Explanation on python __iter__ and next() printing outputs - python

I've learnt from the official documentation of python 2.7.8 how to work with iterators and generators. I've got a question related on a curiosity.
it = iter("abcde")
print it
>>> <iterator object at 0x7ff4c2b3bad0>
class example1():
def __init__(self, word):
self.word = word
self.index = len(word)
def __iter__(self):
for x in range(self.index - 1, -1, -1):
yield self.word[x]
a = example1("altalena")
print iter(a)
>>> <generator object __iter__ at 0x7f24712000a0>
In the above examples, when I print the iterators, i read "generator","iterator" object and the hexadecimal ID. Why I can't do the same with the following code?
class example2():
def __init__(self, word):
self.word = word
self.index = len(word)
def __iter__(self):
return self
def next (self):
if self.index == 0:
raise StopIteration
self.index = self.index - 1
return self.word[self.index]
a = example2()
print iter(a)
>>> <__main__.example2 instance at 0x7f89ee2de440>
I think it is caused by "return self" in iter, that leads to the class instance, but i don't know the solution to get a more right output. It may be useless but I don't know why it is an how to avoid it.

Generators are a type of iterator. Your example1 class is returning a generator because you used yield in the __iter__; it is a separate iterator object, returned from __iter__. This makes your example1 class iterable, not an iterator itself.
In your second example your class __iter__ returns self. It is not just iterable, it is its own iterator. Because it is returning self, there is no separate object here.
Python makes an explicit distinction between iterable and iterator. An iterable can potentially be iterated over. An iterator does the actual work when iterating. By using iter() you ask Python to produce an iterator for a given iterable.
This is why iter(stringobject) returns a new object; you have produced an iterator from the iterable string.
You need this distinction because the process of iterating requires something that keeps state; namely where in the process are we now. An iterator is the object that keeps track of that, so that each time you call the .next() method on the iterator, you get the next value, or StopIteration is raised if there is no next value to produce anymore.
So in your example, the string and example1 are both just iterable, and calling iter() on them produced a new separate iterator.
However, your example2 is it's own iterator. Calling iter() on it does not produce a separate object. You cannot create separate iterators from something that already is an iterator.
If you want to produce a new independent iterator for your example2 class, you need to return a distinct, separate object from __iter__:
class ExampleIterator(object):
def __init__(self, source):
self.source = source
self.position = len(source)
def __iter__(self):
return self
def next(self):
if self.position <= 0:
raise StopIteration
self.position -= 1
return self.source[self.position]
class Example2():
def __init__(self, word):
self.word = word
def __iter__(self):
return ExampleIterator(self)
Here Example2 is just a iterable again, not an iterator. The __iter__ method returns a new, distinct ExampleIterator() instance, and it is responsible for keeping track of the iteration state.

I think you don't have a problem, you just don't understand what happens here.
In general, iter(object) returns an iterator for this iterable object.
This is obtained either via calling __iter__() or, if that doesn't exist, by providing a wrapper object which calls __getitem__() until it is exhausted (raises IndexError).
The object returned by __iter__() can either be the iterable itself (like in your 2nd example) or something else. Especially, it can be a generator object if you make __iter__() a generator function as you do in your 1st example.
The iteration itself happens with the iterator object and its next() resp. __next__() method.

Related

Why is every Iterator an Iterable, but not every Iterable an Iterator? [duplicate]

