How do I make a nice paraboloid in Matplotlib that looks like
All I can get is this,
where the top is not "cut off". I've tried just dropping all values of the Z array outside of the radius of the parabola at the top, but that gives very jagged edges. Can someone help me?
Here is my code:
from matplotlib import *
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np
from pylab import *
import math
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
X = np.arange(-5, 5, 0.1)
Y = np.arange(-5, 5, 0.1)
X, Y = np.meshgrid(X, Y)
Z = (X**2 + Y**2)
ax.set_zlim(-10, 20)
ax.plot_surface(X, Y, Z, alpha=0.9, rstride=4, cstride=4, linewidth=0.5, cmap=cm.summer)
plt.show()
For future reference, I had a thought to parametrize the surface in cylindrical coordinates, and it looks exactly how I want it:
from matplotlib import *
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np
from pylab import *
import math
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
r = T = np.arange(0, 2*pi, 0.01)
r, T = np.meshgrid(r, T)
#Parametrise it
X = r*np.cos(T)
Y = r*np.sin(T)
Z = r**2
ax.plot_surface(X, Y, Z, alpha=0.9, rstride=10, cstride=10, linewidth=0.5, cmap=cm.summer)
plt.show()
I guess it makes sense: when working with a cylindrical object, use cylindrical coordinates!
Manual data clipping
One approach I've seen that works is to manually clip the data; e.g. your example would be updated to
from matplotlib import *
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np
from pylab import *
import math
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
X = np.arange(-5, 5, 0.1)
Y = np.arange(-5, 5, 0.1)
X, Y = np.meshgrid(X, Y)
Z = (X**2 + Y**2)
ax.set_zlim(-10, 20)
for i in range(len(X)):
for j in range(len(Y)):
if (Z[j,i] < -10) or (Z[j,i] > 20):
Z[j,i] = NaN
ax.plot_surface(X, Y, Z, alpha=0.9, rstride=4, cstride=4, linewidth=0.5, cmap=cm.summer)
plt.show()
Note
This can be done concisely for this case using
Z[Z>20] = NaN
Resulting in
Related
This topic has been touched here, but no indications were given as to how to create a 3D plot and insert an image in the (x,y) plane, at a specified z height.
So to come up with a simple and reproducible case, let's say that I create a 3D plot like this with mplot3d:
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
import matplotlib.pyplot as plt
import numpy as np
fig = plt.figure()
ax = fig.gca(projection='3d')
X = np.arange(-5, 5, 0.25)
Y = np.arange(-5, 5, 0.25)
X, Y = np.meshgrid(X, Y)
R = np.sqrt(X**2 + Y**2)
Z = np.sin(R)
surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.winter,
linewidth=0, antialiased=True)
ax.set_zlim(-1.01, 1.01)
ax.zaxis.set_major_locator(LinearLocator(10))
ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))
plt.show()
Visually we have:
At the level z=min(z)-1, where -1 is a visual offset to avoid overlapping, I want to insert an image representing the elements for which the curve shows a certain value. How to do it?
In this example I don't care about a perfect matching between the element and its value, so please feel free to upload any image you like. Also, is there a way of letting that image rotate, in case one is not happy with the matching?
EDIT
This is a visual example of something similar made for a 3D histogram. The grey shapes at the level z=0 are the elements for which the bars show a certain z value. Source.
Use plot_surface to draw image via facecolors argument.
