I'm new to qgis and in here I want to find a path between two selected points on the map(Roads-vector layer). The points are selected by the user, using mouse clicks.
So here I used the astar algorithm to find path between two points.
*******************************astar.py**********************************
import heapq
class AStar(object):
def __init__(self, graphAstar):
self.graphAstar = graphAstar
def heuristic(self, node, start, end):
raise NotImplementedError
def search(self, start, end):
openset = set()
closedset = set()
current = start
openHeap = []
openset.add(current)
openHeap.append((0,current))
while openset:
temp = heapq.heappop(openHeap)
current = temp[1]
if current == end:
path = []
while current.parent:
path.append(current)
current = current.parent
path.append(current)
return path[::-1]
openset.remove(current)
closedset.add(current)
for node in self.graphAstar[current]:
if node in closedset:
continue
if node in openset:
new_g = current.gg + current.move_cost(node)
if node.gg > new_g:
node.gg = new_g
node.parent = current
else:
node.gg = current.gg + current.move_cost(node)
node.H = self.heuristic(node, start, end)
node.parent = current
openset.add(node)
heapq.heappush(openHeap, (node.H,node))
return None
class AStarNode(object):
def __init__(self):
self.gg = 0
self.H = 0
self.parent = None
def move_cost(self, other):
raise NotImplementedError
*****************************astar_grid.py*******************************
from astar import AStar, AStarNode
from math import sqrt
class AStarGrid(AStar):
def heuristic(self, node, start, end):
return sqrt((end.x - node.x)**2 + (end.y - node.y)**2)
class AStarGridNode(AStarNode):
def __init__(self, x, y):
self.x, self.y = x, y
super(AStarGridNode, self).__init__()
def move_cost(self, other):
diagonal = abs(self.x - other.x) == 1 and abs(self.y - other.y) == 1
return 14 if diagonal else 10
and in the main code, the following method is used to create graph from vector layer.
**************************plugin.py**********************************
def make_graph(self, mapinfo):
nodes = [[AStarGridNode(x, y) for y in range(mapinfo['height'])] for x in range(mapinfo['width'])]
graphAstar = {}
for x, y in product(range(mapinfo['width']), range(mapinfo['height'])):
node = nodes[x][y]
graphAstar[node] = []
for i, j in product([-1, 0, 1], [-1, 0, 1]):
if not (0 <= x + i < mapinfo['width']): continue
if not (0 <= y + j < mapinfo['height']): continue
graphAstar[nodes[x][y]].append(nodes[x+i][y+j])
return graphAstar, nodes
And I called that method in FindRoutes method..
def findRoutes(self):
vl=self.canvas.currentLayer()
director = QgsLineVectorLayerDirector( vl, -1, '', '', '', 3 )
properter = QgsDistanceArcProperter()
director.addProperter( properter )
crs = self.canvas.mapRenderer().destinationCrs()
builder = QgsGraphBuilder( crs )
global x1
global y1
global x2
global y2
pStart = QgsPoint( x1, y1 )
pStop = QgsPoint( x2, y2 )
graphAstar, nodes = self.make_graph({ "width": 8, "height": 8 })
paths = AStarGrid(graphAstar)
start, end = ??
path = paths.search(start, end)
My question is, how to pass the start and end coordinates to the function above? Because passing them just as coordinates (start, end = pStart, pStop) does not work.
How do add them to the graph created as nodes?
Or is there any easy way to do it?
Please help me to to find a solution to this problem.
Thank You
When i do an astar, the node i use are intern of the astar and contain a reference vers the original point object (your tuple of position).
Maybe it's the same with your AStarGridNode ?
In your case :
start = AStarGridNode(x1, y1)
stop = AStarGridNode(x2, y2)
This part could be in the your search function to hide this from the user.
Related
This is the python code which uses A* algorithm for finding solution for 8 puzzle problems, I got some error messages, how can I fix it?(The error message is under the code)
There are several object-oriented programming concepts for Problems class, Node class that are implemented to express the problem solution search that you need to understand in order to make the Python program complete. The priority queue is to make the nodes to be explored to be sorted according to their f-evaluation function score and return the min one as the first node to be searched next.
