identical within the pass-band of the decimation filter. One thing to be careful of is that the low-pass filters used in decimate will become numerically instable if you use decimation ratios much larger than 10. The solution to this is to decimate in several passes for large ratios, i.e. to decimate by a factor of 1000, you decimate 3 times by a factor 10.
Related
I'm trying to do some tests before I proceed analyzing some real dataset via FFT, and I've found the following problem.
First, I create a signal as the sum of two cosines and then use rfft to to the transformation (since it has only real values):
import numpy as np
import matplotlib.pyplot as plt
from scipy.fft import rfft, rfftfreq
# Number of sample points
N = 800
# Sample spacing
T = 1.0 / 800.0
x = np.linspace(0.0, N*T, N)
y = 0.5*np.cos(10*2*np.pi*x) + 0.5*np.cos(200*2*np.pi*x)
# FFT
yf = rfft(y)
xf = rfftfreq(N, T)
fig, ax = plt.subplots(1,2,figsize=(15,5))
ax[0].plot(x,y)
ax[1].plot(xf, 2.0/N*np.abs(yf))
As it can be seen from the definition of the signal, I have two oscillations with amplitude 0.5 and frequency 10 and 200. Now, I would expect the FFT spectrum to be something like two deltas at those points, but apparently increasing the frequency broadens the peaks:
From the first peak it can be infered that the amplitude is 0.5, but not for the second. I've tryied to obtain the area under the peak using np.trapz and use that as an estimate for the amplitude, but as it is close to a dirac delta it's very sensitive to the interval I choose. My problem is that I need to get the amplitude as exact as possible for my data analysis.
EDIT: As it seems to be something related with the number of points, I decided to increment (now that I can) the sample frequency. This seems to solve the problem, as it can be seen in the figure:
However, it still seems strange that for a certain number of points and sample frequency, the high frequency peaks broaden...
It is not strange , you have leakage of the frequency bins. When you discretize the signal (sampling) needed for the Fourier transfrom , frequency bins are created which are frequency intervals where the the amplitude is calculated. And each bin has wide which is given by the sample_rate / num_points . So , the less the number of bins the more difficult is to assign precise amplitudes to every frequency. Other problems in choosing the best sampling rate exist such as the shannon-nyquist theorem to prevent aliasing. https://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem . But depending on the problem sometimes there some custom rates used for sampling. E.g. when dealing with audio a sampling rate of 44,100 Hz is widely used , cause is based on the limits of the human hearing. So it depends also on nature of the data you want to perform analysis as you wrote. Anyway , since this question has also theoretical value , you can also check https://dsp.stackexchange.com for some useful info.
I would comment to George's answer, but yet I cannot.
Maybe a starting point for your research are the properties of the Discrete Fourier Transform.
The signal in the time domain is actual the cosines multiplied by a box window which transforms into the frequency domain as the convolution of the deltas with the sinc function. The sinc functions will smear the spectrum.
However, I am not sure we are observing spectral leakage here, since the window fits exactly to the full period of cosines. The discretization of the bins might still play a role here.
I am struggling with the correct normalization of the power spectral density (and its inverse).
I am given a real problem, let's say the readings of an accelerometer in the form of the power spectral density (psd) in units of Amplitude^2/Hz. I would like to translate this back into a randomized time series. However, first I want to understand the "forward" direction, time series to PSD.
According to [1], the PSD of a time series x(t) can be calculated by:
PSD(w) = 1/T * abs(F(w))^2 = df * abs(F(w))^2
in which T is the sampling time of x(t) and F(w) is the Fourier transform of x(t) and df=1/T is the frequency resolution in the Fourier space. However, the results I am getting are not equal to what I am getting using the scipy Welch method, see code below.
This first block of code is taken from the scipy.welch documentary:
from scipy import signal
import matplotlib.pyplot as plt
fs = 10e3
N = 1e5
amp = 2*np.sqrt(2)
freq = 1234.0
noise_power = 0.001 * fs / 2
time = np.arange(N) / fs
x = amp*np.sin(2*np.pi*freq*time)
x += np.random.normal(scale=np.sqrt(noise_power), size=time.shape)
f, Pxx_den = signal.welch(x, fs, nperseg=1024)
plt.semilogy(f, Pxx_den)
plt.ylim(\[0.5e-3, 1\])
plt.xlabel('frequency \[Hz\]')
plt.ylabel('PSD \[V**2/Hz\]')
plt.show()
First thing I noticed is that the plotted psd changes with the variable fs which seems strange to me. (Maybe I need to adjust the nperseg argument then accordingly? Why is nperseg not set to fs automatically then?)