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
import matplotlib.pyplot as plt
import numpy as np
from matplotlib._png import read_png
from matplotlib.cbook import get_sample_data
fig = plt.figure()
ax = fig.gca(projection='3d')
X = np.arange(-5, 5, .25)
Y = np.arange(-5, 5, .25)
X, Y = np.meshgrid(X, Y)
R = np.sqrt(X**2 + Y**2)
Z = np.sin(R)
surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.winter,
linewidth=0, antialiased=True)
ax.set_zlim(-2.01, 1.01)
ax.zaxis.set_major_locator(LinearLocator(10))
ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))
fn = get_sample_data("./lena.png", asfileobj=False)
arr = read_png(fn)
# 10 is equal length of x and y axises of your surface
stepX, stepY = 10. / arr.shape[0], 10. / arr.shape[1]
X1 = np.arange(-5, 5, stepX)
Y1 = np.arange(-5, 5, stepY)
X1, Y1 = np.meshgrid(X1, Y1)
# stride args allows to determine image quality
# stride = 1 work slow
ax.plot_surface(X1, Y1, -2.01, rstride=1, cstride=1, facecolors=arr)
plt.show()
If you need to add values use PathPatch:
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import mpl_toolkits.mplot3d.art3d as art3d
from matplotlib.text import TextPath
from matplotlib.transforms import Affine2D
from matplotlib.patches import PathPatch
def text3d(ax, xyz, s, zdir="z", size=None, angle=0, usetex=False, **kwargs):
x, y, z = xyz
if zdir == "y":
xy1, z1 = (x, z), y
elif zdir == "y":
xy1, z1 = (y, z), x
else:
xy1, z1 = (x, y), z
text_path = TextPath((0, 0), s, size=size, usetex=usetex)
trans = Affine2D().rotate(angle).translate(xy1[0], xy1[1])
p1 = PathPatch(trans.transform_path(text_path), **kwargs)
ax.add_patch(p1)
art3d.pathpatch_2d_to_3d(p1, z=z1, zdir=zdir)
# main
fig = plt.figure()
ax = fig.gca(projection='3d')
X = np.arange(-5, 5, .25)
Y = np.arange(-5, 5, .25)
Xg, Yg = np.meshgrid(X, Y)
R = np.sqrt(Xg**2 + Yg**2)
Z = np.sin(R)
surf = ax.plot_surface(Xg, Yg, Z, rstride=1, cstride=1, cmap=cm.winter,
linewidth=0, antialiased=True)
ax.set_zlim(-2.01, 1.01)
ax.zaxis.set_major_locator(LinearLocator(10))
ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))
# add pathces with values
for i,x in enumerate(X[::4]):
for j,y in enumerate(Y[::4]):
text3d(ax, (x, y, -2.01), "{0:.1f}".format(Z[i][j]), zdir="z", size=.5, ec="none", fc="k")
plt.show()
Trying to create a 3D surface plot of a plane with jupyter notebook. However, this code is giving me a strange error:
# ValueError: Argument Z must be 2-dimensional.
%matplotlib
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np
fig = plt.figure()
plt.clf()
ax = Axes3D(fig)
x=np.arange(-4,4,1)
y=np.arange(-4,4,1)
X = []
Y = []
Z = []
for ix in range(0, len(x)):
for iy in range(0, len(y)):
z = 2*x[ix] + 3*y[iy]
Z.append(z)
X.append(x[ix])
Y.append(y[iy])
ax.plot_surface(X, Y, Z)
plt.show()
%matplotlib inline
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np
X = np.arange(-5, 5, 0.25)
Y = np.arange(-5, 5, 0.25)
X, Y = np.meshgrid(X, Y)
def plot():
fig = plt.figure()
ax = Axes3D(fig)
#ax = fig.gca(projection='3d')
ax.plot_surface(X, Y, Z)
plt.show()
Z = 2*X + 3*Y
plot()
I'm very new in Python and trying to plot a single curve on a surface.
Here is where I came so far and plotted a surface in s domain:
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import cmath
x = np.linspace(-400, 0, 100)
y = np.linspace(-100, 100, 100)
X, Y = np.meshgrid(x,y)
fc=50
wc=2*np.pi*fc
s = X + Y*1j
Z= abs(1/(1+s/wc))
fig = plt.figure()
ax = fig.gca(projection='3d')
surf = ax.plot_surface(X, Y, Z)
ax.plot(X, Y, Z)
plt.ylabel('Im')
plt.show()
I now need to plot the curve for X = 0 in different color which means the curve on the same surface along the imaginary axis. surf = ax.plot_surface(0, Y, Z) did not work. Does anybody have experience with such plot?
I'm assuming you meant you wanted to plot y=0 instead of x=0 (since x=0 would be pretty boring).
Since you want to plot a single slice of your data, you can't use the meshgrid format (or if you can, it would require some weird indexing that I don't want to figure out).
Here's how I would plot the y=0 slice:
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import cmath
x = np.linspace(-400, 0, 100)
y = np.linspace(-100, 100, 100)
X, Y = np.meshgrid(x,y)
fc=50
wc=2*np.pi*fc
s = X + Y*1j
Z= abs(1/(1+s/wc))
fig = plt.figure()
ax = fig.gca(projection='3d')
surf = ax.plot_surface(X, Y, Z)
# create data for y=0
z = abs(1/(1+x/wc))
ax.plot(x,np.zeros(np.shape(x)),z)
plt.ylabel('Im')
plt.show()
So I have an array of values that I am trying to plot using the plot_surface command. Specifically I have a 30x30 array with one in the middle and zeros elsewhere. When I plot it this is what I obtain:
I would like however for the value to be represented as a cuboid. Is that possible?
Thank you
edit: Code that shows the figure
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
N=30
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
x = y = np.arange(0, N)
z = np.zeros((N,N))
z[15,15] = 1
X, Y = np.meshgrid(x, y)
ax.plot_surface(X, Y, z, cmap='YlOrBr')
plt.show(block=False)
I think a 3D bar plot will give what you're looking for.
