SQLAlchemy, scoped_session - raw SQL INSERT doesn't write to DB - python

I have a Pyramid / SQLAlchemy, MySQL python app.
When I execute a raw SQL INSERT query, nothing gets written to the DB.
When using ORM, however, I can write to the DB. I read the docs, I read up about the ZopeTransactionExtension, read a good deal of SO questions, all to no avail.
What hasn't worked so far:
transaction.commit() - nothing is written to the DB. I do realize this statement is necessary with ZopeTransactionExtension but it just doesn't do the magic here.
dbsession().commit - doesn't work since I'm using ZopeTransactionExtension
dbsession().close() - nothing written
dbsession().flush() - nothing written
mark_changed(session) -
File "/home/dev/.virtualenvs/sc/local/lib/python2.7/site-packages/zope/sqlalchemy/datamanager.py", line 198, in join_transaction
if session.twophase:
AttributeError: 'scoped_session' object has no attribute 'twophase'"
What has worked but is not acceptable because it doesn't use scoped_session:
engine.execute(...)
I'm looking for how to execute raw SQL with a scoped_session (dbsession() in my code)
Here is my SQLAlchemy setup (models/__init__.py)
def dbsession():
assert (_dbsession is not None)
return _dbsession
def init_engines(settings, _testing_workarounds=False):
import zope.sqlalchemy
extension = zope.sqlalchemy.ZopeTransactionExtension()
global _dbsession
_dbsession = scoped_session(
sessionmaker(
autoflush=True,
expire_on_commit=False,
extension=extension,
)
)
engine = engine_from_config(settings, 'sqlalchemy.')
_dbsession.configure(bind=engine)
Here is a python script I wrote to isolate the problem. It resembles the real-world environment of where the problem occurs. All I want is to make the below script insert the data into the DB:
# -*- coding: utf-8 -*-
import sys
import transaction
from pyramid.paster import setup_logging, get_appsettings
from sc.models import init_engines, dbsession
from sqlalchemy.sql.expression import text
def __main__():
if len(sys.argv) < 2:
raise RuntimeError()
config_uri = sys.argv[1]
setup_logging(config_uri)
aa = init_engines(get_appsettings(config_uri))
session = dbsession()
session.execute(text("""INSERT INTO
operations (description, generated_description)
VALUES ('hello2', 'world');"""))
print list(session.execute("""SELECT * from operations""").fetchall()) # prints inserted data
transaction.commit()
print list(session.execute("""SELECT * from operations""").fetchall()) # doesn't print inserted data
if __name__ == '__main__':
__main__()
What is interesting, if I do:
session = dbsession()
session.execute(text("""INSERT INTO
operations (description, generated_description)
VALUES ('hello2', 'world');"""))
op = Operation(generated_description='aa', description='oo')
session.add(op)
then the first print outputs the raw SQL inserted row ('hello2' 'world'), and the second print prints both rows, and in fact both rows are inserted into the DB.
I cannot comprehend why using an ORM insert alongside raw SQL "fixes" it.
I really need to be able to call execute() on a scoped_session to insert data into the DB using raw SQL. Any advice?

It has been a while since I mixed raw sql with sqlalchemy, but whenever you mix them, you need to be aware of what happens behind the scenes with the ORM. First, check the autocommit flag. If the zope transaction is not configured correctly, the ORM insert might be triggering a commit.
Actually, after looking at the zope docs, it seems manual execute statements need an extra step. From their readme:
By default, zope.sqlalchemy puts sessions in an 'active' state when they are
first used. ORM write operations automatically move the session into a
'changed' state. This avoids unnecessary database commits. Sometimes it
is necessary to interact with the database directly through SQL. It is not
possible to guess whether such an operation is a read or a write. Therefore we
must manually mark the session as changed when manual SQL statements write
to the DB.
>>> session = Session()
>>> conn = session.connection()
>>> users = Base.metadata.tables['test_users']
>>> conn.execute(users.update(users.c.name=='bob'), name='ben')
<sqlalchemy.engine...ResultProxy object at ...>
>>> from zope.sqlalchemy import mark_changed
>>> mark_changed(session)
>>> transaction.commit()
>>> session = Session()
>>> str(session.query(User).all()[0].name)
'ben'
>>> transaction.abort()
It seems you aren't doing that, and so the transaction.commit does nothing.

