Calling Methods on Python's Dictionary Literals - python

I'm trying to concatenate some dictionaries. The best way I've come up with to do that is to use dict1.update(dict2).
This is the code I'm trying to run, but it evaluates to None. Why?
{k:30 for k in [4, 9, 11, 6]}.update({k:31 for k in [1, 3, 5, 7, 8, 10, 12]})

The dict.update method works in-place and therefore always returns None. It is no different than other in-place methods such as dict.clear and list.append.
Note too that this behavior is mentioned in the docs:
update([other])
Update the dictionary with the key/value pairs from other, overwriting existing keys. Return None.
Emphasis mine.

Since update doesn't return a reference to the updated dictionary, you can use the following instead:
import itertools
d = dict(itertools.chain({k:30 for k in [...]}.items(),
{k:31 for k in [...]}.items()))

Related

Example of set subtraction in python

I'm taking a data structures course in Python, and a suggestion for a solution includes this code which I don't understand.
This is a sample of a dictionary:
vc_metro = {
'Richmond-Brighouse': set(['Lansdowne']),
'Lansdowne': set(['Richmond-Brighouse', 'Aberdeen'])
}
It is suggested that to remove some of the elements in the value, we use this code:
vc_metro['Lansdowne'] -= set(['Richmond-Brighouse'])
I have never seen such a structure, and using it in a basic situation such as:
my_list = [1, 2, 3, 4, 5, 6]
other_list = [1, 2]
my_list -= other_list
doesn't work. Where can I learn more about this recommended strategy?
You can't subtract lists, but you can subtract set objects meaningfully. Sets are hashtables, somewhat similar to dict.keys(), which allow only one instance of an object.
The -= operator is equivalent to the difference method, except that it is in-place. It removes all the elements that are present in both operands from the left one.
Your simple example with sets would look like this:
>>> my_set = {1, 2, 3, 4, 5, 6}
>>> other_set = {1, 2}
>>> my_set -= other_set
>>> my_set
{3, 4, 5, 6}
Curly braces with commas but no colons are interpreted as a set object. So the direct constructor call
set(['Richmond-Brighouse'])
is equivalent to
{'Richmond-Brighouse'}
Notice that you can't do set('Richmond-Brighouse'): that would add all the individual characters of the string to the set, since strings are iterable.
The reason to use -=/difference instead of remove is that differencing only removes existing elements, and silently ignores others. The discard method does this for a single element. Differencing allows removing multiple elements at once.
The original line vc_metro['Lansdowne'] -= set(['Richmond-Brighouse']) could be rewritten as
vc_metro['Lansdowne'].discard('Richmond-Brighouse')

Why does sorting a list of dict keys in one line, with .sort() not work, while sorted() does?

While practicing Python (3.7.3), I find myself wanting to sort the keys of a dict. But I am walking up against something I don't understand, and can't find explained on SO.
edit: I know that the sort() method changes the list itself, while sorted() leaves the original list intact and returns new one. But can someone explain why the list() constructor doesn't seem to return the list anymore when I call it's sort() method?
Can someone explain why this doesn't return anything:
>>> md = {5: 3, 2: 1, 8: 9}
>>> ml = list(md.keys()).sort()
>>> ml
>>>
While if I do it in two separate steps, it does work:
>>> ml = list(md.keys())
>>> ml
[5, 2, 8]
>>> ml.sort()
>>> ml
[2, 5, 8]
>>>
Also, I found that doing it in one line using sorted(), it works as well:
>>> sorted(list(md.keys()))
[2, 5, 8]
sort sorts the iterable in-place, but returns None, which is assigned to ml. That's why the REPL does not show anything.
On the contrary, sorted returns a sorted representation of the original iterable.
sort() sorts directly your array, while sorted() returns a new array. (Docs)

What is the difference between `sorted(list)` vs `list.sort()`?