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
N=30
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
x = y = np.arange(0, N)
z_bottom = np.zeros((N,N))
z_top = z_bottom.copy()
z_top[15,15] = 1
X, Y = np.meshgrid(x, y)
ax.bar3d(X.ravel(), Y.ravel(), z_bottom.ravel(), 1, 1, z_top.ravel())
plt.show(block=False)
The full documentation is here if you want to play with the colors and so forth.
This topic has been touched here, but no indications were given as to how to create a 3D plot and insert an image in the (x,y) plane, at a specified z height.
So to come up with a simple and reproducible case, let's say that I create a 3D plot like this with mplot3d:
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
import matplotlib.pyplot as plt
import numpy as np
fig = plt.figure()
ax = fig.gca(projection='3d')
X = np.arange(-5, 5, 0.25)
Y = np.arange(-5, 5, 0.25)
X, Y = np.meshgrid(X, Y)
R = np.sqrt(X**2 + Y**2)
Z = np.sin(R)
surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.winter,
linewidth=0, antialiased=True)
ax.set_zlim(-1.01, 1.01)
ax.zaxis.set_major_locator(LinearLocator(10))
ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))
plt.show()
Visually we have:
At the level z=min(z)-1, where -1 is a visual offset to avoid overlapping, I want to insert an image representing the elements for which the curve shows a certain value. How to do it?
In this example I don't care about a perfect matching between the element and its value, so please feel free to upload any image you like. Also, is there a way of letting that image rotate, in case one is not happy with the matching?
EDIT
This is a visual example of something similar made for a 3D histogram. The grey shapes at the level z=0 are the elements for which the bars show a certain z value. Source.
Use plot_surface to draw image via facecolors argument.
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
import matplotlib.pyplot as plt
import numpy as np
from matplotlib._png import read_png
from matplotlib.cbook import get_sample_data
fig = plt.figure()
ax = fig.gca(projection='3d')
X = np.arange(-5, 5, .25)
Y = np.arange(-5, 5, .25)
X, Y = np.meshgrid(X, Y)
R = np.sqrt(X**2 + Y**2)
Z = np.sin(R)
surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.winter,
linewidth=0, antialiased=True)
ax.set_zlim(-2.01, 1.01)
ax.zaxis.set_major_locator(LinearLocator(10))
ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))
fn = get_sample_data("./lena.png", asfileobj=False)
arr = read_png(fn)
# 10 is equal length of x and y axises of your surface
stepX, stepY = 10. / arr.shape[0], 10. / arr.shape[1]
X1 = np.arange(-5, 5, stepX)
Y1 = np.arange(-5, 5, stepY)
X1, Y1 = np.meshgrid(X1, Y1)
# stride args allows to determine image quality
# stride = 1 work slow
ax.plot_surface(X1, Y1, -2.01, rstride=1, cstride=1, facecolors=arr)
plt.show()
If you need to add values use PathPatch:
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import mpl_toolkits.mplot3d.art3d as art3d
from matplotlib.text import TextPath
from matplotlib.transforms import Affine2D
from matplotlib.patches import PathPatch
def text3d(ax, xyz, s, zdir="z", size=None, angle=0, usetex=False, **kwargs):
x, y, z = xyz
if zdir == "y":
xy1, z1 = (x, z), y
elif zdir == "y":
xy1, z1 = (y, z), x
else:
xy1, z1 = (x, y), z
text_path = TextPath((0, 0), s, size=size, usetex=usetex)
trans = Affine2D().rotate(angle).translate(xy1[0], xy1[1])
p1 = PathPatch(trans.transform_path(text_path), **kwargs)
ax.add_patch(p1)
art3d.pathpatch_2d_to_3d(p1, z=z1, zdir=zdir)
# main
fig = plt.figure()
ax = fig.gca(projection='3d')
X = np.arange(-5, 5, .25)
Y = np.arange(-5, 5, .25)
Xg, Yg = np.meshgrid(X, Y)
R = np.sqrt(Xg**2 + Yg**2)
Z = np.sin(R)
surf = ax.plot_surface(Xg, Yg, Z, rstride=1, cstride=1, cmap=cm.winter,
linewidth=0, antialiased=True)
ax.set_zlim(-2.01, 1.01)
ax.zaxis.set_major_locator(LinearLocator(10))
ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))
# add pathces with values
for i,x in enumerate(X[::4]):
for j,y in enumerate(Y[::4]):
text3d(ax, (x, y, -2.01), "{0:.1f}".format(Z[i][j]), zdir="z", size=.5, ec="none", fc="k")
plt.show()