Related

Insert query not getting executed from sqlalchemy with parameters [duplicate]

How can I call stored procedures of sql server with sqlAlchemy?
Engines and Connections have an execute() method you can use for arbitrary sql statements, and so do Sessions. For example:
results = sess.execute('myproc ?, ?', [param1, param2])
You can use outparam() to create output parameters if you need to (or for bind parameters use bindparam() with the isoutparam=True option)
context: I use flask-sqlalchemy with MySQL and without ORM-mapping. Usually, I use:
# in the init method
_db = SqlAlchemy(app)
#... somewhere in my code ...
_db.session.execute(query)
Calling stored procedures is not supported out of the box: the callproc is not generic, but specific to the mysql connector.
For stored procedures without out params, it is possible to execute a query like
_db.session.execute(sqlalchemy.text("CALL my_proc(:param)"), param='something')
as usual. Things get more complicated when you have out params...
One way to use out params is to access the underlying connector is through engine.raw_connection(). For example:
conn = _db.engine.raw_connection()
# do the call. The actual parameter does not matter, could be ['lala'] as well
results = conn.cursor().callproc('my_proc_with_one_out_param', [0])
conn.close() # commit
print(results) # will print (<out param result>)
This is nice since we are able to access the out parameter, BUT this connection is not managed by the flask session. This means that it won't be committed/aborted as with the other managed queries... (problematic only if your procedure has side-effect).
Finally, I ended up doing this:
# do the call and store the result in a local mysql variabl
# the name does not matter, as long as it is prefixed by #
_db.session.execute('CALL my_proc_with_one_out_param(#out)')
# do another query to get back the result
result = _db.session.execute('SELECT #out').fetchone()
The result will be a tuple with one value: the out param. This is not ideal, but the least dangerous: if another query fails during the session, the procedure call will be aborted (rollback) as well.
Just execute procedure object created with func:
from sqlalchemy import create_engine, func
from sqlalchemy.orm import sessionmaker
engine = create_engine('sqlite://', echo=True)
print engine.execute(func.upper('abc')).scalar() # Using engine
session = sessionmaker(bind=engine)()
print session.execute(func.upper('abc')).scalar() # Using session
The easiest way to call a stored procedure in MySQL using SQLAlchemy is by using callproc method of Engine.raw_connection(). call_proc will require the procedure name and parameters required for the stored procedure being called.
def call_procedure(function_name, params):
connection = cloudsql.Engine.raw_connection()
try:
cursor = connection.cursor()
cursor.callproc(function_name, params)
results = list(cursor.fetchall())
cursor.close()
connection.commit()
return results
finally:
connection.close()
Supposing you already have session created with sessionmaker(), you can use following function:
def exec_procedure(session, proc_name, params):
sql_params = ",".join(["#{0}={1}".format(name, value) for name, value in params.items()])
sql_string = """
DECLARE #return_value int;
EXEC #return_value = [dbo].[{proc_name}] {params};
SELECT 'Return Value' = #return_value;
""".format(proc_name=proc_name, params=sql_params)
return session.execute(sql_string).fetchall()
Now you can execute your stored procedure 'MyProc' with parameters simply like that:
params = {
'Foo': foo_value,
'Bar': bar_value
}
exec_procedure(session, 'MyProc', params)
Out of desperate need for a project of mine, I wrote a function that handles Stored Procedure calls.
Here you go:
import sqlalchemy as sql
def execute_db_store_procedure(database, types, sql_store_procedure, *sp_args):
""" Execute the store procedure and return the response table.
Attention: No injection checking!!!
Does work with the CALL syntax as of yet (TODO: other databases).
Attributes:
database -- the database
types -- tuple of strings of SQLAlchemy type names.
Each type describes the type of the argument
with the same number.
List: http://docs.sqlalchemy.org/en/rel_0_7/core/types.html
sql_store_procudure -- string of the stored procedure to be executed
sp_args -- arguments passed to the stored procedure
"""
if not len(types) == len(sp_args):
raise ValueError("types tuple must be the length of the sp args.")
# Construch the type list for the given types
# See
# http://docs.sqlalchemy.org/en/latest/core/sqlelement.html?highlight=expression.text#sqlalchemy.sql.expression.text
# sp_args (and their types) are numbered from 0 to len(sp_args)-1
type_list = [sql.sql.expression.bindparam(
str(no), type_=getattr(sql.types, typ)())
for no, typ in zip(range(len(types)), types)]
try:
# Adapts to the number of arguments given to the function
sp_call = sql.text("CALL `%s`(%s)" % (
sql_store_procedure,
", ".join([":%s" % n for n in range(len(sp_args))])),
bindparams=type_list
)
#raise ValueError("%s\n%s" % (sp_call, type_list))
with database.engine.begin() as connection:
return connection.execute(
sp_call,
# Don't do this at home, kids...
**dict((str(no), arg)
for (no, arg) in zip(range(len(sp_args)), sp_args)))
except sql.exc.DatabaseError:
raise
It works with the CALL syntax, so MySQL should work as expected. MSSQL uses EXEC instead of call and a little differennt syntax, I guess. So making it server agnostic is up to you but shouldn’t be too hard.
Another workaround:
query = f'call Procedure ("{#param1}", "{#param2}", "{#param3}")'
sqlEngine = sqlalchemy.create_engine(jdbc)
conn = sqlEngine.connect()
df = pd.read_sql(query,conn,index_col=None)
I had a stored procedure for postgresql with following signature -
CREATE OR REPLACE PROCEDURE inc_run_count(
_host text,
_org text,
_repo text,
_rule_ids text[]
)
After quite a few error and trial, I found this is how to call the procedure from python3.
def update_db_rule_count(rule_ids: List[str], host: str, org: str, repo: str):
param_dict = {"host": host, "org": org, "repo": repo, "rule_ids": f'{{ {",".join(rule_ids)} }}'}
with AnalyticsSession() as analytics_db:
analytics_db.execute('call inc_run_count(:host, :org, :repo, :rule_ids)', param_dict)
analytics_db.commit()

