I have a 200 MB CSV, file and a 4 GB json file in compressed format(300 MB when in compressed form). now I need to check if a particular field in json has a value which matches with any of the values in column 0 of the csv file. How can this be achieved in a fast as I have to do this for multiple json files, csv file being same. I hope using pandas would speed up things
After reading from CSV File the following datastructure is formed:
Empty DataFrame
Columns: []
Index: [1335063, 1339033, 1344453, 1392603, 1520033, 5342858, 5361498, 5534501, 5542881, 5552665, 5618397, 5824472, 5867442, 5908134, 5908134, 6203501, 6208411, 6209921, 6211681, 6212831, 6213691, 6287061, 6293811, 6387151, 6415771, 6508691, 6649281, 6673261, 6716441, 6782181, 6821631, 7710551, 9413871, 11280941, 11285381, 11762751, 11769381, 11854271, 11964831, 11995871, 12240091, 12541201, 12553471, 12633891, 12648021, 12834201, 12899581, 13177041, 13282401, 13290581, 13292951, 13297681, 14536901, 14592891, 14665721, 14843571, 15120821, 15127231, 15531511, 15969981, 16648561, 16808911, 16809381, 17019781, 17021721, 17224241, 17234921, 17327321, 17923721, 17930901, 18577181, 18606681, 19448911, 19557541, 20272801, 20286621, 20295001, 20351761, 21052471, 21062651, 21106501, 21578741, 22279401, 22312931, 23078211, 23164911, 24937351, 24988721, 26171811, 26188561, 26224001, 26379241, 26380531, 26383571, 26386251, 26388621, 27509171, 27825771, 28282901, 28998561, ...]
Now the data t be read from gzip file will be a json string and I can convert it with read_json. But I dont get how to see if the field 'id' in json is present in the lsit shown here
This should get you started:
import numpy as np
import pandas
magic_value = 11
df = pandas.DataFrame(np.random.random_integers(0, 12, size=(10,2)))
# 0 1
# 0 1 1
# 1 5 3
# 2 12 12
# 3 12 8
# 4 11 4
# 5 11 12
# 6 9 7
# 7 7 1
# 8 0 11
# 9 2 1
magic_value in df[0].values
# True
So just read in the JSON data with pandas.read_json, get the value you want (pandas indexing docs), and go to town.
Related
How i can convert the below text data into a pandas DataFrame:
(-9.83334315,-5.92063135,-7.83228037,5.55314146), (-5.53137301,-8.31010785,-3.28062536,-6.86067081),
(-11.49239039,-1.68053601,-4.14773043,-3.54143976), (-22.25802006,-10.12843806,-2.9688831,-2.70574665), (-20.3418791,-9.4157625,-3.348587,-7.65474665)
I want to convert this to Data frame with 4 rows and 5 columns. For example, the first row contains the first element of each parenthesis.
Thanks for your contribution.
Try this:
import pandas as pd
with open("file.txt") as f:
file = f.read()
df = pd.DataFrame([{f"name{id}": val.replace("(", "").replace(")", "") for id, val in enumerate(row.split(",")) if val} for row in file.split()])
import re
import pandas as pd
with open('file.txt') as f:
data = [re.findall(r'([\-\d.]+)',data) for data in f.readlines()]
df = pd.DataFrame(data).T.astype(float)
Output:
0 1 2 3 4
0 -9.833343 -5.531373 -11.492390 -22.258020 -20.341879
1 -5.920631 -8.310108 -1.680536 -10.128438 -9.415762
2 -7.832280 -3.280625 -4.147730 -2.968883 -3.348587
3 5.553141 -6.860671 -3.541440 -2.705747 -7.654747
Your data is basically in tuple of tuples forms, hence you can easily use pass a list of tuples instead of a tuple of tuples and get a DataFrame out of it.