My code would be the following: (Note that I defined my own fft_full function which already takes care of the correct fourier transform normalization, which I verified by checking Parsevals theorem).
import scipy.fftpack as fftpack
def fft_full(xt,yt):
dt = xt[1] - xt[0]
x_fft=fftpack.fftfreq(xt.size,dt)
y_fft=fftpack.fft(yt)*dt
return (x_fft,y_fft)
xf,yf=fft_full(time,x)
df=xf[1] - xf[0]
psd=np.abs(yf)**2 *df
plt.figure()
plt.semilogy(xf, psd)
#plt.ylim([0.5e-3, 1])
plt.xlim(0,)
plt.xlabel('frequency [Hz]')
plt.ylabel('PSD [V**2/Hz]')
plt.show()
Unfortunately, I am not yet allowed to post images but the two plots do not look the same!
I would greatly appreciate if someone could explain to me where I went wrong and settle this once and for all :)
[1]: Eq. 2.82. Random Vibrations in Spacecraft Structures Design
Theory and Applications, Authors: Wijker, J. Jaap, 2009
The scipy library uses the Welch's method to estimate a PSD. This method is more complex than just taking the squared modulus of the discrete Fourier transform. In short terms, it proceeds as follows:
Let x be the input discrete signal that contains N samples.
Split x into M overlapping segments, such that each segment sm contains nperseg samples and that each two consecutive segments overlap in noverlap samples, so that nperseg = K * (nperseg - noverlap), where K is an integer (usually K = 2). Note also that:
N = nperseg + (M - 1) * (nperseg - noverlap) = (M + K - 1) * nperseg / K
From each segment sm, subtract its mean (this removes the DC component):
tm = sm - sum(sm) / nperseg
Multiply the elements of the obtained zero-mean segments tm by the elements of a suitable (nonsymmetric) window function, h (such as the Hann window):
um = tm * h
Calculate the Fast Fourier Transform of all vectors um. Before performing these transformations, we usually first append so many zeros to each vector um that its new dimension becomes a power of 2 (the nfft argument of the function welch is used for this purpose). Let us suppose that len(um) = 2p. In most cases, our input vectors are real-valued, so it is best to apply FFT for real data. Its results are then complex-valued vectors vm = rfft(um), such that len(vm) = 2p - 1 + 1.
Calculate the squared modulus of all transformed vectors:
am = abs(vm) ** 2,
or more efficiently:
am = vm.real ** 2 + vm.imag ** 2
Normalize the vectors am as follows:
bm = am / sum(h * h)
bm[1:-1] *= 2 (this takes into account the negative frequencies),
where h is a real vector of the dimension nperseg that contains the window coefficients. In case of the Hann window, we can prove that
sum(h * h) = 3 / 8 * len(h) = 3 / 8 * nperseg
Estimate the PSD as the mean of all vectors bm:
psd = sum(bm) / M
The result is a vector of the dimension len(psd) = 2p - 1 + 1. If we wish that the sum of all psd coefficients matches the mean squared amplitude of the windowed input data (rather than the sum of squared amplitudes), then the vector psd must also be divided by nperseg. However, the scipy routine omits this step. In any case, we usually present psd on the decibel scale, so that the final result is:
psd_dB = 10 * log10(psd).
For a more detailed description, please read the original Welch's paper. See also Wikipedia's page and chapter 13.4 of Numerical Recipes in C
So, I am trying to figure out how to use DFT in practice to detect prevalent frequencies in a signal. I have been trying to wrap my head around what Fourier transforms are and how DFT algorithms work, but apparently I still have ways to go. I have written some code to generate a signal (since the intent is to work with music, I generated a major C chord, hence the weird frequency values) and then tried to work back to the frequency numbers. Here is the code I have
sr = 44100 # sample rate
x = np.linspace(0, 1, sr) # one second of signal
tpi = 2 * np.pi
data = np.sin(261.63 * tpi * x) + np.sin(329.63 * tpi * x) + np.sin(392.00 * tpi * x)
freqs = np.fft.fftfreq(sr)
fft = np.fft.fft(data)
idx = np.argsort(np.abs(fft))
fft = fft[idx]
freqs = freqs[idx]
print(freqs[-6:] * sr)
This gives me [-262. 262. -330. 330. -392. 392.]
which is different from the frequencies I encoded (261.63, 329.63 and 392.0). What am I doing wrong and how do I fix it?