list.sort() sorts the list and replaces the original list, whereas sorted(list) returns a sorted copy of the list, without changing the original list.
When is one preferred over the other?
Which is more efficient? By how much?
Can a list be reverted to the unsorted state after list.sort() has been performed?
Please use Why do these list operations (methods) return None, rather than the resulting list? to close questions where OP has inadvertently assigned the result of .sort(), rather than using sorted or a separate statement. Proper debugging would reveal that .sort() had returned None, at which point "why?" is the remaining question.
sorted() returns a new sorted list, leaving the original list unaffected. list.sort() sorts the list in-place, mutating the list indices, and returns None (like all in-place operations).
sorted() works on any iterable, not just lists. Strings, tuples, dictionaries (you'll get the keys), generators, etc., returning a list containing all elements, sorted.
Use list.sort() when you want to mutate the list, sorted() when you want a new sorted object back. Use sorted() when you want to sort something that is an iterable, not a list yet.
For lists, list.sort() is faster than sorted() because it doesn't have to create a copy. For any other iterable, you have no choice.
No, you cannot retrieve the original positions. Once you called list.sort() the original order is gone.
What is the difference between sorted(list) vs list.sort()?
list.sort mutates the list in-place & returns None
sorted takes any iterable & returns a new list, sorted.
sorted is equivalent to this Python implementation, but the CPython builtin function should run measurably faster as it is written in C:
def sorted(iterable, key=None):
new_list = list(iterable) # make a new list
new_list.sort(key=key) # sort it
return new_list # return it
when to use which?
Use list.sort when you do not wish to retain the original sort order
(Thus you will be able to reuse the list in-place in memory.) and when
you are the sole owner of the list (if the list is shared by other code
and you mutate it, you could introduce bugs where that list is used.)
Use sorted when you want to retain the original sort order or when you
wish to create a new list that only your local code owns.
Can a list's original positions be retrieved after list.sort()?
No - unless you made a copy yourself, that information is lost because the sort is done in-place.
"And which is faster? And how much faster?"
To illustrate the penalty of creating a new list, use the timeit module, here's our setup:
import timeit
setup = """
import random
lists = [list(range(10000)) for _ in range(1000)] # list of lists
for l in lists:
random.shuffle(l) # shuffle each list
shuffled_iter = iter(lists) # wrap as iterator so next() yields one at a time
"""
And here's our results for a list of randomly arranged 10000 integers, as we can see here, we've disproven an older list creation expense myth:
Python 2.7
>>> timeit.repeat("next(shuffled_iter).sort()", setup=setup, number = 1000)
[3.75168503401801, 3.7473005310166627, 3.753129180986434]
>>> timeit.repeat("sorted(next(shuffled_iter))", setup=setup, number = 1000)
[3.702025591977872, 3.709248117986135, 3.71071034099441]
Python 3
>>> timeit.repeat("next(shuffled_iter).sort()", setup=setup, number = 1000)
[2.797430992126465, 2.796825885772705, 2.7744789123535156]
>>> timeit.repeat("sorted(next(shuffled_iter))", setup=setup, number = 1000)
[2.675589084625244, 2.8019039630889893, 2.849375009536743]
After some feedback, I decided another test would be desirable with different characteristics. Here I provide the same randomly ordered list of 100,000 in length for each iteration 1,000 times.
import timeit
setup = """
import random
random.seed(0)
lst = list(range(100000))
random.shuffle(lst)
"""
I interpret this larger sort's difference coming from the copying mentioned by Martijn, but it does not dominate to the point stated in the older more popular answer here, here the increase in time is only about 10%
>>> timeit.repeat("lst[:].sort()", setup=setup, number = 10000)
[572.919036605, 573.1384446719999, 568.5923951]
