How exactly do modules in Python work? - python

I am trying to better understand Pythons modules, coming from C background mostly.
I have main.py with the following:
def g():
print obj # Need access to the object below
if __name__ == "__main__":
obj = {}
import child
child.f()
And child.py:
def f():
import main
main.g()
This particular structure of code may seem strange at first, but rest assured this is stripped from a larger project I am working on, where delegation of responsibility and decoupling forces the kind of inter-module function call sequence you see.
I need to be able to access the actual object I create when first executing main python main.py. Is this possible without explicitly sending obj as parameter around? Because I will have other variables and I don't want to send these too. If desperate, I can create a "state" object for the entire main module that I need access to, and send it around, but even that is to me a last resort. This is global variables at its simplest in C, but in Python this is a different beast I suppose (module global variables only?)

One of the solutions, excluding parameter passing at least, has turned to revolve around the fact that when executing the main Python module main as such - via f.e. python main.py where if clause suceeds and subsequently, obj is bound - the main module and its state exist and are referenced as __main__ (inspected using sys.modules dictionary). So when the child module needs the actual instance of the main module, it is not main it needs to import but __main__, otherwise two distinct copies would exist, with their own distinct states.
'Fixed' child.py:
def f():
import __main__
__main__.g()

Related

How to override or replace an imported function call on a different module

I am leveraging an existing framework for a tool build activity based on python. Let me get into my issue straight :
Let's say the framework I am using is having a module named m1.py where I am having below function
def func_should_not_run(*args,**kwargs):
<doing something >
And I have a another module named m2.py where I am having below class :
from m1 import
class JustAClass:
def __init__(self,*args,*kwargs):
<All kind of initialisation..>
def run_something(self,*args,*kwargs):
<lots of code before>
func_should_not_run(*args,*kwargs)
<lots of code after>
Now my code module my_mod.py is having below class where I am creating an instance of above class from framework and calling m2.JustAClass.run_something inside another method as below
class JustAnotherClass:
def __init__(self,*args,*kwargs):
<All kind of initialisation..>
self.obj1=JustAClass(*some_args,**some_kwargs)
def run(self):
<some code before>
self.obj1.run_something(*some_other_args,**some_other_kwargs)
<some code after>
Now due to some implementation issue with m1.func_should_not_run which is getting called inside m2.JustAClass.run_something , I need to replace it with my own function func_should_run so that when func_should_not_run will be called inside m2.JustAClass.run_something, it should instead execute func_should_run from my module.
How can I achieve this?
Is there any way if I can override the import statement "from m1 import" on m2.py from my_mod.py?
This solution is risky for some aspects and could potentially fail given its side-effects, but worth to be mentioned in my opinion.
The idea is to replace (or better reload) the module that depends on the module you want to change, after some adjustment. I am going to start from the code and then I will show you the problems and limits of this approach:
from m2 import JustAClass
def func_should_run():
print('This is the function you want to call')
class JustAnotherClass:
def __init__(self,*args, **kwargs):
self.obj1 = JustAClass(*args, **kwargs)
def run(self):
self.obj1.run_something()
if __name__ == '__main__':
import importlib
importlib.import_module('m1').func_should_not_run = func_should_run
importlib.reload(importlib.import_module('m2'))
janc = JustAnotherClass()
janc.run()
Output:
This is the function you want to call
After importing importlib:
importlib.import_module('m1').func_should_not_run = func_should_run: I am importing module m1 and changing the func_should_not_run reference to func_should_run. This means that, for all the following calls to func_should_not_run, the code executed is the one of func_should_run. Obviously, this is also not valid for objects referencing the old func_should_not_run, like m2.JustAClass, so
importlib.reload(importlib.import_module('m2')): here I am reloading the module m2, that is going to use the new version of func_should_not_run because the module m1 is already loaded in the cache (i.e. sys.module) and therefore is not going to reload it (for this reason Transitive reloading can't occur, unless you explicitly do that).
From now on, every instance of JustAnotherClass correctly calls func_should_run
Should you use importlib.reload() for this?
Typically, reloading a module is useful when you have applied changes to a certain module and you do not want to restart the whole system to see those changes. In your case, unless you have clear in mind all the risks of this approach, you are kind of abusing the reload().
What are the main side-effects of this solution?
For start, reloading has its costs, especially if inside the module you have some initialization code that you do not want to re-execute. This means:
You are inevitably going to execute the module code twice (at least)
Be sure to comment your code explaining that every occurence of func_should_not_run is actually replace with func_should_run, but this is definitely not a good practice and not maintainable if used in many places.
To conclude, it is a simple as much as risky solution that can be adopted taking all the necessary precautions, with the awareness that it is just a hack and not a reasonable design decision.