Indeed, if the frame lasts T seconds, the frequencies of the DFT are k/T Hz, where k is an integer. As a consequence, oversampling does not improve the accuracy of the estimated frequency, as long as these frequencies are identifed as maxima of the magnitude of the DFT. On the contrary, considering longer frames lasting 100s would induce a spacing between the DFT frequencies of 0.01Hz, which might be good enough to produce the expected frequency. It is possible to due much better, by estimating the frequency of a peak as its mean frequency wih respect to power density.
Figure 1: even after applying a Tuckey window, the DFT of the windowed signal is not a sum of Dirac: there is still some spectral leakage at the bottom of the peaks. This power must be accounted for as the frequencies are estimated.
Another issue is that the length of the frame is not a multiple of the period of the signal, which may not be periodic anyway. Nevertheless, the DFT is computed as if the signal were periodic but discontinuous at the edge of the frame. It induce spurous frequencies described as spectral leakage. Windowing is the reference method to deal with such problems and mitigate the problem related to the artificial discontinuity. Indeed, the value of a window continuously decrease to zero near the edges of the frame. There is a list of window functions and a lot of window functions are available in scipy.signal. A window is applied as:
tuckey_window=signal.tukey(len(data),0.5,True)
data=data*tuckey_window
At that point, the frequencies exibiting the largest magnitude still are 262, 330 and 392. Applying a window only makes the peaks more visible: the DFT of the windowed signal features three distinguished peaks, each featuring a central lobe and side lobes, depending on the DFT of the window. The lobes of these windows are symmetric: the central frequency can therefore be computed as the mean frequency of the peak, with respect to power density.
import numpy as np
from scipy import signal
import scipy
sr = 44100 # sample rate
x = np.linspace(0, 1, sr) # one second of signal
tpi = 2 * np.pi
data = np.sin(261.63 * tpi * x) + np.sin(329.63 * tpi * x) + np.sin(392.00 * tpi * x)
#a window...
tuckey_window=signal.tukey(len(data),0.5,True)
data=data*tuckey_window
data -= np.mean(data)
fft = np.fft.rfft(data, norm="ortho")
def abs2(x):
return x.real**2 + x.imag**2
fftmag=abs2(fft)[:1000]
peaks, _= signal.find_peaks(fftmag, height=np.max(fftmag)*0.1)
print "potential frequencies ", peaks
#compute the mean frequency of the peak with respect to power density
powerpeak=np.zeros(len(peaks))
powerpeaktimefrequency=np.zeros(len(peaks))
for i in range(1000):
dist=1000
jnear=0
for j in range(len(peaks)):
if dist>np.abs(i-peaks[j]):
dist=np.abs(i-peaks[j])
jnear=j
powerpeak[jnear]+=fftmag[i]
powerpeaktimefrequency[jnear]+=fftmag[i]*i
powerpeaktimefrequency=np.divide(powerpeaktimefrequency,powerpeak)
print 'corrected frequencies', powerpeaktimefrequency
The resulting estimated frequencies are 261.6359 Hz, 329.637Hz and 392.0088 Hz: it much better than 262, 330 and 392Hz and it satisfies the required 0.01Hz accuracy for such a pure noiseless input signal.
DFT result bins are separated by Fs/N in frequency, where N is the length of the FFT. Thus, the duration of your DFT window limits the resolution in terms of DFT result bin frequency center spacings.
But, for well separated frequency peaks in low noise (high S/N), instead of increasing the duration of the data, you can instead estimate the frequency peak locations to a higher resolution by interpolating the DFT result between the DFT result bins. You can try parabolic interpolation for a coarse frequency peak location estimate, but windowed Sinc interpolation (essentially Shannon-Whittaker reconstruction) would provide far better frequency estimation accuracy and resolution (given a low enough noise floor around the frequency peak(s) of interest, e.g. no nearby sinusoids in your artificial waveform case).
Since you want to get a resolution of 0.01 Hz, you will need to sample at least 100 sec worth of data. You will be able to resolve frequencies up to about 22.05 kHz.
