Matplotlib: Adjust legend location/position - python

I'm creating a figure with multiple subplots. One of these subplots is giving me some trouble, as none of the axes corners or centers are free (or can be freed up) for placing the legend. What I'd like to do is to have the legend placed somewhere in between the 'upper left' and 'center left' locations, while keeping the padding between it and the y-axis equal to the legends in the other subplots (that are placed using one of the predefined legend location keywords).
I know I can specify a custom position by using loc=(x,y), but then I can't figure out how to get the padding between the legend and the y-axis to be equal to that used by the other legends. Would it be possible to somehow use the borderaxespad property of the first legend? Though I'm not succeeding at getting that to work.
Any suggestions would be most welcome!
Edit: Here is a (very simplified) illustration of the problem:
import matplotlib.pyplot as plt
fig, ax = plt.subplots(1, 2, sharex=False, sharey=False)
ax[0].axhline(y=1, label='one')
ax[0].axhline(y=2, label='two')
ax[0].set_ylim([0.8,3.2])
ax[0].legend(loc=2)
ax[1].axhline(y=1, label='one')
ax[1].axhline(y=2, label='two')
ax[1].axhline(y=3, label='three')
ax[1].set_ylim([0.8,3.2])
ax[1].legend(loc=2)
plt.show()
What I'd like is that the legend in the right plot is moved down somewhat so it no longer overlaps with the line.
As a last resort I could change the axis limits, but I would very much like to avoid that.

I saw the answer you posted and tried it out. The problem however is that it is also depended on the figure size.
Here's a new try:
import numpy
import matplotlib.pyplot as plt
x = numpy.linspace(0, 10, 10000)
y = numpy.cos(x) + 2.
x_value = .014 #Offset by eye
y_value = .55
fig, ax = plt.subplots(1, 2, sharex = False, sharey = False)
fig.set_size_inches(50,30)
ax[0].plot(x, y, label = "cos")
ax[0].set_ylim([0.8,3.2])
ax[0].legend(loc=2)
line1 ,= ax[1].plot(x,y)
ax[1].set_ylim([0.8,3.2])
axbox = ax[1].get_position()
fig.legend([line1], ["cos"], loc = (axbox.x0 + x_value, axbox.y0 + y_value))
plt.show()
So what I am now doing is basically getting the coordinates from the subplot. I then create the legend based on the dimensions of the entire figure. Hence, the figure size does not change anything to the legend positioning anymore.
With the values for x_value and y_value the legend can be positioned in the subplot. x_value has been eyeballed for a good correspondence with the "normal" legend. This value can be changed at your desire. y_value determines the height of the legend.
Good luck!

After spending way too much time on this, I've come up with the following satisfactory solution (the Transformations Tutorial definitely helped):
bapad = plt.rcParams['legend.borderaxespad']
fontsize = plt.rcParams['font.size']
axline = plt.rcParams['axes.linewidth'] #need this, otherwise the result will be off by a few pixels
pad_points = bapad*fontsize + axline #padding is defined in relative to font size
pad_inches = pad_points/72.0 #convert from points to inches
pad_pixels = pad_inches*fig.dpi #convert from inches to pixels using the figure's dpi
Then, I found that both of the following work and give the same value for the padding:
# Define inverse transform, transforms display coordinates (pixels) to axes coordinates
inv = ax[1].transAxes.inverted()
# Inverse transform two points on the display and find the relative distance
pad_axes = inv.transform((pad_pixels, 0)) - inv.transform((0,0))
pad_xaxis = pad_axes[0]
or
# Find how may pixels there are on the x-axis
x_pixels = ax[1].transAxes.transform((1,0)) - ax[1].transAxes.transform((0,0))
# Compute the ratio between the pixel offset and the total amount of pixels
pad_xaxis = pad_pixels/x_pixels[0]
And then set the legend with:
ax[1].legend(loc=(pad_xaxis,0.6))
Plot:

Related

Limiting the size of legend in MatPlotLib in python, then allowing scrolling within the legend