Python global variable in import * [duplicate]

I've run into a bit of a wall importing modules in a Python script. I'll do my best to describe the error, why I run into it, and why I'm tying this particular approach to solve my problem (which I will describe in a second):
Let's suppose I have a module in which I've defined some utility functions/classes, which refer to entities defined in the namespace into which this auxiliary module will be imported (let "a" be such an entity):
module1:
def f():
print a
And then I have the main program, where "a" is defined, into which I want to import those utilities:
import module1
a=3
module1.f()
Executing the program will trigger the following error:
Traceback (most recent call last):
File "Z:\Python\main.py", line 10, in <module>
module1.f()
File "Z:\Python\module1.py", line 3, in f
print a
NameError: global name 'a' is not defined
Similar questions have been asked in the past (two days ago, d'uh) and several solutions have been suggested, however I don't really think these fit my requirements. Here's my particular context:
I'm trying to make a Python program which connects to a MySQL database server and displays/modifies data with a GUI. For cleanliness sake, I've defined the bunch of auxiliary/utility MySQL-related functions in a separate file. However they all have a common variable, which I had originally defined inside the utilities module, and which is the cursor object from MySQLdb module.
I later realised that the cursor object (which is used to communicate with the db server) should be defined in the main module, so that both the main module and anything that is imported into it can access that object.
End result would be something like this:
utilities_module.py:
def utility_1(args):
code which references a variable named "cur"
def utility_n(args):
etcetera
And my main module:
program.py:
import MySQLdb, Tkinter
db=MySQLdb.connect(#blahblah) ; cur=db.cursor() #cur is defined!
from utilities_module import *
And then, as soon as I try to call any of the utilities functions, it triggers the aforementioned "global name not defined" error.
A particular suggestion was to have a "from program import cur" statement in the utilities file, such as this:
utilities_module.py:
from program import cur
#rest of function definitions
program.py:
import Tkinter, MySQLdb
db=MySQLdb.connect(#blahblah) ; cur=db.cursor() #cur is defined!
from utilities_module import *
But that's cyclic import or something like that and, bottom line, it crashes too. So my question is:
How in hell can I make the "cur" object, defined in the main module, visible to those auxiliary functions which are imported into it?
Thanks for your time and my deepest apologies if the solution has been posted elsewhere. I just can't find the answer myself and I've got no more tricks in my book.
Globals in Python are global to a module, not across all modules. (Many people are confused by this, because in, say, C, a global is the same across all implementation files unless you explicitly make it static.)
There are different ways to solve this, depending on your actual use case.
Before even going down this path, ask yourself whether this really needs to be global. Maybe you really want a class, with f as an instance method, rather than just a free function? Then you could do something like this:
import module1
thingy1 = module1.Thingy(a=3)
thingy1.f()
If you really do want a global, but it's just there to be used by module1, set it in that module.
import module1
module1.a=3
module1.f()
On the other hand, if a is shared by a whole lot of modules, put it somewhere else, and have everyone import it:
import shared_stuff
import module1
shared_stuff.a = 3
module1.f()
… and, in module1.py:
import shared_stuff
def f():
print shared_stuff.a
Don't use a from import unless the variable is intended to be a constant. from shared_stuff import a would create a new a variable initialized to whatever shared_stuff.a referred to at the time of the import, and this new a variable would not be affected by assignments to shared_stuff.a.
Or, in the rare case that you really do need it to be truly global everywhere, like a builtin, add it to the builtin module. The exact details differ between Python 2.x and 3.x. In 3.x, it works like this:
import builtins
import module1
builtins.a = 3
module1.f()
As a workaround, you could consider setting environment variables in the outer layer, like this.
main.py:
import os
os.environ['MYVAL'] = str(myintvariable)
mymodule.py:
import os
myval = None
if 'MYVAL' in os.environ:
myval = os.environ['MYVAL']
