Groupwise downsampling and plotting of pd.DataFrame - python

I am trying to downsample grouped data to daily averages, calculated for each group, and plot the resulting time series in a single plot.
My starting point is the following pd.DataFrame:
value time type
0.1234 2013-04-03 A
0.2345 2013-04-05 A
0.34564 2013-04-07 A
... ... ...
0.2345 2013-04-03 B
0.1234 2013-04-05 B
0.2345 2013-04-07 C
0.34564 2013-04-07 C
I would like to calculate daily means for each type of content, and plot the time series of these daily means in a single plot.
I currently have this...
names = list(test['type'].unique())
types = []
for name in names:
single = df.loc[df.type == name]
single = single.set_index(single.time, drop=False)
single = single.resample("D")
types.append(single)
for single, name in zip(types, names):
single.rename(columns={"value":name}, inplace=True)
combined = pd.concat(types, axis=1)
combined.plot()
... resulting in the combined data frame containing the desired output and the following plot:
It seems to me that this could be achieved more easily by using groupby on the initial dataframe but so far I have not been able to reproduce the desired plot using this method.
What is "the smart way" to do this?
EDIT:
Bigger data sample (csv, 1000 rows) at: http://pastebin.com/gi16nZdh
Thanks,
Matthias

You can use pandas.DataFrame.pivot easily to do what you want, I've created a random example DataFrame below and then used df.pivot to arrange the table as wanted.
Note: I've resampled as weekly as I only have one data value per type per day, don't forget to change this for your data.
import pandas as pd
import matplotlib.pyplot as plt
dates = pd.date_range('2013-04-03', periods = 50, freq='D')
dfs = [pd.DataFrame(dict(time=dates, value=pd.np.random.randn(len(dates)), type=i)) for i in ['A', 'B', 'C', 'D']]
df = pd.concat(dfs)
pivoted = df.pivot(index='time', columns='type', values='value')
pivoted.resample('W')
print(pivoted.head(10))
# type A B C D
# time
# 2013-04-03 0.161839 0.509179 0.055078 -2.072243
# 2013-04-04 0.323308 0.891982 -1.266360 1.950389
# 2013-04-05 -2.542464 -0.441849 -2.686183 0.717737
# 2013-04-06 0.750871 0.438343 -0.002004 0.478821
# 2013-04-07 -0.118890 1.026121 1.283397 -1.306257
# 2013-04-08 -0.396373 -1.078925 -0.539617 -1.625549
# 2013-04-09 0.328076 1.964779 0.194198 0.232702
# 2013-04-10 -0.178683 0.177359 0.500873 -0.729988
# 2013-04-11 0.762800 1.576662 -0.456480 0.526162
# 2013-04-12 -1.301265 -0.586977 -0.903313 0.162008
pivoted.plot()
plt.show()
This code creates a pivot_table called pivoted where each of the columns are now type and the data is the index. We then simply resample it using pivoted.resample('W').

