Why does theano conv2d add empty dimension? - python

I am playing around with some simple Theano code, and I ran into the following:
import numpy
import theano
from theano import tensor
from theano.tensor.signal.conv import conv2d
m = tensor.fmatrix()
w = numpy.ones([10,1], dtype=numpy.float32)
c = conv2d(m,w)
f = theano.function([m], c)
print f(numpy.ones([100,100], dtype=numpy.float32)).shape
Result:
(1, 91, 100)
The result of a 2d convolution of 2d inputs is expected to be 2d, but it is actually 3d. Why?

The docstring of conv2d says signal.conv.conv2d performs a basic 2D convolution of the input with the
given filters. (note the plural)
You could pass it several filters and it will return the convolutions with all of those. Try e.g.
c = conv2d(m,np.array([w, w, w]))
f = theano.function([m], c)
print f(numpy.ones([100,100], dtype=numpy.float32)).shape # outputs (3, 91, 100)
So it seems that by default it will add a degenerate axis if you only pass 1 filter (probably because it adds this axis internally to your filter if you didn't pass it in that way yourself. In other words, it doesn't keep track of the input shape in order to return something that corresponds. Looks like a design choice more than anything else.)

Related

Dimensions when subtracting numpy.ndarray() that are column vector (dimension [m,1])

I am subtracting 2 numpy.ndarrays h and y with shape of (47,1) and (47,) respectively. When I use python to subtract both of the next functions return an array of shape (47,47). I know that mathematically this operation should keep the dimensions of the input arrays, but its not working that way.
The operations I used are:
e = h - y
e = np.subtract(h,y)
Is that something about how numpy does the operations, or should I be using other types of operations for this? How do I fix it so that the dimensions of the resulting array match with the correct ones mathematically?
The shape of h and y should be identical for elementwise subtraction as you mentioned.
The both methods you describe are identical.
The following code works
import numpy as np
a = np.array([1,2,3,4,5,6,7])
b = np.array([[1,2,3,4,5,6,7]])
print(a.shape) # (7,)
print(b.shape) # (1,7)
c = a-b # or np.subtract(a,b)
print(c.shape) # (1,7)
print(c) # [[0,0,0,0,0,0,0]]
Maybe one of ndarrays is transposed. The shape of a-b.T is (7,7) as you described.
Edit
I forgot the fact that you described a column vector.
In this case the following would do the trick for elementwise subtraction:
h.T-y

pytorch view tensor and reduce one dimension

So I have a 4d tensor with shape [4,1,128,678] and I would like to view/reshape it as [4,678,128].
I have to do this for multiple tensors where the last shape value 678 is not always know and could be different, so [4,1,128,575]should also go to [4,575,128]
Any idea on what is the optimal operation to transform the tensor? view/reshape? and how?
Thanks
You could also use (less to write and IMO cleaner):
# x.shape == (4, 1, 128, 678)
x.squeeze().permute(0, 2, 1)
If you were to use view you would lose dimension information (but maybe that is what you want), in this case it would be:
x.squeeze().view(4, -1, 128)
permute reorders tensors, while shape only gives a different view without restructuring underlying memory. You can see the difference between those two operations in this StackOverflow answer.
Use einops instead, it can do all operations in one turn and verify known dimensions:
from einops import reshape
y = rearrange(x, 'x 1 y z -> x z y', x=4, y=128)

Numpy [...,None]

I have found myself needing to add features to existing numpy arrays which has led to a question around what the last portion of the following code is actually doing:
np.ones(shape=feature_set.shape)[...,None]
Set-up
As an example, let's say I wish to solve for linear regression parameter estimates by using numpy and solving:
Assume I have a feature set shape (50,1), a target variable of shape (50,), and I wish to use the shape of my target variable to add a column for intercept values.
It would look something like this:
# Create random target & feature set
y_train = np.random.randint(0,100, size = (50,))
feature_set = np.random.randint(0,100,size=(50,1))
# Build a set of 1s after shape of target variable
int_train = np.ones(shape=y_train.shape)[...,None]
# Able to then add int_train to feature set
X = np.concatenate((int_train, feature_set),1)
What I Think I Know
I see the difference in output when I include [...,None] vs when I leave it off. Here it is:
The second version returns an error around input arrays needing the same number of dimensions, and eventually I stumbled on the solution to use [...,None].
Main Question
While I see the output of [...,None] gives me what I want, I am struggling to find any information on what it is actually supposed to do. Can anybody walk me through what this code actually means, what the None argument is doing, etc?
Thank you!
The slice of [..., None] consists of two "shortcuts":
The ellipsis literal component:
The dots (...) represent as many colons as needed to produce a complete indexing tuple. For example, if x is a rank 5 array (i.e., it has 5 axes), then
x[1,2,...] is equivalent to x[1,2,:,:,:],
x[...,3] to x[:,:,:,:,3] and
x[4,...,5,:] to x[4,:,:,5,:].
(Source)
The None component:
numpy.newaxis
The newaxis object can be used in all slicing operations to create an axis of length one. newaxis is an alias for ‘None’, and ‘None’ can be used in place of this with the same result.
(Source)
So, arr[..., None] takes an array of dimension N and "adds" a dimension "at the end" for a resulting array of dimension N+1.
Example:
import numpy as np
x = np.array([[1,2,3],[4,5,6]])
print(x.shape) # (2, 3)
y = x[...,None]
print(y.shape) # (2, 3, 1)
z = x[:,:,np.newaxis]
print(z.shape) # (2, 3, 1)
a = np.expand_dims(x, axis=-1)
print(a.shape) # (2, 3, 1)
print((y == z).all()) # True
print((y == a).all()) # True
Consider this code:
np.ones(shape=(2,3))[...,None].shape
As you see the 'None' phrase change the (2,3) matrix to a (2,3,1) tensor. As a matter of fact it put the matrix in the LAST index of the tensor.
If you use
np.ones(shape=(2,3))[None, ...].shape
it put the matrix in the FIRST‌ index of the tensor