There is also a memorize function to memorize the heuristic value of state as a look-up table so that you don’t need to calculate the redundant computing of heuristic estimation value, so you can ignore it at this point if you don’t understand.
The components you need to implement is to make the abstract part of the program realizable for 8 -puzzle with the successor methods attached to a problem class which consists of initial state and goal state. Make sure the program can run correctly to generate the solution sequence that move the empty tile so that the 8-puzzle can move "Up", "Down", "Left", "Right", from initial state to goal state.
import math
infinity = math.inf
from itertools import chain
import numpy as np
import bisect
class memoize:
def __init__(self, f, memo={}):
self.f = f
self.memo = {}
def __call__(self, *args):
if not str(args) in self.memo:
self.memo[str(args)] = self.f(*args)
return self.memo[str(args)]
def coordinate(state):
index_state = {}
index = [[0,0], [0,1], [0,2], [1,0], [1,1], [1,2], [2,0], [2,1], [2,2]]
for i in range(len(state)):
index_state[state[i]] = index[i]
return index_state
def getInvCount(arr):
inv_count = 0
empty_value = -1
for i in range(0, 9):
for j in range(i + 1, 9):
if arr[j] != empty_value and arr[i] != empty_value and arr[i] > arr[j]:
inv_count += 1
return inv_count
def isSolvable(puzzle) :
inv_count = getInvCount([j for sub in puzzle for j in sub])
return (inv_count % 2 == 0)
def linear(state):
return sum([1 if state[i] != goal[i] else 0 for i in range(9)])
#memoize
def manhattan(state):
index_goal = coordinate(goal)
index_state = coordinate(state)
mhd = 0
for i in range(9):
for j in range(2):
mhd = abs(index_goal[i][j] - index_state[i][j]) + mhd
return mhd
#memoize
def sqrt_manhattan(state):
index_goal = coordinate(goal)
index_state = coordinate(state)
mhd = 0
for i in range(9):
for j in range(2):
mhd = (index_goal[i][j] - index_state[i][j])**2 + mhd
return math.sqrt(mhd)
#memoize
def max_heuristic(state):
score1 = manhattan(state)
score2 = linear(state)
return max(score1, score2)
class PriorityQueueElmt:
def __init__(self,val,e):
self.val = val
self.e = e
def __lt__(self,other):
return self.val < other.val
def value(self):
return self.val
def elem(self):
return self.e
class Queue:
def __init__(self):
pass
def extend(self, items):
for item in items: self.append(item)
class PriorityQueue(Queue):
def __init__(self, order=min, f=None):
self.A=[]
self.order=order
self.f=f
def append(self, item):
queueElmt = PriorityQueueElmt(self.f(item),item)
bisect.insort(self.A, queueElmt)
def __len__(self):
return len(self.A)
def pop(self):
if self.order == min:
return self.A.pop(0).elem()
else:
return self.A.pop().elem()
# Heuristics for 8 Puzzle Problem
class Problem:
def __init__(self, initial, goal=None):
self.initial = initial; self.goal = goal
def successor(self, state):
reachable = []
def get_key(val):
for key, value in index_state.items():
if val == value:
return key
return -1
def candidate(state, Position):
state = state.copy()
zero_index = state.index(0)
swap_index = state.index(get_key(Position))
state[zero_index], state[swap_index] = state[swap_index], state[zero_index]
return state
index_state = coordinate(state)
zero_position = index_state[0]
move_pair = {"left":[zero_position[0], zero_position[1] - 1],
"right":[zero_position[0], zero_position[1] + 1],
"up":[zero_position[0] - 1, zero_position[1]],
"down":[zero_position[0] + 1, zero_position[1]]
}
for action, position in move_pair.items():
#print(action, position)
if get_key(position) != -1:
reachable.append((action, candidate(state, position)))
#print(reachable)
return reachable
def goal_test(self, state):
return state == self.goal
def path_cost(self, c, state1, action, state2):
return c + 1
def value(self):
abstract
class Node:
def __init__(self, state, parent=None, action=None, path_cost=0, depth =0):
self.parent = parent
if parent:
self.depth = parent.depth + 1
else:
self.depth = 0
self.path_cost = path_cost
self.state = state
if action:
self.action = action
else: self.action = "init"
def __repr__(self):
return "Node state:\n " + str(np.array(self.state).reshape(3,3)) +"\n -> action: " + self.action + "\n -> depth: " + str(self.depth)
def path(self):
x, result = self, [self]
while x.parent:
result.append(x.parent)
x = x.parent
return result
def expand(self, problem):
for (act,n) in problem.successor(self.state):
if n not in [node.state for node in self.path()]:
yield Node(n, self, act,
problem.path_cost(self.path_cost, self.state, act, n))
def graph_search(problem, fringe):
closed = {}
fringe.append(Node(problem.initial,depth=0))
while fringe:
node = fringe.pop()
if problem.goal_test(node.state):
return node
if str(node.state) not in closed:
closed[str(node.state)] = True
fringe.extend(node.expand(problem))
return None
def best_first_graph_search(problem, f):
return graph_search(problem, PriorityQueue(min, f))
def astar_search(problem, h = None):
h = h or problem.h
def f(n):
return max(getattr(n, 'f', -infinity), n.path_cost + h(n.state))
return best_first_graph_search(problem, f)
def print_path(path, method):
print("*" * 30)
print("\nPath: (%s distance)" % method)
for i in range(len(path)-1, -1, -1):
print("-" * 15)
print(path[i])
goal = [1, 2, 3, 4, 5, 6, 7, 8, 0]
# Solving the puzzle
puzzle = [7, 2, 4, 5, 0, 6, 8, 3, 1]
if(isSolvable(np.array(puzzle).reshape(3,3))): # even true
# checks whether the initialized configuration is solvable or not
print("Solvable!")
problem = Problem(puzzle,goal)
path = astar_search(problem, manhattan).path()
print_path(path, "manhattan")
path = astar_search(problem, linear).path()
print_path(path, "linear")
path = astar_search(problem, sqrt_manhattan).path()
print_path(path, "sqrt_manhattan")
path = astar_search(problem, max_heuristic).path()
print_path(path, "max_heuristic")
else :
print("Not Solvable!") # non-even false
TypeError Traceback (most recent call last)
<ipython-input-124-2a60ddc8c009> in <module>
9 problem = Problem(puzzle,goal)
10
---> 11 path = astar_search(problem, manhattan).path()
12 print_path(path, "manhattan")
13
<ipython-input-123-caa97275712e> in astar_search(problem, h)
18 def f(n):
19 return max(getattr(n, 'f', -infinity), n.path_cost + h(n.state))
---> 20 return best_first_graph_search(problem, f)
21
22 def print_path(path, method):
<ipython-input-123-caa97275712e> in best_first_graph_search(problem, f)
12
13 def best_first_graph_search(problem, f):
---> 14 return graph_search(problem, PriorityQueue(min, f))
15
16 def astar_search(problem, h = None):
<ipython-input-123-caa97275712e> in graph_search(problem, fringe)
8 if str(node.state) not in closed:
9 closed[str(node.state)] = True
---> 10 fringe.extend(node.expand(problem))
11 return None
12
<ipython-input-121-e5a968bd54f0> in extend(self, items)
18
19 def extend(self, items):
---> 20 for item in items: self.append(item)
21
22 class PriorityQueue(Queue):
<ipython-input-122-db21613469b9> in expand(self, problem)
69
70 def expand(self, problem):
---> 71 for (act,n) in problem.successor(self.state):
72 if n not in [node.state for node in self.path()]:
73 yield Node(n, self, act,
TypeError: cannot unpack non-iterable int object
I got some error messages, how can I fix it?
There is one error message, The pieces of codes you get in the error message are the stack trace, which might help you to know how the execution got at the final point where the error occurred. In this case that is not so important. The essence of the error is this:
for (act,n) in problem.successor(self.state)
TypeError: cannot unpack non-iterable int object
So this means that the successor method returned an int instead of a list.
