matplotlib gui respond to axes changes - python

I have created a little GUI with QT which set's up a single matplotlib figure and axes.
The GUI has controls to change just about everything to do with the appearance of the axes.
Basically, it does this by each widget emitting signals back up to the main frame and it calls the appropriate matplotlib setters on the axes and figure objects.
However, it is possible for the axes (and therefore the image displayed on the FigureCanvas) to change without input from the GUI (e.g. when autoscaling, or adding certain plots which adjust the axes automatically).
In this case, a widget controlling e.g. the limits of the x axis will now be displaying the wrong values.
I would like all the relevant widgets to update when the axes updates....how could I possible achieve this?
I'm thinking that this is a problem that has been solved before - how to enable a two-way communication between distinct objects?

fig.canvas.draw()
time.sleep(1e-2)
whenever anything writes to the plot? however it's hard to help with no code.
Showing an example of how your code is not working would help a lot.
EDIT:
I'll try this again then:
What about getting the state of the plot you are updating? I guess its what #Ajean means by updater method. I know that Artists in matplotlib have an Artist.properties() method that returns all of the properties and values.
I imagine Axes would have a similar method.
A quick look at the matplotlib docs yielded 2 interesting methods of axes:
ax.get_autoscale_on()
and
ax.set_autoscale_on().
ax.set_autoscale_on(False) will prevent plots from updating the state of the axes.

Related

Python3 - Plotting the same matplotlib axes object on multiple figures?

I have a script which I'm adapting to include a GUI. In it, I create a plot with subplots (the arrangement of which depends on the number of plots - e.g. 4 plots go into a square rather than 4-across). That plot (with a subplot for each of the "targets" analyzed) gets saved to a .png.
In building the GUI, I'm writing up the 'results' frame and would like to show these individual subplots on their own tabs. I've written the code to lay out the frame how I want it, but in order to separate the subplots into their own plots, I need to draw the completed Axes object (e.g. the entire subplot for that target) onto a new figure in the frame.
Since the number of subplots isn't known before runtime, I already have my Axes objects/subplots in an array (/list?) axs, whose members are the individual Axes objects (each containing data points created with ax.scatter() and several lines and annotations created with ax.plot() and ax.annotate).
When I initially create the axes, I do so with
fig, axs = plt.subplots(num='Title', nrows=numrow, ncols=numcol,
figsize=[numcol*5, numrow*5],
subplot_kw={'adjustable':'box', 'aspect':1})
Is there a way to now take these axes and draw them onto a new figure (the one that will be contained in the 'results' frame of the GUI)? In my searches, I only came up with ways to plot multiple axes onto a single figure (i.e. how to use subplots()) but nothing came up on how I'd throw a pre-existing Axes object into a new figure that it wasn't originally associated with. I'd rather not re-draw the axes from scratch -- there's quite a bit of decoration and multiple datasets / lines plotted onto them already.
Any ideas? Happy to post code as requested, but since this more of a "How do I do this" than a "why doesn't my code work", I didn't post much of it.
Thank you!
I believe that's not possible and you will have to recreate the Axes objects inside the other figure. Which is just a matter of code reorganization. Note that your approach would not noticeably improve rendering performance. Matplotlib would have to re-render the Axes objects anyway, and that's the computationally expensive part. Creating the objects is relatively cheap.
What you're trying to do is pretty much this:
from matplotlib import pyplot
pyplot.ion()
figure1 = pyplot.figure()
axes = figure1.add_subplot()
axes.plot([0, 1], [0, 1])
figure2 = pyplot.figure()
figure2.add_axes(axes)
Which raises:
ValueError: The Axes must have been created in the present figure
And the documentation of add_axes() notes:
In rare circumstances, add_axes may be called with a single argument, an Axes instance already created in the present figure but not in the figure's list of Axes.
So that's a pretty clear indication that this is not a supported use case.

Create a figure of figures with matplotlib

I would like to know if there is a way to combined several figures created with matplotlib in one unique figure.
Most of the existing topics are related to multiple plots within one figure. But here, I have several functions which all create one elaborated figure (not just a plot, the figure itself is a multiple plot with texts, title, legends,...)
So instead of just doing the layout of those several figures using a software like Word, is there a way to directly combined all my figures in one unique figure under python ?
Thank you in advance !
The concept of figure in matplotlib does not allow to have a figure inside a figure. The figure is the canvas for other artists, like axes. You may of course add as many axes to a figure as you like. So for example instead of one figure with 4 axes and another figure with 6 axes, you can create a figure with 10 axes.
A good choice may be to use the gridspec, as detailed on the respecive matplotlib page.
After additional researches, it seems my problem has no easy solution within Matplotlib itself. Multiple figures layout needs external post-processing of plots.
For those having the same problem, here is an interesting link :
Publication-quality figures with matplotlib and svgutils

Changing parameters while plotting in python

I have a code for plotting 3d scatterplot in python that updates after every 2 seconds (plot is dynamic). I wish to be able to adjust the values of some of the parameters on line (while plotting happens) based on which the plotting happens. Is it possible to give a textbox along with the plot from which we can take as input the required parameter value based on which this plot will then be subsequently modified?
Matplotlib does not have a textbox (or other text entry) widget. To use a textbox, you would need to embed a matplotlib graph within a separate GUI framework. To do this, decide on the GUI framework you want to use (qt, wx, gtk, or tkinter), and a textbox widget from the gui framework, and then add the plot from matplotlib. This isn't difficult and there are lots of available examples, generally best found for each specific framework you're interested in.
There might also be other pure matplotlib approaches that could work for you, such as using a matplotlib slider widget, or you could directly capture keyboard events, but without knowing exactly what you're going to for, it's hard to say.