What are "iterable", "iterator", and "iteration" in Python? How are they defined?
Iteration is a general term for taking each item of something, one after another. Any time you use a loop, explicit or implicit, to go over a group of items, that is iteration.
In Python, iterable and iterator have specific meanings.
An iterable is an object that has an __iter__ method which returns an iterator, or which defines a __getitem__ method that can take sequential indexes starting from zero (and raises an IndexError when the indexes are no longer valid). So an iterable is an object that you can get an iterator from.
An iterator is an object with a next (Python 2) or __next__ (Python 3) method.
Whenever you use a for loop, or map, or a list comprehension, etc. in Python, the next method is called automatically to get each item from the iterator, thus going through the process of iteration.
A good place to start learning would be the iterators section of the tutorial and the iterator types section of the standard types page. After you understand the basics, try the iterators section of the Functional Programming HOWTO.
Here's the explanation I use in teaching Python classes:
An ITERABLE is:
anything that can be looped over (i.e. you can loop over a string or file) or
anything that can appear on the right-side of a for-loop: for x in iterable: ... or
anything you can call with iter() that will return an ITERATOR: iter(obj) or
an object that defines __iter__ that returns a fresh ITERATOR,
or it may have a __getitem__ method suitable for indexed lookup.
An ITERATOR is an object:
with state that remembers where it is during iteration,
with a __next__ method that:
returns the next value in the iteration
updates the state to point at the next value
signals when it is done by raising StopIteration
and that is self-iterable (meaning that it has an __iter__ method that returns self).
Notes:
The __next__ method in Python 3 is spelt next in Python 2, and
The builtin function next() calls that method on the object passed to it.
For example:
>>> s = 'cat' # s is an ITERABLE
# s is a str object that is immutable
# s has no state
# s has a __getitem__() method
>>> t = iter(s) # t is an ITERATOR
# t has state (it starts by pointing at the "c"
# t has a next() method and an __iter__() method
>>> next(t) # the next() function returns the next value and advances the state
'c'
>>> next(t) # the next() function returns the next value and advances
'a'
>>> next(t) # the next() function returns the next value and advances
't'
>>> next(t) # next() raises StopIteration to signal that iteration is complete
Traceback (most recent call last):
...
StopIteration
>>> iter(t) is t   # the iterator is self-iterable
The above answers are great, but as most of what I've seen, don't stress the distinction enough for people like me.
Also, people tend to get "too Pythonic" by putting definitions like "X is an object that has __foo__() method" before. Such definitions are correct--they are based on duck-typing philosophy, but the focus on methods tends to get between when trying to understand the concept in its simplicity.
So I add my version.
In natural language,
iteration is the process of taking one element at a time in a row of elements.
In Python,
iterable is an object that is, well, iterable, which simply put, means that
it can be used in iteration, e.g. with a for loop. How? By using iterator.
I'll explain below.
... while iterator is an object that defines how to actually do the
iteration--specifically what is the next element. That's why it must have
next() method.
Iterators are themselves also iterable, with the distinction that their __iter__() method returns the same object (self), regardless of whether or not its items have been consumed by previous calls to next().
So what does Python interpreter think when it sees for x in obj: statement?
Look, a for loop. Looks like a job for an iterator... Let's get one. ...
There's this obj guy, so let's ask him.
"Mr. obj, do you have your iterator?" (... calls iter(obj), which calls
obj.__iter__(), which happily hands out a shiny new iterator _i.)
OK, that was easy... Let's start iterating then. (x = _i.next() ... x = _i.next()...)
Since Mr. obj succeeded in this test (by having certain method returning a valid iterator), we reward him with adjective: you can now call him "iterable Mr. obj".
However, in simple cases, you don't normally benefit from having iterator and iterable separately. So you define only one object, which is also its own iterator. (Python does not really care that _i handed out by obj wasn't all that shiny, but just the obj itself.)
This is why in most examples I've seen (and what had been confusing me over and over),
you can see:
class IterableExample(object):
def __iter__(self):
return self
def next(self):
pass
instead of
class Iterator(object):
def next(self):
pass
class Iterable(object):
def __iter__(self):
return Iterator()
There are cases, though, when you can benefit from having iterator separated from the iterable, such as when you want to have one row of items, but more "cursors". For example when you want to work with "current" and "forthcoming" elements, you can have separate iterators for both. Or multiple threads pulling from a huge list: each can have its own iterator to traverse over all items. See #Raymond's and #glglgl's answers above.
Imagine what you could do:
class SmartIterableExample(object):
def create_iterator(self):
# An amazingly powerful yet simple way to create arbitrary
# iterator, utilizing object state (or not, if you are fan
# of functional), magic and nuclear waste--no kittens hurt.
pass # don't forget to add the next() method
def __iter__(self):
return self.create_iterator()
Notes:
I'll repeat again: iterator is not iterable. Iterator cannot be used as
a "source" in for loop. What for loop primarily needs is __iter__()
(that returns something with next()).
Of course, for is not the only iteration loop, so above applies to some other
constructs as well (while...).
Iterator's next() can throw StopIteration to stop iteration. Does not have to,
though, it can iterate forever or use other means.