Looking at the code for successor, I notice that it intends to return a list called reachable, but there is a return statement right in the middle of the code, leaving the largest part of that code unexecuted (so-called "dead code"):
return state
This statement makes no sense where it is positioned. It seems to be an indentation problem: that return belongs inside the function just above it, like this:
def candidate(state, Position):
state = state.copy()
zero_index = state.index(0)
swap_index = state.index(get_key(Position))
state[zero_index], state[swap_index] = state[swap_index], state[zero_index]
return state # <-- indentation!
This question already has answers here:
TypeError: 'module' object is not callable
(16 answers)
Closed 1 year ago.
I tried to run this Ant Colony algorithm code (ant_colony.py) in Python:
from threading import Thread
class ant_colony:
class ant(Thread):
def __init__(self, init_location, possible_locations, pheromone_map, distance_callback, alpha, beta, first_pass=False):
Thread.__init__(self)
self.init_location = init_location
self.possible_locations = possible_locations
self.route = []
self.distance_traveled = 0.0
self.location = init_location
self.pheromone_map = pheromone_map
self.distance_callback = distance_callback
self.alpha = alpha
self.beta = beta
self.first_pass = first_pass
self._update_route(init_location)
self.tour_complete = False
def run(self):
while self.possible_locations:
next = self._pick_path()
self._traverse(self.location, next)
self.tour_complete = True
def _pick_path(self):
if self.first_pass:
import random
return random.choice(self.possible_locations)
attractiveness = dict()
sum_total = 0.0
for possible_next_location in self.possible_locations:
pheromone_amount = float(self.pheromone_map[self.location][possible_next_location])
distance = float(self.distance_callback(self.location, possible_next_location))
attractiveness[possible_next_location] = pow(pheromone_amount, self.alpha)*pow(1/distance, self.beta)
sum_total += attractiveness[possible_next_location]
if sum_total == 0.0:
def next_up(x):
import math
import struct
if math.isnan(x) or (math.isinf(x) and x > 0):
return x
if x == 0.0:
x = 0.0
n = struct.unpack('<q', struct.pack('<d', x))[0]
if n >= 0:
n += 1
else:
n -= 1
return struct.unpack('<d', struct.pack('<q', n))[0]
for key in attractiveness:
attractiveness[key] = next_up(attractiveness[key])
sum_total = next_up(sum_total)
import random
toss = random.random()
cummulative = 0
for possible_next_location in attractiveness:
weight = (attractiveness[possible_next_location] / sum_total)
if toss <= weight + cummulative:
return possible_next_location
cummulative += weight
def _traverse(self, start, end):
self._update_route(end)
self._update_distance_traveled(start, end)
self.location = end
def _update_route(self, new):
self.route.append(new)
self.possible_locations.remove(new)
def _update_distance_traveled(self, start, end):
self.distance_traveled += float(self.distance_callback(start, end))
def get_route(self):
if self.tour_complete:
return self.route
return None
def get_distance_traveled(self):
if self.tour_complete:
return self.distance_traveled
return None
def __init__(self, nodes, distance_callback, start=None, ant_count=50, alpha=.5, beta=1.2, pheromone_evaporation_coefficient=.40, pheromone_constant=1000.0, iterations=80):
if type(nodes) is not dict:
raise TypeError("nodes must be dict")
if len(nodes) < 1:
raise ValueError("there must be at least one node in dict nodes")
self.id_to_key, self.nodes = self._init_nodes(nodes)
self.distance_matrix = self._init_matrix(len(nodes))
self.pheromone_map = self._init_matrix(len(nodes))
self.ant_updated_pheromone_map = self._init_matrix(len(nodes))
if not callable(distance_callback):
raise TypeError("distance_callback is not callable, should be method")
self.distance_callback = distance_callback
if start is None:
self.start = 0
else:
self.start = None
#init start to internal id of node id passed
for key, value in self.id_to_key.items():
if value == start:
self.start = key
#if we didn't find a key in the nodes passed in, then raise
if self.start is None:
raise KeyError("Key: " + str(start) + " not found in the nodes dict passed.")