Python SQLAlchemy and SQLite - foreign key [duplicate]

The new version of SQLite has the ability to enforce Foreign Key constraints, but for the sake of backwards-compatibility, you have to turn it on for each database connection separately!
sqlite> PRAGMA foreign_keys = ON;
I am using SQLAlchemy -- how can I make sure this always gets turned on?
What I have tried is this:
engine = sqlalchemy.create_engine('sqlite:///:memory:', echo=True)
engine.execute('pragma foreign_keys=on')
...but it is not working!...What am I missing?
EDIT:
I think my real problem is that I have more than one version of SQLite installed, and Python is not using the latest one!
>>> import sqlite3
>>> print sqlite3.sqlite_version
3.3.4
But I just downloaded 3.6.23 and put the exe in my project directory!
How can I figure out which .exe it's using, and change it?
For recent versions (SQLAlchemy ~0.7) the SQLAlchemy homepage says:
PoolListener is deprecated. Please refer to PoolEvents.
Then the example by CarlS becomes:
engine = create_engine(database_url)
def _fk_pragma_on_connect(dbapi_con, con_record):
dbapi_con.execute('pragma foreign_keys=ON')
from sqlalchemy import event
event.listen(engine, 'connect', _fk_pragma_on_connect)
Building on the answers from conny and shadowmatter, here's code that will check if you are using SQLite3 before emitting the PRAGMA statement:
from sqlalchemy import event
from sqlalchemy.engine import Engine
from sqlite3 import Connection as SQLite3Connection
#event.listens_for(Engine, "connect")
def _set_sqlite_pragma(dbapi_connection, connection_record):
if isinstance(dbapi_connection, SQLite3Connection):
cursor = dbapi_connection.cursor()
cursor.execute("PRAGMA foreign_keys=ON;")
cursor.close()
I now have this working:
Download the latest sqlite and pysqlite2 builds as described above: make sure correct versions are being used at runtime by python.
import sqlite3
import pysqlite2
print sqlite3.sqlite_version # should be 3.6.23.1
print pysqlite2.__path__ # eg C:\\Python26\\lib\\site-packages\\pysqlite2
Next add a PoolListener:
from sqlalchemy.interfaces import PoolListener
class ForeignKeysListener(PoolListener):
def connect(self, dbapi_con, con_record):
db_cursor = dbapi_con.execute('pragma foreign_keys=ON')
engine = create_engine(database_url, listeners=[ForeignKeysListener()])
Then be careful how you test if foreign keys are working: I had some confusion here. When using sqlalchemy ORM to add() things my import code was implicitly handling the relation hookups so could never fail. Adding nullable=False to some ForeignKey() statements helped me here.
The way I test sqlalchemy sqlite foreign key support is enabled is to do a manual insert from a declarative ORM class:
# example
ins = Coverage.__table__.insert().values(id = 99,
description = 'Wrong',
area = 42.0,
wall_id = 99, # invalid fkey id
type_id = 99) # invalid fkey_id
session.execute(ins)
Here wall_id and type_id are both ForeignKey()'s and sqlite throws an exception correctly now if trying to hookup invalid fkeys. So it works! If you remove the listener then sqlalchemy will happily add invalid entries.
I believe the main problem may be multiple sqlite3.dll's (or .so) lying around.
As a simpler approach if your session creation is centralised behind a Python helper function (rather than exposing the SQLA engine directly), you can just issue session.execute('pragma foreign_keys=on') before returning the freshly created session.
You only need the pool listener approach if arbitrary parts of your application may create SQLA sessions against the database.
From the SQLite dialect page:
SQLite supports FOREIGN KEY syntax when emitting CREATE statements for tables, however by default these constraints have no effect on the operation of the table.
Constraint checking on SQLite has three prerequisites:
At least version 3.6.19 of SQLite must be in use
The SQLite libary must be compiled without the SQLITE_OMIT_FOREIGN_KEY or SQLITE_OMIT_TRIGGER symbols enabled.
The PRAGMA foreign_keys = ON statement must be emitted on all connections before use.
SQLAlchemy allows for the PRAGMA statement to be emitted automatically for new connections through the usage of events:
from sqlalchemy.engine import Engine
from sqlalchemy import event
#event.listens_for(Engine, "connect")
def set_sqlite_pragma(dbapi_connection, connection_record):