Related

KEGG Drug database Python script

I have a drug database saved in a SINGLE column in CSV file that I can read with Pandas. The file containts 750000 rows and its elements are devided by "///". The column also ends with "///". Seems every row is ended with ";".
I would like to split it to multiple columns in order to create structured database. Capitalized words (drug information) like "ENTRY", "NAME" etc. will be headers of these new columns.
So it has some structure, although the elements can be described by different number and sort of information. Meaning some elements will just have NaN in some cells. I have never worked with such SQL-like format, it is difficult to reproduce it as Pandas code, too. Please, see the PrtScs for more information.
An example of desired output would look like this:
df = pd.DataFrame({
"ENTRY":["001", "002", "003"],
"NAME":["water", "ibuprofen", "paralen"],
"FORMULA":["H2O","C5H16O85", "C14H24O8"],
"COMPONENT":[NaN, NaN, "paracetamol"]})
I am guessing there will be .split() involved based on CAPITALIZED words? The Python 3 code solution would be appreciated. It can help a lot of people. Thanks!
Whatever he could, he helped:
import pandas as pd
cols = ['ENTRY', 'NAME', 'FORMULA', 'COMPONENT']
# We create an additional dataframe.
dfi = pd.DataFrame()
# We read the file, get two columns and leave only the necessary lines.
df = pd.read_fwf(r'drug', header=None, names=['Key', 'Value'])
df = df[df['Key'].isin(cols)]
# To "flip" the dataframe, we first prepare an additional column
# with indexing by groups from one 'ENTRY' row to another.
dfi['Key1'] = dfi['Key'] = df[(df['Key'] == 'ENTRY')].index
dfi = dfi.set_index('Key1')
df = df.join(dfi, lsuffix='_caller', rsuffix='_other')
df.fillna(method="ffill", inplace=True)
df = df.astype({"Key_other": "Int64"})
# Change the shape of the table.
df = df.pivot(index='Key_other', columns='Key_caller', values='Value')
df = df.reindex(columns=cols)
# We clean up the resulting dataframe a little.
df['ENTRY'] = df['ENTRY'].str.split(r'\s+', expand=True)[0]
df.reset_index(drop=True, inplace=True)
pd.set_option('display.max_columns', 10)
Small code refactoring:
import pandas as pd
cols = ['ENTRY', 'NAME', 'FORMULA', 'COMPONENT']
# We read the file, get two columns and leave only the necessary lines.
df = pd.read_fwf(r'C:\Users\ф\drug\drug', header=None, names=['Key', 'Value'])
df = df[df['Key'].isin(cols)]
# To "flip" the dataframe, we first prepare an additional column
# with indexing by groups from one 'ENTRY' row to another.
df['Key_other'] = None
df.loc[(df['Key'] == 'ENTRY'), 'Key_other'] = df[(df['Key'] == 'ENTRY')].index
df['Key_other'].fillna(method="ffill", inplace=True)
# Change the shape of the table.
df = df.pivot(index='Key_other', columns='Key', values='Value')
df = df.reindex(columns=cols)
# We clean up the resulting dataframe a little.
df['ENTRY'] = df['ENTRY'].str.split(r'\s+', expand=True)[0]
df['NAME'] = df['NAME'].str.split(r'\(', expand=True)[0]
df.reset_index(drop=True, inplace=True)
pd.set_option('display.max_columns', 10)
print(df)
Key ENTRY NAME FORMULA \
0 D00001 Water H2O
1 D00002 Nadide C21H28N7O14P2
2 D00003 Oxygen O2
3 D00004 Carbon dioxide CO2
4 D00005 Flavin adenine dinucleotide C27H33N9O15P2
... ... ... ...
11983 D12452 Fostroxacitabine bralpamide hydrochloride C22H30BrN4O8P. HCl
11984 D12453 Guretolimod C24H34F3N5O4
11985 D12454 Icenticaftor C12H13F6N3O3
11986 D12455 Lirafugratinib C28H24FN7O2
11987 D12456 Lirafugratinib hydrochloride C28H24FN7O2. HCl
Key COMPONENT
0 NaN
1 NaN
2 NaN
3 NaN
4 NaN
... ...
11983 NaN
11984 NaN
11985 NaN
11986 NaN
11987 NaN
[11988 rows x 4 columns]
Need a little more to bring to mind, I leave it to your work.