Your Sample Data:
text_data = ((-9.83334315,-5.92063135,-7.83228037,5.55314146),(-5.53137301,-8.31010785,-3.28062536,-6.86067081),(-11.49239039,-1.68053601,-4.14773043,-3.54143976),(-22.25802006,-10.12843806,-2.9688831,-2.70574665),(-20.3418791,-9.4157625,-3.348587,-7.65474665))
Result:
As you see it's default takes up to 6 decimal place while you have 7, hence you can use pd.options.display.float_format and set it accordingly.
pd.options.display.float_format = '{:,.8f}'.format
To get your desired data, you simply use transpose altogether to get the desired result.
pd.DataFrame(list(text_data)).T
0 1 2 3 4
0 -9.83334315 -5.53137301 -11.49239039 -22.25802006 -20.34187910
1 -5.92063135 -8.31010785 -1.68053601 -10.12843806 -9.41576250
2 -7.83228037 -3.28062536 -4.14773043 -2.96888310 -3.34858700
3 5.55314146 -6.86067081 -3.54143976 -2.70574665 -7.65474665
OR
Simply, you can use as below as well, where you can create a DataFrame from a list of simple tuples.
data = (-9.83334315,-5.92063135,-7.83228037,5.55314146),(-5.53137301,-8.31010785,-3.28062536,-6.86067081),(-11.49239039,-1.68053601,-4.14773043,-3.54143976),(-22.25802006,-10.12843806,-2.9688831,-2.70574665),(-20.3418791,-9.4157625,-3.348587,-7.65474665)
# data = [(-9.83334315,-5.92063135,-7.83228037,5.55314146),(-5.53137301,-8.31010785,-3.28062536,-6.86067081),(-11.49239039,-1.68053601,-4.14773043,-3.54143976),(-22.25802006,-10.12843806,-2.9688831,-2.70574665),(-20.3418791,-9.4157625,-3.348587,-7.65474665)]
pd.DataFrame(data).T
0 1 2 3 4
0 -9.83334315 -5.53137301 -11.49239039 -22.25802006 -20.34187910
1 -5.92063135 -8.31010785 -1.68053601 -10.12843806 -9.41576250
2 -7.83228037 -3.28062536 -4.14773043 -2.96888310 -3.34858700
3 5.55314146 -6.86067081 -3.54143976 -2.70574665 -7.65474665
wrap the tuples as a list
data=[(-9.83334315,-5.92063135,-7.83228037,5.55314146),
(-5.53137301,-8.31010785,-3.28062536,-6.86067081),
(-11.49239039,-1.68053601,-4.14773043,-3.54143976),
(-22.25802006,-10.12843806,-2.9688831,-2.70574665),
(-20.3418791,-9.4157625,-3.348587,-7.65474665)]
df=pd.DataFrame(data, columns=['A','B','C','D'])
print(df)
output:
A B C D
0 -9.833343 -5.920631 -7.832280 5.553141
1 -5.531373 -8.310108 -3.280625 -6.860671
2 -11.492390 -1.680536 -4.147730 -3.541440
3 -22.258020 -10.128438 -2.968883 -2.705747
4 -20.341879 -9.415762 -3.348587 -7.654747
I am currently trying to read some data from a public API. It has different ways of reading (json, csv, txt, among others), just change the label in the url (/ json, / csv, / txt ...). The url is as follows:
https://estadisticas.bcrp.gob.pe/estadisticas/series/api/PN01210PM/csv/
https://estadisticas.bcrp.gob.pe/estadisticas/series/api/PN01210PM/json/
...
My problem is that when trying to import into the Pandas dataframe it doesn't read the data correctly. I am trying the following alternatives:
import pandas as pd
import requests
url = 'https://estadisticas.bcrp.gob.pe/estadisticas/series/api/PN01210PM/json/'
r = requests.get(url)
rjson = r.json()
df= json_normalize(rjson)
df['periods']
Also I try to read the data in csv format:
import pandas as pd
import requests
url = 'https://estadisticas.bcrp.gob.pe/estadisticas/series/api/PN01210PM/csv/'
collisions = pd.read_csv(url, sep='<br>')
collisions.head()
But I don't get good results; the dataframe cannot be visualized correctly since the 'periods' column is grouped with all the values ...
the output is displayed as follows:
all data appears as columns: /
Here is an example of how the data is displayed correctly:
What alternative do you recommend trying?
Thank you in advance for your time and help !!
I will be attentive to your answers, regards!