if type(ant_count) is not int:
raise TypeError("ant_count must be int")
if ant_count < 1:
raise ValueError("ant_count must be >= 1")
self.ant_count = ant_count
if (type(alpha) is not int) and type(alpha) is not float:
raise TypeError("alpha must be int or float")
if alpha < 0:
raise ValueError("alpha must be >= 0")
self.alpha = float(alpha)
if (type(beta) is not int) and type(beta) is not float:
raise TypeError("beta must be int or float")
if beta < 1:
raise ValueError("beta must be >= 1")
self.beta = float(beta)
if (type(pheromone_evaporation_coefficient) is not int) and type(pheromone_evaporation_coefficient) is not float:
raise TypeError("pheromone_evaporation_coefficient must be int or float")
self.pheromone_evaporation_coefficient = float(pheromone_evaporation_coefficient)
#pheromone_constant
if (type(pheromone_constant) is not int) and type(pheromone_constant) is not float:
raise TypeError("pheromone_constant must be int or float")
self.pheromone_constant = float(pheromone_constant)
#iterations
if (type(iterations) is not int):
raise TypeError("iterations must be int")
if iterations < 0:
raise ValueError("iterations must be >= 0")
self.iterations = iterations
#other internal variable init
self.first_pass = True
self.ants = self._init_ants(self.start)
self.shortest_distance = None
self.shortest_path_seen = None
def _get_distance(self, start, end):
if not self.distance_matrix[start][end]:
distance = self.distance_callback(self.nodes[start], self.nodes[end])
if (type(distance) is not int) and (type(distance) is not float):
raise TypeError("distance_callback should return either int or float, saw: "+ str(type(distance)))
self.distance_matrix[start][end] = float(distance)
return distance
return self.distance_matrix[start][end]
def _init_nodes(self, nodes):
id_to_key = dict()
id_to_values = dict()
id = 0
for key in sorted(nodes.keys()):
id_to_key[id] = key
id_to_values[id] = nodes[key]
id += 1
return id_to_key, id_to_values
def _init_matrix(self, size, value=0.0):
ret = []
for row in range(size):
ret.append([float(value) for x in range(size)])
return ret
def _init_ants(self, start):
#allocate new ants on the first pass
if self.first_pass:
return [self.ant(start, self.nodes.keys(), self.pheromone_map, self._get_distance,
self.alpha, self.beta, first_pass=True) for x in range(self.ant_count)]
#else, just reset them to use on another pass
for ant in self.ants:
ant.__init__(start, self.nodes.keys(), self.pheromone_map, self._get_distance, self.alpha, self.beta)
def _update_pheromone_map(self):
#always a square matrix
for start in range(len(self.pheromone_map)):
for end in range(len(self.pheromone_map)):
#decay the pheromone value at this location
#tau_xy <- (1-rho)*tau_xy (ACO)
self.pheromone_map[start][end] = (1-self.pheromone_evaporation_coefficient)*self.pheromone_map[start][end]
#then add all contributions to this location for each ant that travered it
#(ACO)
#tau_xy <- tau_xy + delta tau_xy_k
# delta tau_xy_k = Q / L_k
self.pheromone_map[start][end] += self.ant_updated_pheromone_map[start][end]
def _populate_ant_updated_pheromone_map(self, ant):
route = ant.get_route()
for i in range(len(route)-1):
#find the pheromone over the route the ant traversed
current_pheromone_value = float(self.ant_updated_pheromone_map[route[i]][route[i+1]])
#update the pheromone along that section of the route
#(ACO)
# delta tau_xy_k = Q / L_k
new_pheromone_value = self.pheromone_constant/ant.get_distance_traveled()
self.ant_updated_pheromone_map[route[i]][route[i+1]] = current_pheromone_value + new_pheromone_value
self.ant_updated_pheromone_map[route[i+1]][route[i]] = current_pheromone_value + new_pheromone_value
def mainloop(self):
for _ in range(self.iterations):
#start the multi-threaded ants, calls ant.run() in a new thread
for ant in self.ants:
ant.start()
#source: http://stackoverflow.com/a/11968818/5343977
#wait until the ants are finished, before moving on to modifying shared resources
for ant in self.ants:
ant.join()
for ant in self.ants:
#update ant_updated_pheromone_map with this ant's constribution of pheromones along its route
self._populate_ant_updated_pheromone_map(ant)
#if we haven't seen any paths yet, then populate for comparisons later