In the above "thought process", _i does not really exist. I've made up that name.
There's a small change in Python 3.x: next() method (not the built-in) now
must be called __next__(). Yes, it should have been like that all along.
You can also think of it like this: iterable has the data, iterator pulls the next
item
Disclaimer: I'm not a developer of any Python interpreter, so I don't really know what the interpreter "thinks". The musings above are solely demonstration of how I understand the topic from other explanations, experiments and real-life experience of a Python newbie.
An iterable is a object which has a __iter__() method. It can possibly iterated over several times, such as list()s and tuple()s.
An iterator is the object which iterates. It is returned by an __iter__() method, returns itself via its own __iter__() method and has a next() method (__next__() in 3.x).
Iteration is the process of calling this next() resp. __next__() until it raises StopIteration.
Example:
>>> a = [1, 2, 3] # iterable
>>> b1 = iter(a) # iterator 1
>>> b2 = iter(a) # iterator 2, independent of b1
>>> next(b1)
1
>>> next(b1)
2
>>> next(b2) # start over, as it is the first call to b2
1
>>> next(b1)
3
>>> next(b1)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration
>>> b1 = iter(a) # new one, start over
>>> next(b1)
1
Here's my cheat sheet:
sequence
+
|
v
def __getitem__(self, index: int):
+ ...
| raise IndexError
|
|
| def __iter__(self):
| + ...
| | return <iterator>
| |
| |
+--> or <-----+ def __next__(self):
+ | + ...
| | | raise StopIteration
v | |
iterable | |
+ | |
| | v
| +----> and +-------> iterator
| ^
v |
iter(<iterable>) +----------------------+
|
def generator(): |
+ yield 1 |
| generator_expression +-+
| |
+-> generator() +-> generator_iterator +-+
Quiz: Do you see how...
every iterator is an iterable?
a container object's __iter__() method can be implemented as a generator?
an iterable that has a __next__ method is not necessarily an iterator?
Answers:
Every iterator must have an __iter__ method. Having __iter__ is enough to be an iterable. Therefore every iterator is an iterable.
When __iter__ is called it should return an iterator (return <iterator> in the diagram above). Calling a generator returns a generator iterator which is a type of iterator.
class Iterable1:
def __iter__(self):
# a method (which is a function defined inside a class body)
# calling iter() converts iterable (tuple) to iterator
return iter((1,2,3))
class Iterable2:
def __iter__(self):
# a generator
for i in (1, 2, 3):
yield i
class Iterable3:
def __iter__(self):
# with PEP 380 syntax
yield from (1, 2, 3)
# passes
assert list(Iterable1()) == list(Iterable2()) == list(Iterable3()) == [1, 2, 3]
Here is an example:
class MyIterable:
def __init__(self):
self.n = 0
def __getitem__(self, index: int):
return (1, 2, 3)[index]
def __next__(self):
n = self.n = self.n + 1
if n > 3:
raise StopIteration
return n
# if you can iter it without raising a TypeError, then it's an iterable.
iter(MyIterable())
# but obviously `MyIterable()` is not an iterator since it does not have
# an `__iter__` method.
from collections.abc import Iterator
assert isinstance(MyIterable(), Iterator) # AssertionError
I don’t know if it helps anybody but I always like to visualize concepts in my head to better understand them. So as I have a little son I visualize iterable/iterator concept with bricks and white paper.
Suppose we are in the dark room and on the floor we have bricks for my son. Bricks of different size, color, does not matter now. Suppose we have 5 bricks like those. Those 5 bricks can be described as an object – let’s say bricks kit. We can do many things with this bricks kit – can take one and then take second and then third, can change places of bricks, put first brick above the second. We can do many sorts of things with those. Therefore this bricks kit is an iterable object or sequence as we can go through each brick and do something with it. We can only do it like my little son – we can play with one brick at a time. So again I imagine myself this bricks kit to be an iterable.
Now remember that we are in the dark room. Or almost dark. The thing is that we don’t clearly see those bricks, what color they are, what shape etc. So even if we want to do something with them – aka iterate through them – we don’t really know what and how because it is too dark.
What we can do is near to first brick – as element of a bricks kit – we can put a piece of white fluorescent paper in order for us to see where the first brick-element is. And each time we take a brick from a kit, we replace the white piece of paper to a next brick in order to be able to see that in the dark room. This white piece of paper is nothing more than an iterator. It is an object as well. But an object with what we can work and play with elements of our iterable object – bricks kit.
That by the way explains my early mistake when I tried the following in an IDLE and got a TypeError:
>>> X = [1,2,3,4,5]
>>> next(X)
Traceback (most recent call last):
File "<pyshell#19>", line 1, in <module>
next(X)
TypeError: 'list' object is not an iterator
List X here was our bricks kit but NOT a white piece of paper. I needed to find an iterator first:
>>> X = [1,2,3,4,5]
>>> bricks_kit = [1,2,3,4,5]
>>> white_piece_of_paper = iter(bricks_kit)
>>> next(white_piece_of_paper)
1
>>> next(white_piece_of_paper)
2
>>>
Don’t know if it helps, but it helped me. If someone could confirm/correct visualization of the concept, I would be grateful. It would help me to learn more.
I don't think that you can get it much simpler than the documentation, however I'll try:
Iterable is something that can be iterated over. In practice it usually means a sequence e.g. something that has a beginning and an end and some way to go through all the items in it.
You can think Iterator as a helper pseudo-method (or pseudo-attribute) that gives (or holds) the next (or first) item in the iterable. (In practice it is just an object that defines the method next())
Iteration is probably best explained by the Merriam-Webster definition of the word :