I would like to limit the size of the legend in MatPlotLib to scale with a figure. After this, I would like to enable scrolling within the legend to see any cut off data. This is regarding two legends, each corresponding to a subplot. A picture is attached to show the exact setup:
In this image, you can see that the legends are overlapping each other, as well as being cut off by the bottom of the frame.
Here is the python code used to obtain the figure:
import matplotlib.pyplot as plt
from matplotlib.transforms import Bbox
fig, axes = plt.subplots(2, figsize=(9,6))
x = [i for i in range(100)]
y_data = []
for i in range(1,15):
temp = []
for j in x:
temp.append(i * j)
y_data.append(temp)
for line in y_data:
axes[0].plot(x, line, '.')
axes[1].plot(x, line, '.')
axes[0].legend(x, bbox_to_anchor=(1.02, 0, 0.07, 1))
axes[1].legend(x, bbox_to_anchor=(1.02, 0, 0.07, 1))
plt.show()
I would like to modify this code so that the legend is smaller, and so that if there are a great amount of lines in the legend, the data that is not within the confines of the legend can be scrolled to.
I attempted to use the ideas here: Fix size of legend in matplotlib, but it did not seem to scale with two subplots. Setting the height and width in bbox_to_anchor also did not seem to constrain the legend - only move it.
How can I accomplish this?

Make x-axes of all subplots same length on the page

I am new to matplotlib and trying to create and save plots from pandas dataframes via a loop. Each plot should have an identical x-axis, but different y-axis lengths and labels. I have no problem creating and saving the plots with different y-axis lengths and labels, but when I create the plots, matplotlib rescales the x-axis depending on how much space is needed for the y-axis labels on the left side of the figure.
These figures are for a technical report. I plan to place one on each page of the report and I would like to have all of the x-axes take up the same amount of space on the page.
Here is an MSPaint version of what I'm getting and what I'd like to get.
Hopefully this is enough code to help. I'm sure there are lots of non-optimal parts of this.
import pandas as pd
import matplotlib.pyplot as plt
import pylab as pl
from matplotlib import collections as mc
from matplotlib.lines import Line2D
import seaborn as sns
# elements for x-axis
start = -1600
end = 2001
interval = 200 # x-axis tick interval
xticks = [x for x in range(start, end, interval)] # create x ticks
# items needed for legend construction
lw_bins = [0,10,25,50,75,90,100] # bins for line width
lw_labels = [3,6,9,12,15,18] # line widths
def make_proxy(zvalue, scalar_mappable, **kwargs):
color = 'black'
return Line2D([0, 1], [0, 1], color=color, solid_capstyle='butt', **kwargs)
# generic image ID
img_path = r'C:\\Users\\user\\chart'
img_ID = 0
for line_subset in data:
# create line collection for this run through loop
lc = mc.LineCollection(line_subset)
# create plot and set properties
sns.set(style="ticks")
sns.set_context("notebook")
fig, ax = pl.subplots(figsize=(16, len(line_subset)*0.5)) # I want the height of the figure to change based on number of labels on y-axis
# Figure width should stay the same
ax.add_collection(lc)
ax.set_xlim(left=start, right=end)
ax.set_xticks(xticks)
ax.set_ylim(0, len(line_subset)+1)
ax.margins(0.05)
sns.despine(left=True)
ax.xaxis.set_ticks_position('bottom')
ax.set_yticks(line_subset['order'])
ax.set_yticklabels(line_subset['ylabel'])
ax.tick_params(axis='y', length=0)
# legend
proxies = [make_proxy(item, lc, linewidth=item) for item in lw_labels]
ax.legend(proxies, ['0-10%', '10-25%', '25-50%', '50-75%', '75-90%', '90-100%'], bbox_to_anchor=(1.05, 1.0),
loc=2, ncol=2, labelspacing=1.25, handlelength=4.0, handletextpad=0.5, markerfirst=False,
columnspacing=1.0)
# title
ax.text(0, len(line_subset)+2, s=str(img_ID), fontsize=20)
# save as .png images
plt.savefig(r'C:\\Users\\user\\Desktop\\chart' + str(img_ID) + '.png', dpi=300, bbox_inches='tight')
Unless you use an axes of specifically defined aspect ratio (like in an imshow plot or by calling .set_aspect("equal")), the space taken by the axes should only depend on the figure size along that direction and the spacings set to the figure.
You are therefore pretty much asking for the default behaviour and the only thing that prevents you from obtaining that is that you use bbox_inches='tight' in the savefig command.
bbox_inches='tight' will change the figure size! So don't use it and the axes will remain constant in size. `
Your figure size, defined like figsize=(16, len(line_subset)*0.5) seems to make sense according to what I understand from the question. So what remains is to make sure the axes inside the figure are the size you want them to be. You can do that by manually placing it using fig.add_axes
fig.add_axes([left, bottom, width, height])
where left, bottom, width, height are in figure coordinates ranging from 0 to 1. Or, you can adjust the spacings outside the subplot using subplots_adjust
plt.subplots_adjust(left, bottom, right, top)
To get matching x axis for the subplots (same x axis length for each subplot) , you need to share the x axis between subplots.
See the example here https://matplotlib.org/examples/pylab_examples/shared_axis_demo.html