Python pandas rolling computations with custom step size

I have a pandas dataframe with daily data. At the last day of each month, I would like to compute a quantity that depends on the daily data of the previous n months (e.g., n=3).
My current solution is to use the pandas rolling function to compute this quantity for every day, and then, only keep the quantities of the last days of each month (and discard all the other quantities). This however implies that I perform a lot of unnecessary computations.
Does somebody of you know how I can improve that?
Thanks a lot in advance!
EDIT:
In the following, I add two examples. In both cases, I compute rolling regressions of stock returns. The first (short) example shows the problem described above and is a sub-problem of my actual problem. The second (long) example shows my actual problem. Therefore, I would either need a solution of the first example that can be embedded in my algorithm for solving the second example or a completely different solution of the second example. Note: The dataframe that I'm using is very large, which means that multiple copies of the entire dataframe are not feasible.
Example 1:
import pandas as pd
import random
import statsmodels.api as sm
# Generate a time index
dates = pd.date_range("2018-01-01", periods=365, freq="D", name='date')
df = pd.DataFrame(index=dates,columns=['Y','X']).sort_index()
# Generate Data
df['X'] = np.array(range(0,365))
df['Y'] = 3.1*X-2.5
df = df.iloc[random.sample(range(365),280)] # some days are missing
df.iloc[random.sample(range(280),20),0] = np.nan # some observations are missing
df = df.sort_index()
# Compute Beta
def estimate_beta(ser):
return sm.OLS(df.loc[ser.index,'Y'], sm.add_constant(df.loc[ser.index,'X']), missing = 'drop').fit().params[-1]
df['beta'] = df['Y'].rolling('60D', min_periods=10).apply(estimate_beta) # use last 60 days and require at least 10 observations
# Get last entries per month
df_monthly = df[['beta']].groupby([pd.Grouper(freq='M', level='date')]).agg('last')
df_monthly
Example 2:
import pandas as pd
from pandas import IndexSlice as idx
import random
import statsmodels.api as sm
# Generate a time index
dates = pd.date_range("2018-01-01", periods=365, freq="D", name='date')
arrays = [dates.tolist()+dates.tolist(),["10000"]*365+["10001"]*365]
index = pd.MultiIndex.from_tuples(list(zip(*arrays)), names=["Date", "Stock"])
df = pd.DataFrame(index=index,columns=['Y','X']).sort_index()
# Generate Data
df.loc[idx[:,"10000"],'X'] = X = np.array(range(0,365)).astype(float)
df.loc[idx[:,"10000"],'Y'] = 3*X-2
df.loc[idx[:,"10001"],'X'] = X
df.loc[idx[:,"10001"],'Y'] = -X+1
df = df.iloc[random.sample(range(365*2),360*2)] # some days are missing
df.iloc[random.sample(range(280*2),20*2),0] = np.nan # some observations are missing
# Estimate beta
def estimate_beta_grouped(df_in):
def estimate_beta(ser):
return sm.OLS(df.loc[ser.index,'Y'].astype(float),sm.add_constant(df.loc[ser.index,'X'].astype(float)), missing = 'drop').fit().params[-1]
df = df_in.droplevel('Stock').reset_index().set_index(['Date']).sort_index()
df['beta'] = df['Y'].rolling('60D',min_periods=10).apply(estimate_beta)
return df[['beta']]
df_beta = df.groupby(level='Stock').apply(estimate_beta_grouped)
# Extract beta at last day per month
df_monthly = df.groupby([pd.Grouper(freq='M', level='Date'), df.index.get_level_values(1)]).agg('last') # get last observations
df_monthly = df_monthly.merge(df_beta, left_index=True, right_index=True, how='left') # merge beta on df_monthly
df_monthly