b : the repetition of a sequence of computer instructions a specified
number of times or until a condition is met — compare recursion
Iterables have a __iter__ method that instantiates a new iterator every time.
Iterators implement a __next__ method that returns individual items, and a __iter__ method that returns self .
Therefore, iterators are also iterable, but iterables are not iterators.
Luciano Ramalho, Fluent Python.
Iterable:- something that is iterable is iterable; like sequences like lists ,strings etc.
Also it has either the __getitem__ method or an __iter__ method. Now if we use iter() function on that object, we'll get an iterator.
Iterator:- When we get the iterator object from the iter() function; we call __next__() method (in python3) or simply next() (in python2) to get elements one by one. This class or instance of this class is called an iterator.
From docs:-
The use of iterators pervades and unifies Python. Behind the scenes, the for statement calls iter() on the container object. The function returns an iterator object that defines the method __next__() which accesses elements in the container one at a time. When there are no more elements, __next__() raises a StopIteration exception which tells the for loop to terminate. You can call the __next__() method using the next() built-in function; this example shows how it all works:
>>> s = 'abc'
>>> it = iter(s)
>>> it
<iterator object at 0x00A1DB50>
>>> next(it)
'a'
>>> next(it)
'b'
>>> next(it)
'c'
>>> next(it)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
next(it)
StopIteration
Ex of a class:-
class Reverse:
"""Iterator for looping over a sequence backwards."""
def __init__(self, data):
self.data = data
self.index = len(data)
def __iter__(self):
return self
def __next__(self):
if self.index == 0:
raise StopIteration
self.index = self.index - 1
return self.data[self.index]
>>> rev = Reverse('spam')
>>> iter(rev)
<__main__.Reverse object at 0x00A1DB50>
>>> for char in rev:
... print(char)
...
m
a
p
s
Iterators are objects that implement the iter and next methods. If those methods are defined, we can use for loop or comprehensions.
class Squares:
def __init__(self, length):
self.length = length
self.i = 0
def __iter__(self):
print('calling __iter__') # this will be called first and only once
return self
def __next__(self):
print('calling __next__') # this will be called for each iteration
if self.i >= self.length:
raise StopIteration
else:
result = self.i ** 2
self.i += 1
return result
Iterators get exhausted. It means after you iterate over items, you cannot reiterate, you have to create a new object. Let's say you have a class, which holds the cities properties and you want to iterate over.
class Cities:
def __init__(self):
self._cities = ['Brooklyn', 'Manhattan', 'Prag', 'Madrid', 'London']
self._index = 0
def __iter__(self):
return self
def __next__(self):
if self._index >= len(self._cities):
raise StopIteration
else:
item = self._cities[self._index]
self._index += 1
return item
Instance of class Cities is an iterator. However if you want to reiterate over cities, you have to create a new object which is an expensive operation. You can separate the class into 2 classes: one returns cities and second returns an iterator which gets the cities as init param.
class Cities:
def __init__(self):
self._cities = ['New York', 'Newark', 'Istanbul', 'London']
def __len__(self):
return len(self._cities)
class CityIterator:
def __init__(self, city_obj):
# cities is an instance of Cities
self._city_obj = city_obj
self._index = 0
def __iter__(self):
return self
def __next__(self):
if self._index >= len(self._city_obj):
raise StopIteration
else:
item = self._city_obj._cities[self._index]
self._index += 1
return item
Now if we need to create a new iterator, we do not have to create the data again, which is cities. We creates cities object and pass it to the iterator. But we are still doing extra work. We could implement this by creating only one class.
Iterable is a Python object that implements the iterable protocol. It requires only __iter__() that returns a new instance of iterator object.
class Cities:
def __init__(self):
self._cities = ['New York', 'Newark', 'Istanbul', 'Paris']
def __len__(self):
return len(self._cities)
def __iter__(self):
return self.CityIterator(self)
class CityIterator:
def __init__(self, city_obj):
self._city_obj = city_obj
self._index = 0
def __iter__(self):
return self
def __next__(self):
if self._index >= len(self._city_obj):
raise StopIteration
else:
item = self._city_obj._cities[self._index]
self._index += 1
return item
Iterators has __iter__ and __next__, iterables have __iter__, so we can say Iterators are also iterables but they are iterables that get exhausted. Iterables on the other hand never become exhausted
because they always return a new iterator that is then used to iterate
You notice that the main part of the iterable code is in the iterator, and the iterable itself is nothing more than an extra layer that allows us to create and access the iterator.
Iterating over an iterable
Python has a built function iter() which calls the __iter__(). When we iterate over an iterable, Python calls the iter() which returns an iterator, then it starts using __next__() of iterator to iterate over the data.
NOte that in the above example, Cities creates an iterable but it is not a sequence type, it means we cannot get a city by an index. To fix this we should just add __get_item__ to the Cities class.
class Cities:
def __init__(self):
self._cities = ['New York', 'Newark', 'Budapest', 'Newcastle']
def __len__(self):
return len(self._cities)
def __getitem__(self, s): # now a sequence type
return self._cities[s]
def __iter__(self):
return self.CityIterator(self)
class CityIterator:
def __init__(self, city_obj):
self._city_obj = city_obj
self._index = 0
def __iter__(self):
return self
def __next__(self):
if self._index >= len(self._city_obj):
raise StopIteration
else:
item = self._city_obj._cities[self._index]
self._index += 1
return item
iterable = [1, 2]
iterator = iter(iterable)
print(iterator.__next__())
print(iterator.__next__())