cursor = dbapi_connection.cursor()
cursor.execute("PRAGMA foreign_keys=ON")
cursor.close()
One-liner version of conny's answer:
from sqlalchemy import event
event.listen(engine, 'connect', lambda c, _: c.execute('pragma foreign_keys=on'))
I had the same problem before (scripts with foreign keys constraints were going through but actuall constraints were not enforced by the sqlite engine); got it solved by:
downloading, building and installing the latest version of sqlite from here: sqlite-sqlite-amalgamation; before this I had sqlite 3.6.16 on my ubuntu machine; which didn't support foreign keys yet; it should be 3.6.19 or higher to have them working.
installing the latest version of pysqlite from here: pysqlite-2.6.0
after that I started getting exceptions whenever foreign key constraint failed
hope this helps, regards
If you need to execute something for setup on every connection, use a PoolListener.
Enforce Foreign Key constraints for sqlite when using Flask + SQLAlchemy.
from flask import Flask
from flask_sqlalchemy import SQLAlchemy
def create_app(config: str=None):
app = Flask(__name__, instance_relative_config=True)
if config is None:
app.config.from_pyfile('dev.py')
else:
logger.debug('Using %s as configuration', config)
app.config.from_pyfile(config)
db.init_app(app)
# Ensure FOREIGN KEY for sqlite3
if 'sqlite' in app.config['SQLALCHEMY_DATABASE_URI']:
def _fk_pragma_on_connect(dbapi_con, con_record): # noqa
dbapi_con.execute('pragma foreign_keys=ON')
with app.app_context():
from sqlalchemy import event
event.listen(db.engine, 'connect', _fk_pragma_on_connect)
Source:
https://gist.github.com/asyd/a7aadcf07a66035ac15d284aef10d458

Close SQLAlchemy connection

I have the following function in python:
def add_odm_object(obj, table_name, primary_key, unique_column):
db = create_engine('mysql+pymysql://root:#127.0.0.1/mydb')
metadata = MetaData(db)
t = Table(table_name, metadata, autoload=True)
s = t.select(t.c[unique_column] == obj[unique_column])
rs = s.execute()
r = rs.fetchone()
if not r:
i = t.insert()
i_res = i.execute(obj)
v_id = i_res.inserted_primary_key[0]
return v_id
else:
return r[primary_key]
This function looks if the object obj is in the database, and if it is not found, it saves it to the DB. Now, I have a problem. I call the above function in a loop many times. And after few hundred times, I get an error: user root has exceeded the max_user_connections resource (current value: 30) I tried to search for answers and for example the question: How to close sqlalchemy connection in MySQL recommends creating a conn = db.connect() object where dbis the engine and calling conn.close() after my query is completed.
But, where should I open and close the connection in my code? I am not working with the connection directly, but I'm using the Table() and MetaData functions in my code.
The engine is an expensive-to-create factory for database connections. Your application should call create_engine() exactly once per database server.
Similarly, the MetaData and Table objects describe a fixed schema object within a known database. These are also configurational constructs that in most cases are created once, just like classes, in a module.
In this case, your function seems to want to load up tables dynamically, which is fine; the MetaData object acts as a registry, which has the convenience feature that it will give you back an existing table if it already exists.
Within a Python function and especially within a loop, for best performance you typically want to refer to a single database connection only.
Taking these things into account, your module might look like:
# module level variable. can be initialized later,
# but generally just want to create this once.
db = create_engine('mysql+pymysql://root:#127.0.0.1/mydb')
# module level MetaData collection.
metadata = MetaData()
def add_odm_object(obj, table_name, primary_key, unique_column):
with db.begin() as connection:
# will load table_name exactly once, then store it persistently
# within the above MetaData
t = Table(table_name, metadata, autoload=True, autoload_with=conn)
s = t.select(t.c[unique_column] == obj[unique_column])
rs = connection.execute(s)
r = rs.fetchone()
if not r:
i_res = connection.execute(t.insert(), some_col=obj)
v_id = i_res.inserted_primary_key[0]
return v_id
else:
return r[primary_key]