Matplotlib - axvspan vs subplots

I'm writing a pythonic script for a coastal engineering application which should output, amongst other things, a figure with two subplots.
The problem is that I would like to shade a section of both subplots using plt.axvspan() but for some reason it only shades one of them.
Please find below an excerpt of the section of the code where I set up the plots as well as the figure that it's currently outputting (link after code).
Thanks for your help, and sorry if this is a rookie question (but it just happens that I am indeed a rookie in Python... and programming in general) but I couldn't find an answer for this anywhere else.
Feel free to add any comments to the code.
# PLOTTING
# now we generate a figure with the bathymetry vs required m50 and another figure with bathy vs Hs
#1. Generate plots
fig = plt.figure() # Generate Figure
ax = fig.add_subplot(211) # add the first plot to the figure.
depth = ax.plot(results[:,0],results[:,1]*-1,label="Depth [mDMD]") #plot the first set of data onto the first set of axis.
ax2 = ax.twinx() # generate a secondary vertical axis with the same horizontal axis as the first
m50 = ax2.plot(results[:,0],results[:,6],"r",label="M50 [kg]") # plot the second set of data onto the second vertical axis
ax3 = fig.add_subplot(212) # generate the second subplot
hs = ax3.plot(results[:,0],results[:,2],"g",label="Hs(m)")
#Now we want to find where breaking starts to occur so we shade it on the plot.
xBreakingDistance = results[numpy.argmax(breakingIndex),0]
# and now we plot a box from the origin to the depth of breaking.
plt.axvspan(0,xBreakingDistance,facecolor="b",alpha=0.1) # this box is called a span in matplotlib (also works for axhspan)
# and then we write BREAKING ZONE in the box we just created
yLimits = ax.get_ylim() # first we get the range of y being plotted
yMiddle = (float(yLimits[1])-float(yLimits[0])) / 2 + yLimits[0] # then we calculate the middle value in y (to center the text)
xMiddle = xBreakingDistance / 2 # and then the middle value in x (to center the text)
#now we write BREAKING ZONE in the center of the box.
ax.text(xMiddle,yMiddle,"BREAKING ZONE",fontweight="bold",rotation=90,verticalalignment="center",horizontalalignment="center")
#FIGURE FORMATTING
ax.set_xlabel("Distance [m]") # define x label
ax.set_ylabel("Depth [mDMD]") # define y label on the first vertical axis (ax)
ax2.set_ylabel("M50 [kg]") # define y label on the second vertical axis (ax2)
ax.grid() # show grid
ax3.set_xlabel("Distance[m]") #define x label
ax3.set_ylabel("Hs[m]") # define y label
ax3.grid()
plt.tight_layout() # minimize subplot labels overlapping
# generating a label on a plot with 2 vertical axis is not very intuitive. Normally we would just write ax.label(loc=0)
combined_plots = depth+m50 #first we need to combine the plots in a vector
combined_labels = [i.get_label() for i in combined_plots] # and then we combine the labels
ax.legend(combined_plots,combined_labels,loc=0) # and finally we plot the combined_labels of the combined_plots
plt.savefig("Required M50(kg) along the trench.png",dpi=1000)
plt.close(fig)
Output Figure:
By just calling plt.axvspan, you are telling matplotlib to create the axvspan on the currently active axes (i.e. in this case, the last one you created, ax3)
You need to plot the axvspan on both of the axes you would like for it to appear on. In this case, ax and ax3.
So, you could do:
ax.axvspan(0,xBreakingDistance,facecolor="b",alpha=0.1)
ax3.axvspan(0,xBreakingDistance,facecolor="b",alpha=0.1)
or in one line:
[this_ax.axvspan(0,xBreakingDistance,facecolor="b",alpha=0.1) for this_ax in [ax,ax3]]
It's difficult to analyze your code and not being able to reproduce it. I advise you to build a minimal example. In any case notice that you are calling "plt.axvspan(" which is general call to the library.
You need to specifically state that you want this in both "ax" and "ax2" (i think).
Also if you need more control consider using Patches (I don't know axvspan):
import matplotlib.pyplot as plt
import matplotlib.patches as patches
fig1 = plt.figure()
ax1 = fig1.add_subplot(111, aspect='equal')
ax1.add_patch(
patches.Rectangle(
(0.1, 0.1), # (x,y)
0.5, # width
0.5, # height
)
)
fig1.savefig('rect1.png', dpi=90, bbox_inches='tight')
See that call to "ax1" in the example? Just make something similar to yours. Or just add axvspan to each of your plots.