Collect all transactions for each day and report total spent that day

I have a DataFrame that looks like this
date Burned
8/11/2019 7:00 0.0
8/11/2019 7:00 10101.0
8/11/2019 8:16 5.2
I have this code:
import pandas as pd
import numpy as np
# Read data from file 'filename.csv'
# (in the same directory that your python process is based)
# Control delimiters, rows, column names with read_csv (see later)
df = pd.read_csv("../example.csv")
# Preview the first 5 lines of the loaded data
df = df.assign(Burned = df['Quantity'])
df.loc[df['To'] != '0x0000000000000000000000000000000000000000', 'Burned'] = 0.0
# OR:
df['cum_sum'] = df['Burned'].cumsum()
df['percent_burned'] = df['cum_sum']/df['Quantity'].max()*100.0
a=pd.concat([df['DateTime'], df['Burned']], axis=1, keys=['date', 'Burned'])
b=a.groupby(df.index.date).count()
But I get this error: AttributeError: 'RangeIndex' object has no attribute 'date'
Basically I am wanting to sort all these times just by day since it has timestamps throughout the day. I don't care what time of the day different things occured, I just want to get the total number of 'Burned' per day.
First add parse_dates=['DateTime'] to read_csv for convert column Datetime:
df = pd.read_csv("../example.csv", parse_dates=['DateTime'])
Or first column:
df = pd.read_csv("../example.csv", parse_dates=[0])
In your solution is date column, so need Series.dt.date with sum:
b = a.groupby(a['date'].dt.date)['Burned'].sum().reset_index(name='Total')

Replace text with numbers using dictionary in pandas

I'm trying to replace months represented as a character (e.g. 'NOV') for their numerical counterparts ('-11-'). I can get the following piece of code to work properly.
df_cohorts['ltouch_datetime'] = df_cohorts['ltouch_datetime'].str.replace('NOV','-11-')
df_cohorts['ltouch_datetime'] = df_cohorts['ltouch_datetime'].str.replace('DEC','-12-')
df_cohorts['ltouch_datetime'] = df_cohorts['ltouch_datetime'].str.replace('JAN','-01-')
However, to avoid redundancy, I'd like to use a dictionary and .replace to replace the character variable for all months.
r_month1 = {'JAN':'-01-','FEB':'-02-','MAR':'-03-','APR':'-04-','MAY':'-05-','JUN':'-06-','JUL':'-07-','AUG':'-08-','SEP':'-09-','OCT':'-10-','NOV':'-11-','DEC':'-12-'}
df_cohorts.replace({'conversion_datetime': r_month1,'ltouch_datetime': r_month1})
When I enter the code above, my output dataset is unchanged. For reference, please see my sample data below.
User_ID ltouch_datetime conversion_datetime
001 11NOV14:13:12:56 11NOV14:16:12:00
002 07NOV14:17:46:14 08NOV14:13:10:00
003 04DEC14:17:46:14 04DEC15:13:12:00
Thanks!
Let me suggest a different approach: You could parse the date strings into a column of pandas TimeStamps like this:
import pandas as pd
df = pd.read_table('data', sep='\s+')
for col in ('ltouch_datetime', 'conversion_datetime'):
df[col] = pd.to_datetime(df[col], format='%d%b%y:%H:%M:%S')
print(df)
# User_ID ltouch_datetime conversion_datetime
# 0 1 2014-11-11 13:12:56 2014-11-11 16:12:00
# 1 2 2014-11-07 17:46:14 2014-11-08 13:10:00
# 2 3 2014-12-04 17:46:14 2015-12-04 13:12:00
I would stop right here, since representing dates as TimeStamps is the ideal
form for the data in Pandas.
However, if you need/want date strings with 3-letter months like 'NOV' converted to -11-, then you can convert the Timestamps with strftime and apply:
for col in ('ltouch_datetime', 'conversion_datetime'):
df[col] = df[col].apply(lambda x: x.strftime('%d-%m-%y:%H:%M:%S'))
print(df)
yields
User_ID ltouch_datetime conversion_datetime
0 1 11-11-14:13:12:56 11-11-14:16:12:00
1 2 07-11-14:17:46:14 08-11-14:13:10:00
2 3 04-12-14:17:46:14 04-12-15:13:12:00
To answer your question literally, in order to use Series.str.replace you need a column with the month string abbreviations all by themselves. You can arrange for that by first calling Series.str.extract. Then you can join the columns back into one using apply:
import pandas as pd
import calendar
month_map = {calendar.month_abbr[m].upper():'-{:02d}-'.format(m)
for m in range(1,13)}
df = pd.read_table('data', sep='\s+')
for col in ('ltouch_datetime', 'conversion_datetime'):
tmp = df[col].str.extract(r'(.*?)(\D+)(.*)')
tmp[1] = tmp[1].replace(month_map)
df[col] = tmp.apply(''.join, axis=1)
print(df)
yields
User_ID ltouch_datetime conversion_datetime
0 1 11-11-14:13:12:56 11-11-14:16:12:00
1 2 07-11-14:17:46:14 08-11-14:13:10:00
2 3 04-12-14:17:46:14 04-12-15:13:12:00
Finally, although you haven't asked for this directly, it's good to be aware
that if your data is in a file, you can parse the datestring columns into
TimeStamps directly using
import pandas as pd
import datetime as DT
df = pd.read_table(
'data', sep='\s+', parse_dates=[1,2],
date_parser=lambda x: DT.datetime.strptime(x, '%d%b%y:%H:%M:%S'))
This might be the most convenient method of all (assuming you want TimeStamps).