How to execute raw SQL in Flask-SQLAlchemy app

How do you execute raw SQL in SQLAlchemy?
I have a python web app that runs on flask and interfaces to the database through SQLAlchemy.
I need a way to run the raw SQL. The query involves multiple table joins along with Inline views.
I've tried:
connection = db.session.connection()
connection.execute( <sql here> )
But I keep getting gateway errors.
Have you tried:
result = db.engine.execute("<sql here>")
or:
from sqlalchemy import text
sql = text('select name from penguins')
result = db.engine.execute(sql)
names = [row[0] for row in result]
print names
Note that db.engine.execute() is "connectionless", which is deprecated in SQLAlchemy 2.0.
SQL Alchemy session objects have their own execute method:
result = db.session.execute('SELECT * FROM my_table WHERE my_column = :val', {'val': 5})
All your application queries should be going through a session object, whether they're raw SQL or not. This ensures that the queries are properly managed by a transaction, which allows multiple queries in the same request to be committed or rolled back as a single unit. Going outside the transaction using the engine or the connection puts you at much greater risk of subtle, possibly hard to detect bugs that can leave you with corrupted data. Each request should be associated with only one transaction, and using db.session will ensure this is the case for your application.
Also take note that execute is designed for parameterized queries. Use parameters, like :val in the example, for any inputs to the query to protect yourself from SQL injection attacks. You can provide the value for these parameters by passing a dict as the second argument, where each key is the name of the parameter as it appears in the query. The exact syntax of the parameter itself may be different depending on your database, but all of the major relational databases support them in some form.
Assuming it's a SELECT query, this will return an iterable of RowProxy objects.
You can access individual columns with a variety of techniques:
for r in result:
print(r[0]) # Access by positional index
print(r['my_column']) # Access by column name as a string
r_dict = dict(r.items()) # convert to dict keyed by column names
Personally, I prefer to convert the results into namedtuples:
from collections import namedtuple
Record = namedtuple('Record', result.keys())
records = [Record(*r) for r in result.fetchall()]
for r in records:
print(r.my_column)
print(r)
If you're not using the Flask-SQLAlchemy extension, you can still easily use a session:
import sqlalchemy
from sqlalchemy.orm import sessionmaker, scoped_session
engine = sqlalchemy.create_engine('my connection string')
Session = scoped_session(sessionmaker(bind=engine))
s = Session()
result = s.execute('SELECT * FROM my_table WHERE my_column = :val', {'val': 5})
docs: SQL Expression Language Tutorial - Using Text
example:
from sqlalchemy.sql import text
connection = engine.connect()
# recommended
cmd = 'select * from Employees where EmployeeGroup = :group'
employeeGroup = 'Staff'
employees = connection.execute(text(cmd), group = employeeGroup)
# or - wee more difficult to interpret the command
employeeGroup = 'Staff'
employees = connection.execute(
text('select * from Employees where EmployeeGroup = :group'),
group = employeeGroup)
# or - notice the requirement to quote 'Staff'
employees = connection.execute(
text("select * from Employees where EmployeeGroup = 'Staff'"))
for employee in employees: logger.debug(employee)
# output
(0, 'Tim', 'Gurra', 'Staff', '991-509-9284')
(1, 'Jim', 'Carey', 'Staff', '832-252-1910')
(2, 'Lee', 'Asher', 'Staff', '897-747-1564')
(3, 'Ben', 'Hayes', 'Staff', '584-255-2631')
You can get the results of SELECT SQL queries using from_statement() and text() as shown here. You don't have to deal with tuples this way. As an example for a class User having the table name users you can try,
from sqlalchemy.sql import text
user = session.query(User).from_statement(
text("""SELECT * FROM users where name=:name""")
).params(name="ed").all()
return user
For SQLAlchemy ≥ 1.4
Starting in SQLAlchemy 1.4, connectionless or implicit execution has been deprecated, i.e.
db.engine.execute(...) # DEPRECATED
as well as bare strings as queries.
The new API requires an explicit connection, e.g.
from sqlalchemy import text
with db.engine.connect() as connection:
result = connection.execute(text("SELECT * FROM ..."))
for row in result:
# ...
Similarly, it’s encouraged to use an existing Session if one is available:
result = session.execute(sqlalchemy.text("SELECT * FROM ..."))
or using parameters:
session.execute(sqlalchemy.text("SELECT * FROM a_table WHERE a_column = :val"),
{'val': 5})
See "Connectionless Execution, Implicit Execution" in the documentation for more details.
result = db.engine.execute(text("<sql here>"))
executes the <sql here> but doesn't commit it unless you're on autocommit mode. So, inserts and updates wouldn't reflect in the database.
To commit after the changes, do
result = db.engine.execute(text("<sql here>").execution_options(autocommit=True))
This is a simplified answer of how to run SQL query from Flask Shell
First, map your module (if your module/app is manage.py in the principal folder and you are in a UNIX Operating system), run:
export FLASK_APP=manage
Run Flask shell
flask shell
Import what we need::
from flask import Flask
from flask_sqlalchemy import SQLAlchemy
db = SQLAlchemy(app)
from sqlalchemy import text
Run your query:
result = db.engine.execute(text("<sql here>").execution_options(autocommit=True))
This use the currently database connection which has the application.
Flask-SQLAlchemy v: 3.0.x / SQLAlchemy v: 1.4
users = db.session.execute(db.select(User).order_by(User.title.desc()).limit(150)).scalars()
So basically for the latest stable version of the flask-sqlalchemy specifically the documentation suggests using the session.execute() method in conjunction with the db.select(Object).
Have you tried using connection.execute(text( <sql here> ), <bind params here> ) and bind parameters as described in the docs? This can help solve many parameter formatting and performance problems. Maybe the gateway error is a timeout? Bind parameters tend to make complex queries execute substantially faster.
If you want to avoid tuples, another way is by calling the first, one or all methods:
query = db.engine.execute("SELECT * FROM blogs "
"WHERE id = 1 ")
assert query.first().name == "Welcome to my blog"