I am trying to implement Periodogram in Python based on the description from Bartlett's method, and compared the result with those from Scipy, by setting overlap=0, use window='boxcar' (rectangle window). However, my result is off by some scale factor. Can someone points out what was wrong with my code? Thanks
import numpy as np
import matplotlib.pyplot as plt
from scipy import signal
def my_bartlett_periodogram(x, fs, nperseg, nfft):
nsegments = len(x) // nperseg
psd = np.zeros(nfft)
for segment in x.reshape(nsegments, nperseg):
psd += np.abs(np.fft.fft(segment))**2 / nfft
psd[0] = 0 # important!!
psd /= nsegments
psd = psd[0 : nfft//2]
freq = np.linspace(0, fs/2, nfft//2)
return freq, psd
def plot_output(t, x, f1, psd1, f2, psd2):
fig, axs = plt.subplots(3,1, figsize=(12,15))
axs[0].plot(t[:300], x[:300])
axs[1].plot(freq1, psd1)
axs[2].plot(freq2, psd2)
axs[0].set_title('Input (len=8192, fs=512)')
axs[1].set_title('Bartlett Periodogram (nfft=512, zero-overlap, no-window)')
axs[2].set_title('Scipy Periodogram (nfft=512, zero-overlap, no-window)')
axs[0].set_xticks([])
axs[2].set_xlabel('Freq (Hz)')
plt.show()
# Run
fs = nfft = nperseg = 512
t = np.arange(8192) / fs
x = np.sin(2*np.pi*50*t) + np.sin(2*np.pi*100*t) + np.sin(2*np.pi*150*t)
freq1, psd1 = my_bartlett_periodogram(x, fs, nperseg, nfft)
freq2, psd2 = signal.welch(x, fs, nperseg=nperseg, nfft=nfft, window='boxcar', noverlap=0)
plot_output(t, x, freq1, psd1, freq2, psd2)
TL;DR:
Nothing wrong with the code. But welch returns the power spectral density, which is the power spectrum times fs and it compensates for cutting away half the spectrum by multiplying with 2.
To compensate, psd2 * fs / 2 should be very similar to psd.
According to Wikipedia the calculation of psd seems correct:
The original N point data segment is split up into K (non-overlapping) data segments, each of length M
For each segment, compute the periodogram by computing the discrete Fourier transform (DFT version which does not divide by M), then computing the squared magnitude of the result and dividing this by M.
Average the result of the periodograms above for the K data segments.
So whom shall we trust more, Wikipedia or scipy? I would tend towards the latter, but we can find out for ourselves. According to Parseval's theorem the integral over the squared signal should be the same as the integral over the sqared FFT magnitude. Since the Periodogram is obtained from the squared FFT the theorem should hold approximately.
print(np.mean(y**2)) # 1.499727698431174
print(np.mean(psd)) # (1.4999999999999991+0j)
print(np.mean(psd2)) # 0.0058365758754863788
That's close enough for psd, so let's assume it's correct. But I refuse to believe that scipy should be so blatantly wrong! Let's take a closer look at the documentation and see what they have to say about the scaling argument (emphasis mine):
Selects between computing the power spectral density (‘density’) where Pxx has units of V**2/Hz and computing the power spectrum (‘spectrum’) where Pxx has units of V**2, if x is measured in V and fs is measured in Hz. Defaults to ‘density’
Uh-huh! welch's result is the power spectral density, which means it has units of Power per Hz. However, we compared it against the signal power. If we multiply psd2 with the sampling rate to get rid of the 1/Hz units it's the same as psd. Well, except for a factor 2. This factor is meant to compensate for cutting away half the spectrum. If we set return_onesided=False to get the full spectrum that factor is gone.