so,
iterable is an object that can be looped over. e.g. list , string , tuple etc.
using the iter function on our iterable object will return an iterator object.
now this iterator object has method named __next__ (in Python 3, or just next in Python 2) by which you can access each element of iterable.
so,
OUTPUT OF ABOVE CODE WILL BE:
1
2
An iterable is an object that has an iter() method which returns an iterator. It is something that can be looped over.
Example : A list is iterable because we can loop over a list BUT is not an iterator
An iterator is an object that you can get an iterator from. It is an object with a state so that it remember where it is during iteration
To see if the object has this method iter() we can use the below function.
ls = ['hello','bye']
print(dir(ls))
Output
['__add__', '__class__', '__contains__', '__delattr__', '__delitem__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__gt__', '__hash__', '__iadd__', '__imul__', '__init__', '__init_subclass__', '__iter__', '__le__', '__len__', '__lt__', '__mul__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__reversed__', '__rmul__', '__setattr__', '__setitem__', '__sizeof__', '__str__', '__subclasshook__', 'append', 'clear', 'copy', 'count', 'extend', 'index', 'insert', 'pop', 'remove', 'reverse', 'sort']
As you can see has the iter() that's mean that is a iterable object, but doesn't contain the next() method which is a feature of the iterator object
Whenever you use a for loop or map or a list comprehension in Python the next method is called automatically to get each item from the iteration
Before dealing with the iterables and iterator the major factor that decide the iterable and iterator is sequence
Sequence: Sequence is the collection of data
Iterable: Iterable are the sequence type object that support __iter__ method.
Iter method: Iter method take sequence as an input and create an object which is known as iterator
Iterator: Iterator are the object which call next method and transverse through the sequence. On calling the next method it returns the object that it traversed currently.
example:
x=[1,2,3,4]
x is a sequence which consists of collection of data
y=iter(x)
On calling iter(x) it returns a iterator only when the x object has iter method otherwise it raise an exception.If it returns iterator then y is assign like this:
y=[1,2,3,4]
As y is a iterator hence it support next() method
On calling next method it returns the individual elements of the list one by one.
After returning the last element of the sequence if we again call the next method it raise an StopIteration error
example:
>>> y.next()
1
>>> y.next()
2
>>> y.next()
3
>>> y.next()
4
>>> y.next()
StopIteration
Other people already explained comprehensively, what is iterable and iterator, so I will try to do the same thing with generators.
IMHO the main problem for understanding generators is a confusing use of the word “generator”, because this word is used in 2 different meanings:
as a tool for creating (generating) iterators,
in the form of a function returning an iterator (i.e. with the yield statement(s) in its body),
in the form of a generator expression
as a result of the use of that tool, i.e. the resulting iterator.
(In this meaning a generator is a special form of an iterator — the word “generator” points out how this iterator was created.)
Generator as a tool of the 1st type:
In[2]: def my_generator():
...: yield 100
...: yield 200
In[3]: my_generator
Out[3]: <function __main__.my_generator()>
In[4]: type(my_generator)
Out[4]: function
Generator as a result (i.e. an iterator) of the use of this tool:
In[5]: my_iterator = my_generator()
In[6]: my_iterator
Out[6]: <generator object my_generator at 0x00000000053EAE48>
In[7]: type(my_iterator)
Out[7]: generator
Generator as a tool of the 2nd type — indistinguishable from the resulting iterator of this tool:
In[8]: my_gen_expression = (2 * i for i in (10, 20))
In[9]: my_gen_expression
Out[9]: <generator object <genexpr> at 0x000000000542C048>
In[10]: type(my_gen_expression)
Out[10]: generator
Here's another view using collections.abc. This view may be useful the second time around or later.
From collections.abc we can see the following hierarchy:
builtins.object
Iterable
Iterator
Generator
i.e. Generator is derived from Iterator is derived from Iterable is derived from the base object.
Hence,
Every iterator is an iterable, but not every iterable is an iterator. For example, [1, 2, 3] and range(10) are iterables, but not iterators. x = iter([1, 2, 3]) is an iterator and an iterable.
A similar relationship exists between Iterator and Generator.
Calling iter() on an iterator or a generator returns itself. Thus, if it is an iterator, then iter(it) is it is True.
Under the hood, a list comprehension like [2 * x for x in nums] or a for loop like for x in nums:, acts as though iter() is called on the iterable (nums) and then iterates over nums using that iterator. Hence, all of the following are functionally equivalent (with, say, nums=[1, 2, 3]):
for x in nums:
for x in iter(nums):
for x in iter(iter(nums)):
for x in iter(iter(iter(iter(iter(nums))))):
For me, Python's glossery was most helpful for these questions, e.g. for iterable it says:
An object capable of returning its members one at a time. Examples of iterables include all sequence types (such as list, str, and tuple) and some non-sequence types like dict, file objects, and objects of any classes you define with an iter() method or with a getitem() method that implements Sequence semantics.
Iterables can be used in a for loop and in many other places where a sequence is needed (zip(), map(), …). When an iterable object is passed as an argument to the built-in function iter(), it returns an iterator for the object. This iterator is good for one pass over the set of values. When using iterables, it is usually not necessary to call iter() or deal with iterator objects yourself. The for statement does that automatically for you, creating a temporary unnamed variable to hold the iterator for the duration of the loop. See also iterator, sequence, and generator.