As an extra precaution, handle the case when MYVAL is not defined inside the module.
This post is just an observation for Python behaviour I encountered. Maybe the advices you read above don't work for you if you made the same thing I did below.
Namely, I have a module which contains global/shared variables (as suggested above):
#sharedstuff.py
globaltimes_randomnode=[]
globalist_randomnode=[]
Then I had the main module which imports the shared stuff with:
import sharedstuff as shared
and some other modules that actually populated these arrays. These are called by the main module. When exiting these other modules I can clearly see that the arrays are populated. But when reading them back in the main module, they were empty. This was rather strange for me (well, I am new to Python). However, when I change the way I import the sharedstuff.py in the main module to:
from globals import *
it worked (the arrays were populated).
Just sayin'
A function uses the globals of the module it's defined in. Instead of setting a = 3, for example, you should be setting module1.a = 3. So, if you want cur available as a global in utilities_module, set utilities_module.cur.
A better solution: don't use globals. Pass the variables you need into the functions that need it, or create a class to bundle all the data together, and pass it when initializing the instance.
The easiest solution to this particular problem would have been to add another function within the module that would have stored the cursor in a variable global to the module. Then all the other functions could use it as well.
module1:
cursor = None
def setCursor(cur):
global cursor
cursor = cur
def method(some, args):
global cursor
do_stuff(cursor, some, args)
main program:
import module1
cursor = get_a_cursor()
module1.setCursor(cursor)
module1.method()
Since globals are module specific, you can add the following function to all imported modules, and then use it to:
Add singular variables (in dictionary format) as globals for those
Transfer your main module globals to it
.
addglobals = lambda x: globals().update(x)
Then all you need to pass on current globals is:
import module
module.addglobals(globals())
Since I haven't seen it in the answers above, I thought I would add my simple workaround, which is just to add a global_dict argument to the function requiring the calling module's globals, and then pass the dict into the function when calling; e.g:
# external_module
def imported_function(global_dict=None):
print(global_dict["a"])
# calling_module
a = 12
from external_module import imported_function
imported_function(global_dict=globals())
>>> 12
The OOP way of doing this would be to make your module a class instead of a set of unbound methods. Then you could use __init__ or a setter method to set the variables from the caller for use in the module methods.
Update
To test the theory, I created a module and put it on pypi. It all worked perfectly.
pip install superglobals
Short answer
This works fine in Python 2 or 3:
import inspect
def superglobals():
_globals = dict(inspect.getmembers(
inspect.stack()[len(inspect.stack()) - 1][0]))["f_globals"]
return _globals
save as superglobals.py and employ in another module thusly:
from superglobals import *
superglobals()['var'] = value
Extended Answer
You can add some extra functions to make things more attractive.
def superglobals():
_globals = dict(inspect.getmembers(
inspect.stack()[len(inspect.stack()) - 1][0]))["f_globals"]
return _globals
def getglobal(key, default=None):
"""
getglobal(key[, default]) -> value
Return the value for key if key is in the global dictionary, else default.
"""
_globals = dict(inspect.getmembers(
inspect.stack()[len(inspect.stack()) - 1][0]))["f_globals"]
return _globals.get(key, default)
def setglobal(key, value):
_globals = superglobals()
_globals[key] = value
def defaultglobal(key, value):
"""
defaultglobal(key, value)
Set the value of global variable `key` if it is not otherwise st
"""
_globals = superglobals()
if key not in _globals:
_globals[key] = value
Then use thusly:
from superglobals import *
setglobal('test', 123)
defaultglobal('test', 456)
assert(getglobal('test') == 123)
Justification
The "python purity league" answers that litter this question are perfectly correct, but in some environments (such as IDAPython) which is basically single threaded with a large globally instantiated API, it just doesn't matter as much.
It's still bad form and a bad practice to encourage, but sometimes it's just easier. Especially when the code you are writing isn't going to have a very long life.