For csv you can use StringIO from io package
In [20]: import requests
In [21]: res = requests.get("https://estadisticas.bcrp.gob.pe/estadisticas/series/api/PN01210PM/csv/")
In [22]: import pandas as pd
In [23]: import io
In [24]: df = pd.read_csv(io.StringIO(res.text.strip().replace("<br>","\n")), engine='python')
In [25]: df
Out[25]:
Mes/Año Tipo de cambio - promedio del periodo (S/ por US$) - Bancario - Promedio
0 Jul.2018 3.276595
1 Ago.2018 3.288071
2 Sep.2018 3.311325
3 Oct.2018 3.333909
4 Nov.2018 3.374675
5 Dic.2018 3.364026
6 Ene.2019 3.343864
7 Feb.2019 3.321475
8 Mar.2019 3.304690
9 Abr.2019 3.303825
10 May.2019 3.332364
11 Jun.2019 3.325650
12 Jul.2019 3.290214
13 Ago.2019 3.377560
14 Sep.2019 3.357357
15 Oct.2019 3.359762
16 Nov.2019 3.371700
17 Dic.2019 3.355190
18 Ene.2020 3.327364
19 Feb.2020 3.390350
20 Mar.2020 3.491364
21 Abr.2020 3.397500
22 May.2020 3.421150
23 Jun.2020 3.470167
erh, sorry couldnt find the link for the read json with multiple objects inside it. the thing is we cant use load/s for this kind of format. so have to use raw_decode() instead
this code should work
import pandas as pd
import json
import urllib.request as ur
from pprint import pprint
d = json.JSONDecoder()
url = 'https://estadisticas.bcrp.gob.pe/estadisticas/series/api/PN01210PM/json/'
#reading and transforming json into list of dictionaries
data = []
with ur.urlopen(url) as json_file:
x = json_file.read().decode() # decode to convert bytes string into normal string
while True:
try:
j, n = d.raw_decode(x)
except ValueError:
break
#print(j)
data.append(j)
x = x[n:]
#pprint(data)
#creating list of dictionaries to convert into dataframe
clean_list = []
for i, d in enumerate(data[0]['periods']):
dict_data = {
"month_year": d['name'],
"value": d['values'][0],
}
clean_list.append(dict_data)
#print(clean_list)
#pd.options.display.width = 0
df = pd.DataFrame(clean_list)
print(df)
result
month_year value
0 Jul.2018 3.27659523809524
1 Ago.2018 3.28807142857143
2 Sep.2018 3.311325
3 Oct.2018 3.33390909090909
4 Nov.2018 3.374675
5 Dic.2018 3.36402631578947
6 Ene.2019 3.34386363636364
7 Feb.2019 3.321475
8 Mar.2019 3.30469047619048
9 Abr.2019 3.303825
10 May.2019 3.33236363636364
11 Jun.2019 3.32565
12 Jul.2019 3.29021428571428
13 Ago.2019 3.37756
14 Sep.2019 3.35735714285714
15 Oct.2019 3.3597619047619
16 Nov.2019 3.3717
17 Dic.2019 3.35519047619048
18 Ene.2020 3.32736363636364
19 Feb.2020 3.39035
20 Mar.2020 3.49136363636364
21 Abr.2020 3.3975
22 May.2020 3.42115
23 Jun.2020 3.47016666666667
if I somehow found the link again, I'll edit/comment my answer
I have a contig file loaded in pandas like this:
>NODE_1_length_4014_cov_1.97676
1 AATTAATGAAATAAAGCAAGAAGACAAGGTTAGACAAAAAAAAGAG...
2 CAAAGCCTCCAAGAAATATGGGACTATGTGAAAAGACCAAATCTAC...
3 CCTGAAAGTGACGGGGAGAATGGAACCAAGTTGGAAAACACTCTGC...
4 GAGAACTTCCCCAATCTAGCAAGGCAGGCCAACATTCAAATTCAGG...
5 CCACAAAGATACTCCTCGAGAAGAGCAACTCCAAGACACATAATTG...
6 GTTGAAATGAAGGAAAAAATGTTAAGGGCAGCCAGAGAGAAAGGTC...
7 GGGAAGCCCATCAGACTAACAGCGGATCTCTCGGCAGAAACCCTAC...
8 TGGGGGCCAATATTCAACATTCTTAAAGAAAAGAATTTTCAACCCA...
9 GCCAAACTAAGCTTCATAAGCAAAGGAGAAATAAAATCCTTTACAG...
10 AGAGATTTTGTCACCACCAGGCCTGCCTTACAAGAGCTCCTGAAGG...
11 GAAAGGAAAAACCGGTACCAGCCACTGCAAAATCATGCCAAACTGT...
12 CTAGGAAGAAACTGCATCAACTAATGAGCAAAATAACCAGCTAACA...
13 TCAAATTCACACATAACAATATTAACCTTAAATGTAAATGGGCTAA...
14 AGACACAGACTGGCAAATTGGATAAAGAGTCAAGACCCATCAGTGT...
15 ACCCATCTCAAATGCAGAGACACACATAGGCTCAAAATAAAGGGAT...
16 CAAGCAAATGGAAAACAAAAAAAGGCAGGGGTTGCAATCCTAGTCT...
17 TTTAAACCAACAAAGATCAAAAGAGACAAAGAAGGCCATTACATAA...
18 ATTCAACAAGAAGAGCTAACTATCCTAAATATATATGCACCCAATA...
19 TTCATAAAGCAAGTCCTCAGTGACCTACAAAGAGACTTAGACTCCC...
20 GGAGACTTTAACACCCCACTGTCAACATTAGACAGATCAACGAGAC...
21 GATATCCAGGAATTGAACTCAGCTCTGCACCAAGCGGACCTAATAG...
22 CTCCACCCCAAATCAACAGAATATACATTCTTTTCAGCACCACACC...
23 ATTGACCACATAGTTGGAAGTAAAGCTCTCCTCAGCAAATGTAAAA...
24 ACAAACTGTCTCTCAGACCACAGTGCAATCAAATTAGAACTCAGGA...
25 CAAAACTGCTCAACTACATGAAAACTGAACAACCTGCTCCTGAATG...
26 AACAAAATGAAGGCAGAAATAAAGATGTTCTTTGAAACCAATGAGA...
27 TACCAGAATCTCTGGGACGCATTCAAAGCAGTGTGTAGAGGGAAAT...
28 GCCCACAAGAGAAAGCAGGAAAGATCTAAAATTGACACCCTAACAT...
29 CTAGAGAAGCAAGAGCAAACACATTCAAAAGCTAGCAGAAGGCAAG...
...