if not self.shortest_distance:
self.shortest_distance = ant.get_distance_traveled()
if not self.shortest_path_seen:
self.shortest_path_seen = ant.get_route()
#if we see a shorter path, then save for return
if ant.get_distance_traveled() < self.shortest_distance:
self.shortest_distance = ant.get_distance_traveled()
self.shortest_path_seen = ant.get_route()
#decay current pheromone values and add all pheromone values we saw during traversal (from ant_updated_pheromone_map)
self._update_pheromone_map()
#flag that we finished the first pass of the ants traversal
if self.first_pass:
self.first_pass = False
#reset all ants to default for the next iteration
self._init_ants(self.start)
#reset ant_updated_pheromone_map to record pheromones for ants on next pass
self.ant_updated_pheromone_map = self._init_matrix(len(self.nodes), value=0)
#translate shortest path back into callers node id's
ret = []
for id in self.shortest_path_seen:
ret.append(self.id_to_key[id])
return ret
and my module-test file is:
import ant_colony
import math
test_nodes = {0: (0, 7), 1: (3, 9), 2: (12, 4), 3: (14, 11), 4: (8, 11) ,5: (15, 6), 6: (6, 15), 7: (15, 9), 8: (12, 10), 9: (10, 7)}
def distance(start, end):
x_distance = abs(start[0] - end[0])
y_distance = abs(start[1] - end[1])
return math.sqrt(pow(x_distance, 2) + pow(y_distance, 2))
colony = ant_colony(test_nodes, distance)
answer = colony.mainloop()
print(answer)
but when it runs, this error appears:
TypeError: 'module' object is not callable
I tried a lot of ways but they didn't work at all. I tried to test two coordinates instead of distance, I tried to test using arguments and so on, but they did not work. How can I fix it?
You can see that error says module object is not callable. Because when you wrote
import ant_colony
What you did was import that whole module when what you really wanted was just the class
so you can go ahead and do
from ant_colony import ant_colony
and you are good to go!
You are importing module but not a class. Replace this line of code:
import ant_colony
with this line of code:
from ant_colony import ant_colony
What's the difference? In my example you are importing class called ant_colony from file called ant_colony. The first thing is path to file and the second thing is the name of class, function etc.
You have to call it as ant_colony.ant_colony(...) , not ant_colony(...)
See this thread TypeError: 'module' object is not callable
I am a starter & want to integrate dfs code with Fibonacci series generating code. The Fibonacci code too runs as dfs, with calls made from left to right.
The integration is incomplete still.
I have two issues :
(i) Unable to update 'path' correctly in fib(), as the output is not correctly depicting that.
(ii) Stated in fib() function below, as comment.
P.S.
Have one more issue that is concerned with program's working:
(iii) On modifying line #16 to: stack = root = stack[1:]; get the same output as before.
import sys
count = 0
root_counter = 0
#path=1
inf = -1
node_counter = 0
root =0
def get_depth_first_nodes(root):
nodes = []
stack = [root]
while stack:
cur_node = stack[0]
stack = stack[1:]
nodes.append(cur_node)
for child in cur_node.get_rev_children():
stack.insert(0, child)
return nodes
def node_counter_inc():
global node_counter
node_counter = node_counter + 1
class Node(object):
def __init__(self, id_,path):
self.id = node_counter_inc()
self.children = []
self.val = inf #On instantiation, val = -1, filled bottom up;
#except for leaf nodes
self.path = path
def __repr__(self):
return "Node: [%s]" % self.id
def add_child(self, node):
self.children.append(node)
def get_children(self):
return self.children
def get_rev_children(self):
children = self.children[:]
children.reverse()
return children
def fib(n, level, val, path):
global count, root_counter, root
print('count :', count, 'n:', n, 'dfs-path:', path)
count += 1
if n == 0 or n == 1:
path = path+1
root.add_child(Node(n, path))
return n
if root_counter == 0:
root = Node(n, path)
root_counter = 1
else:
#cur_node.add_child(Node(n, path)) -- discarded for next(new) line
root.add_child(Node(n, path))
tmp = fib(n-1, level + 1,inf, path) + fib(n-2, level + 1,inf,path+1)
#Issue 2: Need update node's val field with tmp.