Iterators on sequences

I want to ask how is the iterator in python designed? I have read that when the iterator is used it returns single values of the sequence of an iterable it represents upon the call of next or next(). And this way it does not need to copy the full iterable and therefore occupy memory. Exactly how can you return single values of a sequence object like list, string or mapping objects like dictionaries? Does it store pointers to the original sequence datastructure contents and then have a method called next which increments the pointer?
Thanks
In Python 3, however, zip() returns an iterator. This object yields
tuples on demand and can be traversed only once. The iteration ends
with a StopIteration exception once the shortest input iterable is
exhausted. If you supply no arguments to zip(), then the function
returns an empty iterator:
An iterator is just a class that defines __next__. That's it (though all iterators should also be iterable by defining __iter__ = lambda self: self as well). It's entirely how __next__ is defined that defines the behavior of the iterator.
You can create an iterator over a constant sequence
class Ones:
def __iter__(self):
return self
def __next__(self):
return 1
or you can create an iterator that walks through some iterable value. It's the iterator that keeps track of which value to return next, from the values supplied by the iterable. Here's a simplified version of list_iterator, which is the built-in type of which list.__iter__ return values.
class list_iterator:
def __init__(self, lst):
self.lst = lst
self.i = 0
def __iter__(self):
return self
def __next__(self):
if self.i == len(self.lst):
raise StopIteration
x = self.lst[self.i]
self.i += 1
return x
x = [1,2,3]
# prints 1, then 2, then 3
for v in list_iterator(x):
print(v)