8540 >NODE_2518_length_56_cov_219
8541 CCCTTGTTGGTGTTACAAAGCCCTTGAACTACATCAGCAAAGACAA...
8542 >NODE_2519_length_56_cov_174
8543 CCGACTACTATCGAATTCCGCTCGACTACTATCGAATTCCGCTCGA...
8544 >NODE_2520_length_56_cov_131
8545 CCCAGGAGACTTGTCTTTGCTGATGTAGTTCAAGAGCTTTGTAACA...
8546 >NODE_2521_length_56_cov_118
8547 GGCTCCCTATCGGCTCGAATTCCGCTCGACTATTATCGAATTCCGC...
8548 >NODE_2522_length_56_cov_96
8549 CCCGCCCCCAGGAGACTTGTCTTTGCTGATAGTAGTCGAGCGGAAT...
8550 >NODE_2523_length_56_cov_74
8551 AGAGACTTGTCTTTGCTGATGTAGTTCAAGGGCTTTGTAACACCGA...
8552 >NODE_2524_length_56_cov_70
8553 TGCTCGACTACTATCGAATTCCGCTCGACTACTATCGAATTCCGCT...
8554 >NODE_2525_length_56_cov_59
8555 GAGACCCTTGTCGGTGTTACAAAGCCCTTTAACTACATCAGCAAAG...
8556 >NODE_2526_length_56_cov_48
8557 CCGACTACTATCGAATTCCGCTCGACTACTATCGAATTCCGCTCGA...
8558 >NODE_2527_length_56_cov_44
8559 CCAAGGGCTTTGTAACACCGACAAGGGTCTCGAAAACATCGGCATT...
8560 >NODE_2528_length_56_cov_42
8561 GAGACCCTTGTAGGTGTTACAAAGCCCTTGAACTACATCAGCAAAG...
8562 >NODE_2529_length_56_cov_38
8563 GAGACCCTTGTCGGTGTCACAAAGCCCTTGAACTACATCAGCAAAG...
8564 >NODE_2530_length_56_cov_29
8565 GAGGGCTTTGTAACACCGACAAGGGTCTCGAAAACATCGGCATTCT...
8566 >NODE_2531_length_56_cov_26
8567 AGGTTCAAGGGCTTTGTAACACCGACAAGGGTCTCGAAAACATCGG...
8568 >NODE_2532_length_56_cov_25
8569 GAGATGTGTATAAGAGACTTGTCTTTGCTGATGTAGTTCAAGGGCT...
How to split this one column into two columns, making >NODE_...... in one column and the corresponding sequence in another column? Another issue is the sequences are in multiple lines, how to make them into one string? The result is expected like this:
contig sequence
NODE_1_length_4014_cov_1.97676 AAAAAAAAAAAAAAA
NODE_........ TTTTTTTTTTTTTTT
Thank you very much.
I can't reproduce your example, but my guess is that you are loading file with pandas that is not formatted in a tabular format. From your example it looks like your file is formatted:
>Identifier
sequence
>Identifier
sequence
You would have to parse the file before you can put the information into a pandas dataframe. The logic would be to loop through each line of your file, if the line starts with '>Node' you store the line as an identifier. If not you concatenate them to the sequence value. Something like this:
testfile = '>NODE_1_length_4014_cov_1.97676\nAAAAAAAATTTTTTCCCCCCCGGGGGG\n>NODE_2518_length_56_cov_219\nAAAAAAAAGCCCTTTTT'.split('\n')
identifiers = []
sequences = []
current_sequence = ''
for line in testfile:
if line.startswith('>'):
identifiers.append(line)
sequences.append(current_sequence)
current_sequence = ''
else:
current_sequence += line.strip('\n')
df = pd.DataFrame({'identifiers' = identifiers,
'sequences' = sequences})
Whether this code works depends on the details of your input which you didn't provide, but that might get you started.
I have a dictionary of class objects. I want to write the member values (timepoints, fitted, measured) of the class to a csv file using Python.
My Class:
class PlotReadingCurves:
def __init__(self, timepoints, fitted, measured):
self.timepoints = timepoints
self.fitted = fitted
self.measured = measured
obj = PlotReadingCurves(mTimePoints,mFitted,mMeasured)
PlotReadingCurvesList[csoId] = obj
Eg: timpoints : 1 2 3 4 5
fitted: 6 7 8 9 10
measured: 11 12 13 14
Expected results:
timepoints fitted measured fitted measured
1 6 11 .. ..
2 7 12
3 8 13
4 9 14
5 10 15
Try my mini wrapper library pyexcel. Although it is not as powerful as pandas, it is sufficient to write a dict to an excel file in a few lines of code:
>>> import pyexcel as pe
>>> your_dict = { "timepoints": [1,2,3], "fitted":[6,7,8]} # more columns omitted
>>> sheet = pe.Sheet(pe.utils.dict_to_array(your_dict))
>>> sheet.save_as("your_file_name.csv") # done
With pyexcel, you can easily write your data into other excel formats: xls, xlsx and even ods. The documentation can be found here
Try to use pandas, here is pandas's feature about your problem.
Tools for reading and writing data between in-memory data structures and different formats: CSV and text files, Microsoft Excel, SQL databases, and the fast HDF5 format;
It's very convenient and powerful.
I have a 100M line csv file (actually many separate csv files) totaling 84GB. I need to convert it to a HDF5 file with a single float dataset. I used h5py in testing without any problems, but now I can't do the final dataset without running out of memory.
How can I write to HDF5 without having to store the whole dataset in memory? I'm expecting actual code here, because it should be quite simple.
I was just looking into pytables, but it doesn't look like the array class (which corresponds to a HDF5 dataset) can be written to iteratively. Similarly, pandas has read_csv and to_hdf methods in its io_tools, but I can't load the whole dataset at one time so that won't work. Perhaps you can help me solve the problem correctly with other tools in pytables or pandas.