#So, need suitable functions in Node() class for that.
print('tmp:', tmp, 'level', level)
return tmp
def test_depth_first_nodes():
fib(n,0,-1,1)
node_list = get_depth_first_nodes(root)
for node in node_list:
print(str(node))
if __name__ == "__main__":
n = int(input("Enter value of 'n': "))
test_depth_first_nodes()
Want to add that took idea for code from here.
Answer to the first question:
Path in this particular question is an int. It is a numbering of path from the root to a leaf in a greedy dfs manner.
This can be achieved by letting path be a global variable rather than an input to fib function. We increment the path count whenever we reach a leaf.
I have also modified the fib function to returns a node rather than a number.
import sys
count = 0
root_counter = 0
path=1
inf = -1
node_counter = 0
root = None
def node_counter_inc():
global node_counter
node_counter = node_counter + 1
print("node_counter:", node_counter)
return node_counter
class Node(object):
def __init__(self, id__,path):
print("calling node_counter_inc() for node:", n )
try:
self.id = int(node_counter_inc())
except TypeError:
self.id = 0 # or whatever you want to do
#self.id = int(node_counter_inc())
self.val = inf #On instantiation, val = -1, filled bottom up;
#except for leaf nodes
self.path = path
self.left = None
self.right = None
def __repr__(self):
return "Node" + str(self.id) + ":"+ str(self.val)
def fib(n, level, val):
# make fib returns a node rather than a value
global count, root_counter, root, path
print('count :', count, 'n:', n, 'dfs-path:', path)
count += 1
if n == 0 or n == 1:
path = path+1
new_Node = Node(n, path)
new_Node.val = n
return new_Node
#root.add_child(new_Node)
# return new_node
#if root_counter == 0:
# root = Node(n, path)
# root_counter = 1
#else:
#cur_node.add_child(Node(n, path)) -- discarded for next(new) line
# root.add_child(Node(n, path))
#tmp = fib(n-1, level + 1,inf) + fib(n-2, level + 1,inf)
#Issue 2: Need update node's val field with tmp.
#So, need suitable functions in Node() class for that.
#print('tmp:', tmp, 'level', level)
#return tmp
ans = Node(n, path)
ans.left = fib(n-1, level + 1, inf)
ans.right = fib(n-2, level + 1, inf)
ans.val = ans.left.val + ans.right.val
print("the node is", ans.id, "with left child", ans.left.id, "and right child", ans.right.id)
print("the corresponding values are", ans.val, ans.left.val, ans.right.val)
return ans
def test_depth_first_nodes():
ans = fib(n,0,-1)
print("The answer is", ans.val)
#node_list = get_depth_first_nodes(root)
#for node in node_list:
# print(str(node))
if __name__ == "__main__":
n = int(input("Enter value of 'n': "))
test_depth_first_nodes()
I am trying to have a program that allows the user to click on a vertex to choose the start vertex and hover over a vertex to choose the end_vertex. Then the program uses breadth first search to choose a path. I haven't been able to create the path because whenever I choose both vertices, I get a none type. Please help.
from collections import deque
from load_graph import load_graph
vertex_dict = load_graph("graph.txt")
def bfs(start, goal):
backpointers = {}
path = []
q = deque()
q.append(start)
backpointers[start] = None
while len(q) >= 1:
x = q.popleft()
if x == goal:
path.append(goal)
while backpointers[x] != None:
print(backpointers)
path.append(backpointers[x])
x = backpointers[x]
return path
else:
for vertex in x.get_adjacent():
vertex = vertex_dict[vertex.strip()]
if vertex not in backpointers:
backpointers[vertex] = x
q.append(vertex)
print(len(x.get_adjacent()))
I am positive that the issue it here because It returns a none-type and when I put a bunch of print statements, it got stuck in the else portion.