Time Series using numpy or pandas

I'm a beginner of Python related environment and I have problem with using time series data.
The below is my OHLC 1 minute data.
2011-11-01,9:00:00,248.50,248.95,248.20,248.70
2011-11-01,9:01:00,248.70,249.00,248.65,248.85
2011-11-01,9:02:00,248.90,249.25,248.70,249.15
...
2011-11-01,15:03:00,250.25,250.30,250.05,250.15
2011-11-01,15:04:00,250.15,250.60,250.10,250.60
2011-11-01,15:15:00,250.55,250.55,250.55,250.55
2011-11-02,9:00:00,245.55,246.25,245.40,245.80
2011-11-02,9:01:00,245.85,246.40,245.75,246.35
2011-11-02,9:02:00,246.30,246.45,245.75,245.80
2011-11-02,9:03:00,245.75,245.85,245.30,245.35
...
I'd like to extract the last "CLOSE" data per each row and convert data format like the following:
2011-11-01, 248.70, 248.85, 249.15, ... 250.15, 250.60, 250.55
2011-11-02, 245.80, 246.35, 245.80, ...
...
I'd like to calculate the highest Close value and it's time(minute) per EACH DAY like the following:
2011-11-01, 10:23:03, 250.55
2011-11-02, 11:02:36, 251.00
....
Any help would be very appreciated.
Thank you in advance,
You can use the pandas library. In the case of your data you can get the max as:
import pandas as pd
# Read in the data and parse the first two columns as a
# date-time and set it as index
df = pd.read_csv('your_file', parse_dates=[[0,1]], index_col=0, header=None)
# get only the fifth column (close)
df = df[[5]]
# Resample to date frequency and get the max value for each day.
df.resample('D', how='max')
If you want to show also the times, keep them in your DataFrame as a column and pass a function that will determine the max close value and return that row:
>>> df = pd.read_csv('your_file', parse_dates=[[0,1]], index_col=0, header=None,
usecols=[0, 1, 5], names=['d', 't', 'close'])
>>> df['time'] = df.index
>>> df.resample('D', how=lambda group: group.iloc[group['close'].argmax()])
close time
d_t
2011-11-01 250.60 2011-11-01 15:04:00
2011-11-02 246.35 2011-11-02 09:01:00
And if you wan't a list of the prices per day then just do a groupby per day and return the list of all the prices from every group using the apply on the grouped object:
>>> df.groupby(lambda dt: dt.date()).apply(lambda group: list(group['close']))
2011-11-01 [248.7, 248.85, 249.15, 250.15, 250.6, 250.55]
2011-11-02 [245.8, 246.35, 245.8, 245.35]
For more information take a look at the docs: Time Series
Update for the concrete data set:
The problem with your data set is that you have some days without any data, so the function passed in as the resampler should handle those cases:
def func(group):
if len(group) == 0:
return None
return group.iloc[group['close'].argmax()]
df.resample('D', how=func).dropna()

Categories

Resources