Python namespaces: How to make unique objects accessible in other modules?

I am writing a moderate-sized (a few KLOC) PyQt app. I started out writing it in nice modules for ease of comprehension but I am foundering on the rules of Python namespaces. At several points it is important to instantiate just one object of a class as a resource for other code.
For example: an object that represents Aspell attached as a subprocess, offering a check(word) method. Another example: the app features a single QTextEdit and other code needs to call on methods of this singular object, e.g. "if theEditWidget.document().isEmpty()..."
No matter where I instantiate such an object, it can only be referenced from code in that module and no other. So e.g. the code of the edit widget can't call on the Aspell gateway object unless the Aspell object is created in the same module. Fine except it is also needed from other modules.
In this question the bunch class is offered, but it seems to me a bunch has exactly the same problem: it's a unique object that can only be used in the module where it's created. Or am I completely missing the boat here?
OK suggested elsewhere, this seems like a simple answer to my problem. I just tested the following:
junk_main.py:
import junk_A
singularResource = junk_A.thing()
import junk_B
junk_B.handle = singularResource
print junk_B.look()
junk_A.py:
class thing():
def __init__(self):
self.member = 99
junk_B.py:
def look():
return handle.member
When I run junk_main it prints 99. So the main code can inject names into modules just by assignment. I am trying to think of reasons this is a bad idea.
You can access objects in a module with the . operator just like with a function. So, for example:
# Module a.py
a = 3
>>> import a
>>> print a.a
3
This is a trivial example, but you might want to do something like:
# Module EditWidget.py
theEditWidget = EditWidget()
...
# Another module
import EditWidget
if EditWidget.theEditWidget.document().isEmpty():
Or...
import * from EditWidget
if theEditWidget.document().isEmpty():
If you do go the import * from route, you can even define a list named __all__ in your modules with a list of the names (as strings) of all the objects you want your module to export to *. So if you wanted only theEditWidget to be exported, you could do:
# Module EditWidget.py
__all__ = ["theEditWidget"]
theEditWidget = EditWidget()
...
It turns out the answer is simpler than I thought. As I noted in the question, the main module can add names to an imported module. And any code can add members to an object. So the simple way to create an inter-module communication area is to create a very basic object in the main, say IMC (for inter-module communicator) and assign to it as members, anything that should be available to other modules:
IMC.special = A.thingy()
IMC.important_global_constant = 0x0001
etc. After importing any module, just assign IMC to it:
import B
B.IMC = IMC
Now, this is probably not the greatest idea from a software design standpoint. If you just limit IMC to holding named constants, it acts like a C header file. If it's just to give access to singular resources, it's like a link extern. But because of Python's liberal rules, code in any module can modify or add members to IMC. Used in an undisciplined way, "who changed that" could be a debugging issue. If there are multiple processes, race conditions are a danger.
At several points it is important to instantiate just one object of a class as a resource for other code.
Instead of trying to create some sort of singleton factory, can you not create the single-use object somewhere between the main point of entry for the program and instantiating the object that needs it? The single-use object can just be passed as a parameter to the other object. Logically, then, you won't create the single-use object more than once.
For example:
def main(...):
aspell_instance = ...
myapp = MyAppClass(aspell_instance)
or...
class SomeWidget(...):
def __init__(self, edit_widget):
self.edit_widget = edit_widget
def onSomeEvent(self, ...):
if self.edit_widget.document().isEmpty():
....
I don't know if that's clear enough, or if it's applicable to your situation. But to be honest, the only time I've found I can't do this is in a CherryPy-based webserver, where the points of entry were pretty much everywhere.