This is what it looks likes
Vertex Class:
from cs1lib import *
class Vertex:
def __init__(self, name, adjacent, x, y):
self.name = name
self.adjacent = adjacent.split(",")
self.adjacentSTR = adjacent
self.x = int(x)
self.y = int(y)
self.r = 10
self.distance = None
self.is_red = False
def __str__(self):
return self.name+"; "+"Adjencent Vertices: "+self.adjacentSTR+" Location: "+str(self.x)+", "+ str(self.y)
def get_x(self):
return self.x
def set_distance(self, d):
self.distance = d
def get_vertex(self):
return self
def get_y(self):
return self.y
def get_adjacent(self):
return self.adjacent
def link(self, vertex, r, g, b):
set_fill_color(r, g, b)
set_stroke_width(2)
set_stroke_color(r, g, b)
draw_line(self.x, self.y, vertex.get_x(), vertex.get_y())
def draw(self, r, g, b):
set_fill_color(r, g, b)
set_stroke_width(1)
draw_circle(self.x, self.y, self.r)
def mouse_is_nearby(self, mx, my):
if mx <= self.x + self.r and mx >= self.x - self.r and my <= self.y + self.r and my >= self.y - self.r:
# print("close to: " +self.name)
return True
Try this:
from collections import deque
def path(back_links, goal):
path = [goal]
node = goal
while back_links[node] is not None:
node = back_links[node]
path = [node] + path
return path
def bfs(start, goal):
q = deque([start])
visited, back_links = set([]), {start.name: None}
while q:
node = q.popleft()
visited.add(node.name)
if node.name == goal.name:
return path(back_links, goal.name)
for neighbor in node.get_adjacent():
if neighbor.name in visited:
continue
q.append(neighbor)
back_links[neighbor.name] = node.name
return []
I'm wondering how I can optimally find the diameter (or longest path between any two leaf nodes) of a binary tree. I have the basic solution below, but the second solution requires passing pointers. How can I do something like this in Python?
def find_tree_diameter(node):
if node == None:
return 0
lheight = height(node.left)
rheight = height(node.right)
ldiameter = find_tree_diameter(node.left)
rdiameter = find_tree_diameter(node.right)
return max(lheight+rheight+1, ldiameter, rdiameter)
def find_tree_diameter_optimized(node, height):
lheight, rheight, ldiameter, rdiameter = 0, 0, 0, 0
if node == None:
# *height = 0;
return 0
ldiameter = diameterOpt(root.left, &lheight)
rdiameter = diameterOpt(root.right, &rheight)
# *height = max(lheight, rheight) + 1;
return max(lh + rh + 1, max(ldiameter, rdiameter));
Python supports multiple return values, so you don't need pointer arguments like in C or C++. Here's a translation of the code:
def diameter_height(node):
if node is None:
return 0, 0
ld, lh = diameter_height(node.left)
rd, rh = diameter_height(node.right)
return max(lh + rh + 1, ld, rd), 1 + max(lh, rh)
def find_tree_diameter(node):
d, _ = diameter_height(node)
return d
The function diameter_height returns the diameter and the height of the tree, and find_tree_diameter uses it to just compute the diameter (by discarding the height).
The function is O(n), no matter the shape of the tree. The original function is O(n^2) in the worst case when the tree is very unbalanced because of the repeated height calculations.
Simple Python 3 solution
def findDepth(root):
if root is None:
return 0
return 1 + max(findDepth(root.left), findDepth(root.right))
class Solution:
def diameterOfBinaryTree(self, root: TreeNode) -> int:
if root is None:
return 0
left = findDepth(root.left)
right = findDepth(root.right)
ldia = self.diameterOfBinaryTree(root.left)
rdia = self.diameterOfBinaryTree(root.right)
return max(left+right, max(ldia, rdia))