Use append=True in the call to to_hdf:
import numpy as np
import pandas as pd
filename = '/tmp/test.h5'
df = pd.DataFrame(np.arange(10).reshape((5,2)), columns=['A', 'B'])
print(df)
# A B
# 0 0 1
# 1 2 3
# 2 4 5
# 3 6 7
# 4 8 9
# Save to HDF5
df.to_hdf(filename, 'data', mode='w', format='table')
del df # allow df to be garbage collected
# Append more data
df2 = pd.DataFrame(np.arange(10).reshape((5,2))*10, columns=['A', 'B'])
df2.to_hdf(filename, 'data', append=True)
print(pd.read_hdf(filename, 'data'))
yields
A B
0 0 1
1 2 3
2 4 5
3 6 7
4 8 9
0 0 10
1 20 30
2 40 50
3 60 70
4 80 90
Note that you need to use format='table' in the first call to df.to_hdf to make the table appendable. Otherwise, the format is 'fixed' by default, which is faster for reading and writing, but creates a table which can not be appended to.
Thus, you can process each CSV one at a time, use append=True to build the hdf5 file. Then overwrite the DataFrame or use del df to allow the old DataFrame to be garbage collected.
Alternatively, instead of calling df.to_hdf, you could append to a HDFStore:
import numpy as np
import pandas as pd
filename = '/tmp/test.h5'
store = pd.HDFStore(filename)
for i in range(2):
df = pd.DataFrame(np.arange(10).reshape((5,2)) * 10**i, columns=['A', 'B'])
store.append('data', df)
store.close()
store = pd.HDFStore(filename)
data = store['data']
print(data)
store.close()
yields
A B
0 0 1
1 2 3
2 4 5
3 6 7
4 8 9
0 0 10
1 20 30
2 40 50
3 60 70
4 80 90
This should be possible with PyTables. You'll need to use the EArray class though.
As an example, the following is a script I wrote to import chunked training data stored as .npy files into a single .h5 file.
import numpy
import tables
import os
training_data = tables.open_file('nn_training.h5', mode='w')
a = tables.Float64Atom()
bl_filter = tables.Filters(5, 'blosc') # fast compressor at a moderate setting
training_input = training_data.create_earray(training_data.root, 'X', a,
(0, 1323), 'Training Input',
bl_filter, 4000000)
training_output = training_data.create_earray(training_data.root, 'Y', a,
(0, 27), 'Training Output',
bl_filter, 4000000)
for filename in os.listdir('input'):
print "loading {}...".format(filename)
a = numpy.load(os.path.join('input', filename))
print "writing to h5"
training_input.append(a)
for filename in os.listdir('output'):
print "loading {}...".format(filename)
training_output.append(numpy.load(os.path.join('output', filename)))
Take a look at the docs for detailed instructions, but very briefly, the create_earray function takes 1) a data root or parent node; 2) an array name; 3) a datatype atom; 4) a shape with a 0 in the dimension you want to expand; 5) a verbose descriptor; 6) a compression filter; and 7) an expected number of rows along the expandable dimension. Only the first two are required, but you'll probably use all seven in practice. The function accepts a few other optional arguments as well; again, see the docs for details.
Once the array is created, you can use its append method in the expected way.
If you have a very large single CSV file, you may want to stream the conversion to hdf, e.g.:
import numpy as np
import pandas as pd
from IPython.display import clear_output
CHUNK_SIZE = 5000000
filename = 'data.csv'
dtypes = {'latitude': float, 'longitude': float}
iter_csv = pd.read_csv(
filename, iterator=True,
dtype=dtypes, encoding='utf-8', chunksize=CHUNK_SIZE)
cnt = 0
for ix, chunk in enumerate(iter_csv):
chunk.to_hdf(
"data.hdf", 'data', format='table', append=True)
cnt += CHUNK_SIZE
clear_output(wait=True)
print(f"Processed {cnt:,.0f} coordinates..")
Tested with a 64GB CSV file and 450 Million coordinates (about 10 Minutes conversion).