Change distance between boxplots in the same figure in python [duplicate]

I'm drawing the bloxplot shown below using python and matplotlib. Is there any way I can reduce the distance between the two boxplots on the X axis?
This is the code that I'm using to get the figure above:
import matplotlib.pyplot as plt
from matplotlib import rcParams
rcParams['ytick.direction'] = 'out'
rcParams['xtick.direction'] = 'out'
fig = plt.figure()
xlabels = ["CG", "EG"]
ax = fig.add_subplot(111)
ax.boxplot([values_cg, values_eg])
ax.set_xticks(np.arange(len(xlabels))+1)
ax.set_xticklabels(xlabels, rotation=45, ha='right')
fig.subplots_adjust(bottom=0.3)
ylabels = yticks = np.linspace(0, 20, 5)
ax.set_yticks(yticks)
ax.set_yticklabels(ylabels)
ax.tick_params(axis='x', pad=10)
ax.tick_params(axis='y', pad=10)
plt.savefig(os.path.join(output_dir, "output.pdf"))
And this is an example closer to what I'd like to get visually (although I wouldn't mind if the boxplots were even a bit closer to each other):
You can either change the aspect ratio of plot or use the widths kwarg (doc) as such:
ax.boxplot([values_cg, values_eg], widths=1)
to make the boxes wider.
Try changing the aspect ratio using
ax.set_aspect(1.5) # or some other float
The larger then number, the narrower (and taller) the plot should be:
a circle will be stretched such that the height is num times the width. aspect=1 is the same as aspect=’equal’.
http://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes.set_aspect
When your code writes:
ax.set_xticks(np.arange(len(xlabels))+1)
You're putting the first box plot on 0 and the second one on 1 (event though you change the tick labels afterwards), just like in the second, "wanted" example you gave they are set on 1,2,3.
So i think an alternative solution would be to play with the xticks position and the xlim of the plot.
for example using
ax.set_xlim(-1.5,2.5)
would place them closer.
positions : array-like, optional
Sets the positions of the boxes. The ticks and limits are automatically set to match the positions. Defaults to range(1, N+1) where N is the number of boxes to be drawn.
https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.pyplot.boxplot.html
This should do the job!
As #Stevie mentioned, you can use the positions kwarg (doc) to manually set the x-coordinates of the boxes:
ax.boxplot([values_cg, values_eg], positions=[1, 1.3])

changing size of a plot in a subplot figure

i create a figure with 4 subplots (2 x 2), where 3 of them are of the type imshow and the other is errorbar. Each imshow plots have in addition a colorbar at the right side of them. I would like to resize my 3rd plot, that the area of the graph would be exactly under the one above it (with out colorbar)
as example (this is what i now have):
How could i resize the 3rd plot?
Regards
To adjust the dimensions of an axes instance, you need to use the set_position() method. This applies to subplotAxes as well. To get the current position/dimensions of the axis, use the get_position() method, which returns a Bbox instance. For me, it's conceptually easier to just interact with the position, ie [left,bottom,right,top] limits. To access this information from a Bbox, the bounds property.
Here I apply these methods to something similar to your example above:
import matplotlib.pyplot as plt
import numpy as np
x,y = np.random.rand(2,10)
img = np.random.rand(10,10)
fig = plt.figure()
ax1 = fig.add_subplot(221)
im = ax1.imshow(img,extent=[0,1,0,1])
plt.colorbar(im)
ax2 = fig.add_subplot(222)
im = ax2.imshow(img,extent=[0,1,0,1])
plt.colorbar(im)
ax3 = fig.add_subplot(223)
ax3.plot(x,y)
ax3.axis([0,1,0,1])
ax4 = fig.add_subplot(224)
im = ax4.imshow(img,extent=[0,1,0,1])
plt.colorbar(im)
pos4 = ax4.get_position().bounds
pos1 = ax1.get_position().bounds
# set the x limits (left and right) to first axes limits
# set the y limits (bottom and top) to the last axes limits
newpos = [pos1[0],pos4[1],pos1[2],pos4[3]]
ax3.set_position(newpos)
plt.show()
You may feel that the two plots do not exactly look the same (in my rendering, the left or xmin position is not quite right), so feel free to adjust the position until you get the desired effect.

Categories

Resources