Define a class drop_first that has only two methods __init__ and __iter__

I am learning python these days and have a small question as follows:
Define a class drop_first that has only two methods init and iter
The constructor of drop_first has parameter iterable, to which an iterable is given.
Method init applies function iter to iterable and records the resulting iterator in some attribute. It then calls function next on the iterator once.
Method iter simply returns the iterator recorded in the attribute.
For example, the instance created by drop_first([1,2,3]) allows iteration skipping the first element 1.
for x in drop_first([1,2,3]): print(x)
2 and 3 will be printed.
I answered with the following codes:
class drop_first:
def __init__(self, iterable):
self.iterable = iterable
self.index = 1
def __iter__(self):
return self
def __next__(self):
try:
result = self.iterable[self.index]
except IndexError:
raise StopIteration
self.index += 1
return result
Nevertheless, I found that it was required to create a class with only 2 methods inside, and am a little bit confused about the specifications of those two methods. So I am wondering if anyone could give me some explainations about the requirement of the class...Thank you.
Define a class drop_first that has only two methods init and iter
Bad instruction. This class should be called DropFirst. But be it.
The constructor of drop_first has parameter iterable, to which an iterable is given.
def __init__(self, iterable):
Method init applies function iter to iterable and records the resulting iterator in some attribute. It then calls function next on the iterator once.
self.iterator = iter(iterable)
next(self.iterator)
Method iter simply returns the iterator recorded in the attribute.
def __iter__(self):
return self.iterator
This results in
class DropFirst: # or, if your instructor insists on it, drop_first
def __init__(self, iterable):
self.iterator = iter(iterable)
next(self.iterator)
def __iter__(self):
return self.iterator
But, to be honest, I'd take the following approach (which breaks the specifications, but is more versatile):
class DropFirst:
def __init__(self, iterable):
self.iterable = iterable
def __iter__(self):
iterator = iter(self.iterable)
next(iterator)
return iterator
This works in all cases the original one also does, but can be iterated over several times.

Class with iter but not next

For the iterator protocol you create both an __iter__ and __next__ method. However, what about the following case:
class Item:
def __init__(self):
self.name = 'James'
def __iter__(self):
return self
Now I can do:
>>> i=Item()
>>> iter(i)
<__main__.Item instance at 0x10bfe6e18>
But not:
>>> next(i)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: instance has no next() method
As far as I'm aware, the definition of iterator/iterable is:
Iterable has the method __iter__
Iterator has the method __next__
Would this then mean that my item above is an Iterable but not an Iterator? Or would it be neither because doing the following wouldn't work:
>>> for item in i:
... print (item)
...
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: instance has no next() method
Note this would be the full class that has the iterator methods defined:
class Item:
def __init__(self):
self.name = 'James'
self.i = 0
def __iter__(self):
return self
def __next__(self):
if self.i >= len(self.name): raise StopIteration
value = self.name[self.i]
self.i += 1
return value
You're mostly right with your definitions, but not quite.
An object is iterable if it has an __iter__ method that returns an iterator.
An object is an iterator if it has a __next__ method to get the next value while iterating. But iterators in Python are also expected to be iterable. They should all have an __iter__ method that returns self.
Your first example has an __iter__ method, but because it returns self and the object is not an iterator (since it has no __next__ method), it's not really a valid iterable either.
To make a non-iterator iterable, you need to return some other object that is a valid iterator. One sneaky way to do it is to make __iter__ a generator method (by using yield in its implementation). But if you have some sequence of values to return, you could also just return an iterator over that sequence.
The class in your last code block is indeed an iterator. But if you wanted to make it an iterable that is not its own iterator (perhaps because you want to be able to iterate over it several times), you would probably want something more like this:
class Item:
def __init__(self):
self.name = 'James'
def __iter__(self):
return iter(self.name)
__iter__ and __next__, as iterable and iterator, are different things. And although it is possible to have both methods on the same class, with __iter__ returning self, this would work only for proof of concepts, not for production code.
An iterable will have an __iter__ method that returns an object that has __next__. If both are the same instances as in
this is just a demo, with faulty code
class Item:
def __init__(self, data):
self.data = data
def __iter__(self):
self.counter = 0
return self
def __next__(self):
self.counter += 1
if self.counter > len(self.data):
raise StopIteration()
return self.data[self.counter - 1]
This will work - but if you try to create two independent iterators on the same instance of Item, they won't work as desired - since both would share the same counter - the attribute counter in the instance.
It is rare however that one needs to implement __next__: if __iter__ is writen as a generator function, having a yield instead of returning self, that will just work. Python will call __next__ on the generator created automatically with each call to __iter__:
this works
class Item:
def __init__(self, data):
self.data = data
def __iter__(self):
for item in self.data:
yield item
As you can see, the correct way is "nextless" and much simpler, and can also be implemented, in this case, by returning an independent iterator for the data. (The yield implementation is needed if getting to each item requires some custom computation)
this also works
class Item:
def __init__(self, data):
self.data = data
def __iter__(self):
return iter(self.data)
(on this case, Python will call __next__ on the iterator created for self.data)
If you really want to implement __next__, the object with that method have to keep track of any counter or pointers needed to retrieve the next items, and that must be independent of the host instance. The most straightforward way to do that is to have a second class, related to your first one, and have __iter__ return an instance of that instead:
working "full" example
class Item:
def __init__(self, data):
self.data = data
def __iter__(self):
return ItemIterator(self)
class ItemIterator:
def __init__(self, item):
self.item = item
self.counter = 0
def __next__(self):
self.counter += 1
if self.counter > len(self.item.data):
raise StopIteration()
return self.item.data[self.counter - 1]
Would this then mean that my item above is an Iterable but not an Iterator?
No; to be iterable, the __iter__ method should return an iterator. Yours doesn't.
According to the glossary in the official Python docs:
Iterable
An object capable of returning its members one at a time. Examples of iterables include all sequence types (such as list, str, and tuple) and some non-sequence types like dict, file objects, and objects of any classes you define with an __iter__() method or with a __getitem__() method that implements Sequence semantics.
Iterables can be used in a for loop and in many other places where a sequence is needed (zip(), map(), …).
Since your item is not "capable of returning its members one at a time", and cannot "be used in a for loop [or] other places where a sequence is needed", it is not iterable.
Note also that the __next__ method is not sufficient to be an iterator; an iterator must also have an __iter__ method which returns itself:
Iterator objects also need to implement this method; they are required to return themselves.