How can I figure out in my module if the main program uses a specific variable?

I know this does not sound Pythonic, but bear with me for a second.
I am writing a module that depends on some external closed-source module. That module needs to get instantiated to be used (using module.create()).
My module attempts to figure out if my user already loaded that module (easy to do), but then needs to figure out if the module was instantiated. I understand that checking out the type() of each variable can tell me this, but I am not sure how I can get the names of variables defined by the main program. The reason for this is that when one instantiates the model, they also set a bunch of parameters that I do not want to overwrite for any reason.
My attempts so far involved using sys._getframe().f_globals and iterating through the elements, but in my testing it doesn't work. If I instantiate the module as modInst and then call the function in my module, it fails to show the modInst variable. Is there another solution to this? Sample code provided below.
import sys
if moduleName not in sys.modules:
import moduleName
modInst = moduleName.create()
else:
globalVars = sys._getframe().f_globals
for key, value in globalVars:
if value == "Module Name Instance":
return key
return moduleName.create()
EDIT: Sample code included.
Looks like your code assumes that the .create() function was called, if at all, by the immediate/direct caller of your function (which you show only partially, making it pretty hard to be sure about what's going on) and the results placed in a global variable (of the module where the caller of your function resides). It all seems pretty fragile. Doesn't that third-party module have some global variables of its own that are affected by whether the module's create has been called or not? I imagine it would -- where else is it keeping the state-changes resulting from executing the create -- and I would explore that.
To address a specific issue you raise,
I am not sure how I can get the names
of variables defined by the main
program
that's easy -- the main program is found, as a module, in sys.modules['__main__'], so just use vars(sys.modules['__main__']) to get the global dictionary of the main program (the variable names are the keys in that dictionary, along of course with names of functions, classes, etc -- the module, like any other module, has exactly one top-level/global namespace, not one for variables, a separate one for functions, etc).
Suppose the external closed-sourced module is called extmod.
Create my_extmod.py:
import extmod
INSTANTIATED=False
def create(*args,**kw):
global INSTANTIATED
INSTANTIATED=True
return extmod.create(*args,**kw)
Then require your users to import my_extmod instead of extmod directly.
To test if the create function has been called, just check the value of extmod.INSTANTIATED.
Edit: If you open up an IPython session and type import extmod, then type
extmod.[TAB], then you'll see all the top-level variables in the extmod namespace. This might help you find some parameter that changes when extmod.create is called.
Barring that, and barring the possibility of training users to import my_extmod, then perhaps you could use something like the function below. find_extmod_instance searches through all modules in sys.modules.
def find_instance(cls):
for modname in sys.modules:
module=sys.modules[modname]
for value in vars(module).values():
if isinstance(value,cls):
return value
x=find_instance(extmod.ExtmodClass) or extmod.create()

How to make a cross-module variable?