>>> timeit.repeat("sorted(lst[:])", setup=setup, number = 10000)
[647.0584738299999, 653.4040515829997, 657.9457361929999]
I also ran the above on a much smaller sort, and saw that the new sorted copy version still takes about 2% longer running time on a sort of 1000 length.
Poke ran his own code as well, here's the code:
setup = '''
import random
random.seed(12122353453462456)
lst = list(range({length}))
random.shuffle(lst)
lists = [lst[:] for _ in range({repeats})]
it = iter(lists)
'''
t1 = 'l = next(it); l.sort()'
t2 = 'l = next(it); sorted(l)'
length = 10 ** 7
repeats = 10 ** 2
print(length, repeats)
for t in t1, t2:
print(t)
print(timeit(t, setup=setup.format(length=length, repeats=repeats), number=repeats))
He found for 1000000 length sort, (ran 100 times) a similar result, but only about a 5% increase in time, here's the output:
10000000 100
l = next(it); l.sort()
610.5015971539542
l = next(it); sorted(l)
646.7786222379655
Conclusion:
A large sized list being sorted with sorted making a copy will likely dominate differences, but the sorting itself dominates the operation, and organizing your code around these differences would be premature optimization. I would use sorted when I need a new sorted list of the data, and I would use list.sort when I need to sort a list in-place, and let that determine my usage.
The main difference is that sorted(some_list) returns a new list:
a = [3, 2, 1]
print sorted(a) # new list
print a # is not modified
and some_list.sort(), sorts the list in place:
a = [3, 2, 1]
print a.sort() # in place
print a # it's modified
Note that since a.sort() doesn't return anything, print a.sort() will print None.
Can a list original positions be retrieved after list.sort()?
No, because it modifies the original list.
Here are a few simple examples to see the difference in action:
See the list of numbers here:
nums = [1, 9, -3, 4, 8, 5, 7, 14]
When calling sorted on this list, sorted will make a copy of the list. (Meaning your original list will remain unchanged.)
Let's see.
sorted(nums)
returns
[-3, 1, 4, 5, 7, 8, 9, 14]
Looking at the nums again
nums
We see the original list (unaltered and NOT sorted.). sorted did not change the original list
[1, 2, -3, 4, 8, 5, 7, 14]
Taking the same nums list and applying the sort function on it, will change the actual list.
Let's see.
Starting with our nums list to make sure, the content is still the same.
nums
[-3, 1, 4, 5, 7, 8, 9, 14]
nums.sort()
Now the original nums list is changed and looking at nums we see our original list has changed and is now sorted.
nums
[-3, 1, 2, 4, 5, 7, 8, 14]
Note: Simplest difference between sort() and sorted() is: sort()
doesn't return any value while, sorted() returns an iterable list.
sort() doesn't return any value.
The sort() method just sorts the elements of a given list in a specific order - Ascending or Descending without returning any value.
The syntax of sort() method is:
list.sort(key=..., reverse=...)
Alternatively, you can also use Python's in-built function sorted()
for the same purpose. sorted function return sorted list
list=sorted(list, key=..., reverse=...)
The .sort() function stores the value of new list directly in the list variable; so answer for your third question would be NO.
Also if you do this using sorted(list), then you can get it use because it is not stored in the list variable. Also sometimes .sort() method acts as function, or say that it takes arguments in it.
You have to store the value of sorted(list) in a variable explicitly.
Also for short data processing the speed will have no difference; but for long lists; you should directly use .sort() method for fast work; but again you will face irreversible actions.
With list.sort() you are altering the list variable but with sorted(list) you are not altering the variable.
Using sort:
list = [4, 5, 20, 1, 3, 2]
list.sort()
print(list)
print(type(list))
print(type(list.sort())
Should return this:
[1, 2, 3, 4, 5, 20]
<class 'NoneType'>
But using sorted():
list = [4, 5, 20, 1, 3, 2]
print(sorted(list))
print(list)
print(type(sorted(list)))
Should return this:
[1, 2, 3, 4, 5, 20]
[4, 5, 20, 1, 3, 2]
<class 'list'>