How to get inserted_primary_key from db.engine.connect().execute call

I'm using:
CPython 2.7.3,
Flask==0.10.1
Flask-SQLAlchemy==0.16
psycopg2==2.5.1
and
postgresql-9.2
Trying to get PK from insert call with alchemy.
Getting engine like so:
app = Flask(__name__)
app.config.from_envvar('SOME_VAR')
app.wsgi_app = ProxyFix(app.wsgi_app) # Fix for old proxyes
db = SQLAlchemy(app)
And executing insert query in app:
from sqlalchemy import text, exc
def query():
return db.engine.connect().execute(text('''
insert into test...'''), kw)
rv = query()
But trying access inserted_primary_key property, get:
InvalidRequestError: Statement is not an insert() expression construct.
How to enable implicit_returning in my case, reading the docs doesn't help?
You can use the RETURNING clause and handle this yourself:
INSERT INTO test (...) VALUES (...) RETURNING id
Then you can retrieve the id as you normally retrieve values from queries.
Note that this works on Postgres, but does not work on other db engines like MySQL or sqlite.
I don't think there is a db agnostic way to do this within SQLAlchemy without using the ORM functionality.
Is there any reason you do text query instead of normal sqlalchemy insert()? If you're using sqlalchemy it will probably be much easier for you to rephrase your query into:
from sqlalchemy import text, exc, insert
# in values you can put dictionary of keyvalue pairs
# key is the name of the column, value the value to insert
con = db.engine.connect()
ins = tablename.insert().values(users="frank")
res = con.execute(ins)
res.inserted_primary_key
[1]
This way sqlalchemy will do the binding for you.
You can use lastrowid
rv = query()
rv.lastrowid

Categories

Resources