The __debug__ variable is handy in part because it affects every module. If I want to create another variable that works the same way, how would I do it?
The variable (let's be original and call it 'foo') doesn't have to be truly global, in the sense that if I change foo in one module, it is updated in others. I'd be fine if I could set foo before importing other modules and then they would see the same value for it.
If you need a global cross-module variable maybe just simple global module-level variable will suffice.
a.py:
var = 1
b.py:
import a
print a.var
import c
print a.var
c.py:
import a
a.var = 2
Test:
$ python b.py
# -> 1 2
Real-world example: Django's global_settings.py (though in Django apps settings are used by importing the object django.conf.settings).
I don't endorse this solution in any way, shape or form. But if you add a variable to the __builtin__ module, it will be accessible as if a global from any other module that includes __builtin__ -- which is all of them, by default.
a.py contains
print foo
b.py contains
import __builtin__
__builtin__.foo = 1
import a
The result is that "1" is printed.
Edit: The __builtin__ module is available as the local symbol __builtins__ -- that's the reason for the discrepancy between two of these answers. Also note that __builtin__ has been renamed to builtins in python3.
I believe that there are plenty of circumstances in which it does make sense and it simplifies programming to have some globals that are known across several (tightly coupled) modules. In this spirit, I would like to elaborate a bit on the idea of having a module of globals which is imported by those modules which need to reference them.
When there is only one such module, I name it "g". In it, I assign default values for every variable I intend to treat as global. In each module that uses any of them, I do not use "from g import var", as this only results in a local variable which is initialized from g only at the time of the import. I make most references in the form g.var, and the "g." serves as a constant reminder that I am dealing with a variable that is potentially accessible to other modules.
If the value of such a global variable is to be used frequently in some function in a module, then that function can make a local copy: var = g.var. However, it is important to realize that assignments to var are local, and global g.var cannot be updated without referencing g.var explicitly in an assignment.
Note that you can also have multiple such globals modules shared by different subsets of your modules to keep things a little more tightly controlled. The reason I use short names for my globals modules is to avoid cluttering up the code too much with occurrences of them. With only a little experience, they become mnemonic enough with only 1 or 2 characters.
It is still possible to make an assignment to, say, g.x when x was not already defined in g, and a different module can then access g.x. However, even though the interpreter permits it, this approach is not so transparent, and I do avoid it. There is still the possibility of accidentally creating a new variable in g as a result of a typo in the variable name for an assignment. Sometimes an examination of dir(g) is useful to discover any surprise names that may have arisen by such accident.
Define a module ( call it "globalbaz" ) and have the variables defined inside it. All the modules using this "pseudoglobal" should import the "globalbaz" module, and refer to it using "globalbaz.var_name"
This works regardless of the place of the change, you can change the variable before or after the import. The imported module will use the latest value. (I tested this in a toy example)
For clarification, globalbaz.py looks just like this:
var_name = "my_useful_string"
You can pass the globals of one module to onother:
In Module A:
import module_b
my_var=2
module_b.do_something_with_my_globals(globals())
print my_var
In Module B:
def do_something_with_my_globals(glob): # glob is simply a dict.
glob["my_var"]=3
Global variables are usually a bad idea, but you can do this by assigning to __builtins__:
__builtins__.foo = 'something'
print foo
Also, modules themselves are variables that you can access from any module. So if you define a module called my_globals.py:
# my_globals.py
foo = 'something'
Then you can use that from anywhere as well:
import my_globals
print my_globals.foo
Using modules rather than modifying __builtins__ is generally a cleaner way to do globals of this sort.
You can already do this with module-level variables. Modules are the same no matter what module they're being imported from. So you can make the variable a module-level variable in whatever module it makes sense to put it in, and access it or assign to it from other modules. It would be better to call a function to set the variable's value, or to make it a property of some singleton object. That way if you end up needing to run some code when the variable's changed, you can do so without breaking your module's external interface.
It's not usually a great way to do things — using globals seldom is — but I think this is the cleanest way to do it.