Mapping func over dictionary

How might one map a function over certain values in a dictionary and also update those values in the dictionary?
dic1 = { 1 : [1, 2, 3, 4], 2 : [2, 3, 5, 5], 3 : [6, 3, 7, 2] ... }
map(func, (data[col] for data in dic1.itervalues()))
This is sort of what I'm looking for, but I need a way to reinsert the new func(val) back into each respective slot in the dict. The function works fine, and printed it returns all the proper index values with the func applied, but I can't think of a good way to update the dictionary. Any ideas?
You don't want to use map for updating any kind of sequence; that's not what it's for. map is for generating a new sequence:
dict2 = dict(map(func, dict1.iteritems()))
Of course func has to take a (key, old_value) and return (key, new_value) for this to work as-is. If it just returns, say, new_value, you need to wrap it up in some way. But at that point, you're probably better off with a dictionary comprehension than a map call and a dict constructor:
dict2 = {key: func(value) for key, value in dict1.itervalues()}
If you want to use map, and you want to mutate, you could do it by creating a function that updates things, like this:
def func_wrapped(d, key):
d[key] = func(d[key])
map(partial(func_wrapped, d), dict1)
(This could even be done as a one-liner by using partial with d.__setitem__ if you really wanted.)
But that's a silly thing to do. For one thing, it means you're building a list of values just to throw them away. (Or, in Python 3, you're not actually doing anything unless you write some code that iterates over the map iterator.) But more importantly, you're making things harder for yourself for no good reason. If you don't need to modify things in-place, don't do it. If you do need to modify things in place, use a for loop.
PS, I'm not saying this was a silly question to ask. There are other languages that do have map-like mutating functions, so it wouldn't be a silly thing to do in, say, C++. It's just not pythonic, and you wouldn't know that without asking.
Your function can mutate the list:
>>> d = {1:[1],2:[2],3:[3]}
>>> def func(lst):
... lst.append(lst[0])
... return lst
...
>>> x = map(func,d.values())
>>> x
[[1, 1], [2, 2], [3, 3]]
>>> d
{1: [1, 1], 2: [2, 2], 3: [3, 3]}
however, please note that this really isn't idiomatic python and should be considered for instructional/educational purposes only ... Usually if a function mutates it's arguments, it's polite to have it return None.

Optimized method of cutting/slicing sorted lists

Is there any pre-made optimized tool/library in Python to cut/slice lists for values "less than" something?
Here's the issue: Let's say I have a list like:
a=[1,3,5,7,9]
and I want to delete all the numbers which are <= 6, so the resulting list would be
[7,9]
6 is not in the list, so I can't use the built-in index(6) method of the list. I can do things like:
#!/usr/bin/env python
a = [1, 3, 5, 7, 9]
cut=6
for i in range(len(a)-1, -2, -1):
if a[i] <= cut:
break
b = a[i+1:]
print "Cut list: %s" % b
which would be fairly quick method if the index to cut from is close to the end of the list, but which will be inefficient if the item is close to the beginning of the list (let's say, I want to delete all the items which are >2, there will be a lot of iterations).
I can also implement my own find method using binary search or such, but I was wondering if there's a more... wide-scope built in library to handle this type of things that I could reuse in other cases (for instance, if I need to delete all the number which are >=6).
Thank you in advance.
You can use the bisect module to perform a sorted search:
>>> import bisect
>>> a[bisect.bisect_left(a, 6):]
[7, 9]
bisect.bisect_left is what you are looking for, I guess.
If you just want to filter the list for all elements that fulfil a certain criterion, then the most straightforward way is to use the built-in filter function.
Here is an example:
a_list = [10,2,3,8,1,9]
# filter all elements smaller than 6:
filtered_list = filter(lambda x: x<6, a_list)
the filtered_list will contain:
[2, 3, 1]
Note: This method does not rely on the ordering of the list, so for very large lists it might be that a method optimised for ordered searching (as bisect) performs better in terms of speed.
Bisect left and right helper function
#!/usr/bin/env python3
import bisect
def get_slice(list_, left, right):
return list_[
bisect.bisect_left(list_, left):
bisect.bisect_left(list_, right)
]
assert get_slice([0, 1, 1, 3, 4, 4, 5, 6], 1, 5) == [1, 1, 3, 4, 4]
Tested in Ubuntu 16.04, Python 3.5.2.
Adding to Jon's answer, if you need to actually delete the elements less than 6 and want to keep the same reference to the list, rather than returning a new one.
del a[:bisect.bisect_right(a,6)]
You should note as well that bisect will only work on a sorted list.

Categories

Resources