I am trying to estimate the PSD of the heart rate variability of an ECG signal. To test my code,I have extracted the R-R interval from from the fantasia ECG database. I have extracted the signal can be accessed here. To calculate the PSD, I am using the welch method as shown below:
import matplotlib.pyplot as plt
import numpy as np
from scipy.signal import welch
ibi_signal = np.loadtxt('fantasia-f1y01-RR.txt')
t = np.array(ibi_signal[:, 0]) # time index in seconds
ibi = np.array(ibi_signal[:, 1]) # the IBI in seconds
# Convert the IBI in milliseconds
ibi = ibi * 1000
# Calculate the welch estimate
Fxx, Pxx = welch(ibi, fs=4.0, window='hanning', nperseg=256, noverlap=128)
Next,the area under the curve is calculated to estimate the power spectrum of the different HRV bands as shown below
ulf = 0.003
vlf = 0.04
lf = 0.15
hf = 0.4
Fs = 250
# find the indexes corresponding to the VLF, LF, and HF bands
ulf_freq_band = (Fxx <= ulf)
vlf_freq_band = (Fxx >= ulf) & (Fxx <= vlf)
lf_freq_band = (Fxx >= vlf) & (Fxx <= lf)
hf_freq_band = (Fxx >= lf) & (Fxx <= hf)
tp_freq_band = (Fxx >= 0) & (Fxx <= hf)
# Calculate the area under the given frequency band
dy = 1.0 / Fs
ULF = np.trapz(y=abs(Pxx[ulf_freq_band]), x=None, dx=dy)
VLF = np.trapz(y=abs(Pxx[vlf_freq_band]), x=None, dx=dy)
LF = np.trapz(y=abs(Pxx[lf_freq_band]), x=None, dx=dy)
HF = np.trapz(y=abs(Pxx[hf_freq_band]), x=None, dx=dy)
TP = np.trapz(y=abs(Pxx[tp_freq_band]), x=None, dx=dy)
LF_HF = float(LF) / HF
HF_LF = float(HF) / LF
HF_NU = float(HF) / (TP - VLF)
LF_NU = float(LF) / (TP - VLF)
I then plot the PSD and get the following plot
At first I tough the output looks okay. However, when I compare my output with that of Kubios, which is a software than analyze HRV, I noticed that there are differences. The following chart shows the expected value for the PSD as calculated by Kubios
Namely, the two plots are visually different and their values are way different. To confirm this, a print out of my data clearly shows that my calculation are wrong
ULF 0.0
VLF 13.7412277853
LF 45.3602063444
HF 147.371442221
TP 239.521363002
LF_HF 0.307795090152
HF_LF 3.2489147228
HF_NU 0.652721029154
LF_NU 0.200904328012
I am thus, wondering:
Can someone suggest a document I should read to improve my understanding on spectra analysis?
What's wrong with my approach?
How do I choose the most suitable parameters for the welch function?
While the two plots somehow have the same shape, the data is completely different. How can I improve this?
Is there a better approach to solve this? I am thinking about using the the Lomb-Scargle estimate but I am waiting to get at least the Welch method to work.
The problem here is that you do not handle correctly the sampeling of your signal. In your welsch call, you consider a regularly sampled signal with sample frequency 4Hz. If you look at the time vector t
In [1]: dt = t[1:]-t[:-1]
In [2]: dt.mean(), np.median(dt)
Out[2]: 0.76693059125964014, 0.75600000000000023
In [3]: dt.min(), dt.max()
Out[3]: (0.61599999999998545, 1.0880000000000081)
Your signal is thus not regularly sampled. You thus need to take that into acount, else you do not estimate correctly the PSD and this gives you bad estimates.
A first correction should be to use correctly the parameter fs in welsch. This parameter indicates the sampling frequency of the given signal. Putting it ot 4 means that your time vector should be a regular [0, .25, .5, .75, .1, ....]. A better estimate would be either the median of dt or len(t)/(t.max()-t.min()), so around 4/3.
This gives better PSD estimate and correct order for some of the constant but it is still different compared to Kubios values.
To get correct estimate of the PSD, you should use a non uniform DFT.
A package that implement such transform can be found here. The documentation is quite cryptic for this package but you need to use the adjoint method to get the Fourier Transform without scaling issue:
N = 128 # Number of frequency you will get
M = len(t) # Number of irregular samples you have
plan = NFFT(N, M)
# Give the sample times and precompute variable for
# the NFFT algorithm.
plan.x = t
plan.precompute()
# put your signal in `plan.f` and use the `plan.adjoint`
# to compute the Fourier transform of your signal
plan.f = ibi
Fxx = plan.adjoint()
plt.plot(abs(Fxx))
Here the estimates do not seems to be in line with the one from Kubios. It is possible the estimation is probably of because you do a psd estimate on the whole signal. You can try to use the welch technique combined with this nfft by averaging estimates on windowed signals as it do not rely on FFT but on any estimation of the PSD.