Embed matplotlib figure in larger figure

I am writing a bunch of scripts and functions for processing astronomical data. I have a set of galaxies, for which I want to plot some different properties in a 3-panel plot. I have an example of the layout here:
Now, this is not a problem. But sometimes, I want to create this plot just for a single galaxy. In other cases, I want to make a larger plot consisting of subplots that each are made up of the three+pane structure, like this mockup:
For the sake of modularity and reusability of my code, I would like to do something to the effect of just letting my function return a matplotlib.figure.Figure object and then let the caller - function or interactive session - decide whether to show() or savefig the object or embed it in a larger figure. But I cannot seem to find any hints of this in the documentation or elsewhere, it doesn't seem to be something people do that often.
Any suggestions as to what would be the best road to take? I have speculated whether using axes_grid would be the solution, but it doesn't seem quite clean and caller-agnostic to me. Any suggestions?
The best solution is to separate the figure layout logic from the plotting logic. Write your plotting code something like this:
def three_panel_plot(data, ploting_args, ax1, ax2, ax3):
# what you do to plot
So now the code that turns data -> images takes as arguments the data and where it should plot that data too.
If you want to do just one, it's easy, if you want to do a 3x3 grid, you just need to generate the layout and then loop over the axes sets + data.
The way you are suggesting (returning an object out of your plotting routine) would be very hard in matplotlib, the internals are too connected.

python matplotlib blit to axes or sides of the figure?

I'm trying to refresh some plots that I have within a gui everytime I go once through a fitting procedure. Also, these plots are within a framw which can be resized, so the axes and labels etc need to be redrawn after the resizing. So was wondering if anyone knew how to update the sides of a figure using something like plot.figure.canvas.copy_from_bbox and blit. This appears to only copy and blit the background of the graphing area (where the lines are being drawn) and not to the sides of the graph or figure (where the labels and ticks are). I have been trying to get my graphs to update by trial and error and reading mpl documentation, but so far my code has jst become horrendously complex with things like self.this_plot.canvas_of_plot..etc.etc.. .plot.figure.canvas.copy_from_bbox... which is probably far too convoluted.
I know that my language might be a little off but I've been trying to read through the matplotlb documentation and the differences between Figure, canvas, graph, plot, figure.Figure, etc. are starting to evade me. So my first and foremost question would be:
1 - How do you update the ticks and labels around a matplotlib plot.
and secondly, since I would like to have a better grasp on what the answer to this question,
2 - What is the difference between a plot, figure, canvas, etc. in regards to the area which they cover in the GUI.
Thank you very much for the help.
All this can certainly be rather confusing at first!
To begin with, if you're chaining the ticks, etc, there isn't much point in using blitting. Blitting is just a way to avoid re-drawing everything if only some things are changing. If everything is changing, there's no point in using blitting. Just re-draw the plot.
Basically, you just want fig.canvas.draw() or plt.draw()
At any rate, to answer your first question, in most cases you won't need to update them manually. If you change the axis limits, they'll update themselves. You're running into problems because you're blitting just the inside of the axes instead of redrawing the plot.
As for your second question, a good, detailed overview is the Artist Tutorial of the Matplotlib User's Guide.
In a nutshell, there are two separate layers. One deals with grouping things into the parts that you'll worry about when plotting (e.g. the figure, axes, axis, lines, etc) and another that deals with rendering and drawing in general (the canvas and renderer).
Anything you can see in a matplotlib plot is an Artist. (E.g. text, a line, the axes, and even the figure itself.) An artist a) knows how to draw itself, and b) can contain other artists.
For an artist to draw itself, it uses the renderer (a backend-specific module that you'll almost never touch directly) to draw on a FigureCanvas a.k.a. "canvas" (an abstraction around either a vector-based page or a pixel buffer). To draw everything in a figure, you call canvas.draw().
Because artists can be groups of other artists, there's a hierarchy to things. Basically, something like this (obviously, this varies):
Figure
Axes (0-many) (An axes is basically a plot)
Axis (usually two) (x-axis and y-axis)
ticks
ticklabels
axis label
background patch
title, if present
anything you've plotted, e.g. Line2D's
Hopefully that makes things a touch clearer, anyway.
If you really do want to use blitting to update the tick labels, etc, you'll need to grab and restore the full region including them. This region is a bit tricky to get, because it isn't exactly known until after draw-time (rendering text in matplotlib is more complicated than rendering other things due to latex support, etc). You can do it, and I'll be glad to give an example if it's really what you want, but it's typically not going to yield a speed advantage over just drawing everything. (The exception is if you're only updating one subplot in a figure with lots of subplots.)

Categories

Resources