Vector dot product along one dimension for multidimensional arrays

I want to compute the sum product along one dimension of two multidimensional arrays, using Theano.
I'll describe precisely what I want to do using numpy first. numpy.tensordot and numpy.dot seem to always do a matrix product, whereas I'm in essence looking for a batched equivalent of a vector product. Given x and y, I want to compute z like so:
x = np.random.normal(size=(200, 2, 2, 1000))
y = np.random.normal(size=(200, 2, 2))
# this is how I now approach it:
z = np.sum(y[:,:,:,np.newaxis] * x, axis=1)
# z is of shape (200, 2, 1000)
Now I know that numpy.einsum would probably be able to help me here, but again, I want to do this particular computation in Theano, which does not have an einsum equivalent. I will need to use dot, tensordot, or Theano's specialized einsum subset functions batched_dot or batched_tensordot.
The reason I'm looking to change my approach to this is performance; I suspect that using builtin (CUDA) dot products will be faster than relying on broadcasting, element-wise product, and sum.
In Theano, none of the dimensions of three and four dimensional tensors are broadcastable. You have to explicitly set them. Then the Numpy principles will work just fine. One way to do this is to use T.patternbroadcast. To read more about broadcasting, refer this.
You have three dimensions in one of the tensors. So first you need to append a singleton dimension at the end and then make that dimension broadcastable. These two things can be achieved with a single command - T.shape_padaxis. The entire code is as follows:
import theano
from theano import tensor as T
import numpy as np
X = T.ftensor4('X')
Y = T.ftensor3('Y')
Y_broadcast = T.shape_padaxis(Y, axis=-1) # appending extra dimension and making it
# broadcastable
Z = T.sum((X*Y_broadcast), axis=1) # element-wise multiplication
f = theano.function([X, Y], Z, allow_input_downcast=True)
# Making sure that it works and gives correct results
x = np.random.normal(size=(3, 2, 2, 4))
y = np.random.normal(size=(3, 2, 2))
theano_result = f(x,y)
numpy_result = np.sum(y[:,:,:,np.newaxis] * x, axis=1)
print np.amax(theano_result - numpy_result) # prints 2.7e-7 on my system, close enough!
I hope this helps.

numpy broadcast from first dimension

In NumPy, is there an easy way to broadcast two arrays of dimensions e.g. (x,y) and (x,y,z)? NumPy broadcasting typically matches dimensions from the last dimension, so usual broadcasting will not work (it would require the first array to have dimension (y,z)).
Background: I'm working with images, some of which are RGB (shape (h,w,3)) and some of which are grayscale (shape (h,w)). I generate alpha masks of shape (h,w), and I want to apply the mask to the image via mask * im. This doesn't work because of the above-mentioned problem, so I end up having to do e.g.
mask = mask.reshape(mask.shape + (1,) * (len(im.shape) - len(mask.shape)))
which is ugly. Other parts of the code do operations with vectors and matrices, which also run into the same issue: it fails trying to execute m + v where m has shape (x,y) and v has shape (x,). It's possible to use e.g. atleast_3d, but then I have to remember how many dimensions I actually wanted.
how about use transpose:
(a.T + c.T).T
numpy functions often have blocks of code that check dimensions, reshape arrays into compatible shapes, all before getting down to the core business of adding or multiplying. They may reshape the output to match the inputs. So there is nothing wrong with rolling your own that do similar manipulations.
Don't offhand dismiss the idea of rotating the variable 3 dimension to the start of the dimensions. Doing so takes advantage of the fact that numpy automatically adds dimensions at the start.
For element by element multiplication, einsum is quite powerful.
np.einsum('ij...,ij...->ij...',im,mask)
will handle cases where im and mask are any mix of 2 or 3 dimensions (assuming the 1st 2 are always compatible. Unfortunately this does not generalize to addition or other operations.
A while back I simulated einsum with a pure Python version. For that I used np.lib.stride_tricks.as_strided and np.nditer. Look into those functions if you want more power in mixing and matching dimensions.
as another angle: if you encounter this pattern frequently, it may be useful to create a utility function to enforce right-broadcasting:
def right_broadcasting(arr, target):
return arr.reshape(arr.shape + (1,) * (target.ndim - arr.ndim))
Although if there are only two types of input (already having 3 dims or having only 2), id say the single if statement is preferable.
Indexing with np.newaxis creates a new axis in that place. Ie
xyz = #some 3d array
xy = #some 2d array
xyz_sum = xyz + xy[:,:,np.newaxis]
or
xyz_sum = xyz + xy[:,:,None]
Indexing in this way creates an axis with shape 1 and stride 0 in this location.
Why not just decorate-process-undecorate:
def flipflop(func):
def wrapper(a, mask):
if len(a.shape) == 3:
mask = mask[..., None]
b = func(a, mask)
return np.squeeze(b)
return wrapper
#flipflop
def f(x, mask):
return x * mask
Then
>>> N = 12
>>> gs = np.random.random((N, N))
>>> rgb = np.random.random((N, N, 3))
>>>
>>> mask = np.ones((N, N))
>>>
>>> f(gs, mask).shape
(12, 12)
>>> f(rgb, mask).shape
(12, 12, 3)
Easy, you just add a singleton dimension at the end of the smaller array. For example, if xyz_array has shape (x,y,z) and xy_array has shape (x,y), you can do
xyz_array + np.expand_dims(xy_array, xy_array.ndim)

Categories

Resources