I wanted to post an answer that there is a case where the variable won't be found.
Cyclical imports may break the module behavior.
For example:
first.py
import second
var = 1
second.py
import first
print(first.var) # will throw an error because the order of execution happens before var gets declared.
main.py
import first
On this is example it should be obvious, but in a large code-base, this can be really confusing.
I wondered if it would be possible to avoid some of the disadvantages of using global variables (see e.g. http://wiki.c2.com/?GlobalVariablesAreBad) by using a class namespace rather than a global/module namespace to pass values of variables. The following code indicates that the two methods are essentially identical. There is a slight advantage in using class namespaces as explained below.
The following code fragments also show that attributes or variables may be dynamically created and deleted in both global/module namespaces and class namespaces.
wall.py
# Note no definition of global variables
class router:
""" Empty class """
I call this module 'wall' since it is used to bounce variables off of. It will act as a space to temporarily define global variables and class-wide attributes of the empty class 'router'.
source.py
import wall
def sourcefn():
msg = 'Hello world!'
wall.msg = msg
wall.router.msg = msg
This module imports wall and defines a single function sourcefn which defines a message and emits it by two different mechanisms, one via globals and one via the router function. Note that the variables wall.msg and wall.router.message are defined here for the first time in their respective namespaces.
dest.py
import wall
def destfn():
if hasattr(wall, 'msg'):
print 'global: ' + wall.msg
del wall.msg
else:
print 'global: ' + 'no message'
if hasattr(wall.router, 'msg'):
print 'router: ' + wall.router.msg
del wall.router.msg
else:
print 'router: ' + 'no message'
This module defines a function destfn which uses the two different mechanisms to receive the messages emitted by source. It allows for the possibility that the variable 'msg' may not exist. destfn also deletes the variables once they have been displayed.
main.py
import source, dest
source.sourcefn()
dest.destfn() # variables deleted after this call
dest.destfn()
This module calls the previously defined functions in sequence. After the first call to dest.destfn the variables wall.msg and wall.router.msg no longer exist.
The output from the program is:
global: Hello world!
router: Hello world!
global: no message
router: no message
The above code fragments show that the module/global and the class/class variable mechanisms are essentially identical.
If a lot of variables are to be shared, namespace pollution can be managed either by using several wall-type modules, e.g. wall1, wall2 etc. or by defining several router-type classes in a single file. The latter is slightly tidier, so perhaps represents a marginal advantage for use of the class-variable mechanism.
This sounds like modifying the __builtin__ name space. To do it:
import __builtin__
__builtin__.foo = 'some-value'
Do not use the __builtins__ directly (notice the extra "s") - apparently this can be a dictionary or a module. Thanks to ΤΖΩΤΖΙΟΥ for pointing this out, more can be found here.
Now foo is available for use everywhere.
I don't recommend doing this generally, but the use of this is up to the programmer.
Assigning to it must be done as above, just setting foo = 'some-other-value' will only set it in the current namespace.
I use this for a couple built-in primitive functions that I felt were really missing. One example is a find function that has the same usage semantics as filter, map, reduce.
def builtin_find(f, x, d=None):
for i in x:
if f(i):
return i
return d
import __builtin__
__builtin__.find = builtin_find
Once this is run (for instance, by importing near your entry point) all your modules can use find() as though, obviously, it was built in.
find(lambda i: i < 0, [1, 3, 0, -5, -10]) # Yields -5, the first negative.
Note: You can do this, of course, with filter and another line to test for zero length, or with reduce in one sort of weird line, but I always felt it was weird.
I could achieve cross-module modifiable (or mutable) variables by using a dictionary:
# in myapp.__init__
Timeouts = {} # cross-modules global mutable variables for testing purpose
Timeouts['WAIT_APP_UP_IN_SECONDS'] = 60
# in myapp.mod1
from myapp import Timeouts
def wait_app_up(project_name, port):
# wait for app until Timeouts['WAIT_APP_UP_IN_SECONDS']
# ...
# in myapp.test.test_mod1
from myapp import Timeouts
def test_wait_app_up_fail(self):
timeout_bak = Timeouts['WAIT_APP_UP_IN_SECONDS']
Timeouts['WAIT_APP_UP_IN_SECONDS'] = 3
with self.assertRaises(hlp.TimeoutException) as cm:
wait_app_up(PROJECT_NAME, PROJECT_PORT)
self.assertEqual("Timeout while waiting for App to start", str(cm.exception))
Timeouts['WAIT_JENKINS_UP_TIMEOUT_IN_SECONDS'] = timeout_bak
When launching test_wait_app_up_fail, the actual timeout duration is 3 seconds.

Categories

Resources