Separating the __iter__ and __next__ methods

In Python 3, it is standard procedure to make a class an iterable and iterator at the same time by defining both the __iter__ and __next__ methods. But I have problems to wrap my head around this. Take this example which creates an iterator that produces only even numbers:
class EvenNumbers:
def __init__(self, max_):
self.max_ = max_
def __iter__(self):
self.n = 0
return self
def __next__(self):
if self.n <= self.max_: # edit: self.max --> self.max_
result = 2 * self.n
self.n += 1
return result
raise StopIteration
instance = EvenNumbers(4)
for entry in instance:
print(entry)
To my knowledge (correct me if I'm wrong), when I create the loop, an iterator is created by calling something like itr = iter(instance) which internally calls the __iter__ method. This is expected to return an iterator object (which the instance is due to defining __next__ and therefore I can just return self). To get an element from it, next(itr) is called until the exception is raised.
My question here is now: if and how can __iter__ and __next__ be separated, so that the content of the latter function is defined somewhere else? And when could this be useful? I know that I have to change __iter__ so that it returns an iterator.
Btw the idea to do this comes from this site (LINK), which does not state how to implement this.
It sounds like you're confusing iterators and iterables. Iterables have an __iter__ method which returns an iterator. Iterators have a __next__ method which returns either their next value or raise a StopIteration. Now in python, it is stated that iterators are also iterables (but not visa versa) and that iter(iterator) is iterator so an iterator, itr, should return only itself from it's __iter__ method.
Iterators are required to have an __iter__() method that returns the iterator object itself so every iterator is also iterable and may be used in most places where other iterables are accepted
In code:
class MyIter:
def __iter__(self):
return self
def __next__(self):
# actual iterator logic
If you want to make a custom iterator class, the easiest way is to inherit from collections.abc.Iterator which you can see defines __iter__ as above (it is also a subclass of collections.abc.Iterable). Then all you need is
class MyIter(collections.abc.Iterator):
def __next__(self):
...
There is of course a much easier way to make an iterator, and thats with a generator function
def fib():
a = 1
b = 1
yield a
yield b
while True:
b, a = a + b, b
yield b
list(itertools.takewhile(lambda x: x < 100, fib()))
# --> [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
Just for reference, this is (simplified) code for an abstract iterator and iterable
from abc import ABC, abstractmethod
class Iterable(ABC):
#abstractmethod
def __iter__(self):
'Returns an instance of Iterator'
pass
class Iterator(Iterable, ABC):
#abstractmethod
def __next__(self):
'Return the next item from the iterator. When exhausted, raise StopIteration'
pass
# overrides Iterable.__iter__
def __iter__(self):
return self
I think I have grasped the concept now, even if I do not fully understand the passage from the documentation by #FHTMitchell. I came across an example on how to separate the two methods and wanted to document this.
What I found is a very basic tutorial that clearly distinguishes between the iterable and the iterator (which is the cause of my confusion).
Basically, you define your iterable first as a separate class:
class EvenNumbers:
def __init__(self, max_):
self.max = max_
def __iter__(self):
self.n = 0
return EvenNumbersIterator(self)
The __iter__ method only requires an object that has a __next__ method defined. Therefore, you can do this:
class EvenNumbersIterator:
def __init__(self, source):
self.source = source
def __next__(self):
if self.source.n <= self.source.max:
result = 2 * self.source.n
self.source.n += 1
return result
else:
raise StopIteration
This separates the iterator part from the iterable class. It now makes sense that if I define __next__ within the iterable class, I have to return the reference to the instance itself as it basically does 2 jobs at once.

Categories

Resources