Generate a gradient from extrema of a float Image - python

As the title states, i need to generate a gradient from the lowest value to the highest value of a given float Image. This shall serve as a legend to the image.
my idea is to create an image and then fill every pixel of it with a value within the range of the extrema.
I am still not a Pro in Python, so any help would be nice.
What i got so far:
im = Image.open('path_to.tiff')
extrw=im.getextrema()
grad = Image.new('F', (10, 100))
pix = grad.load()
for i in range(grad.size[0]): # for every pixel:
for j in range(grad.size[1]):
pixels[i,j] = (some_float)
As you can see i need to somehow use extrema to get the float values accordingly into the pixels to create a gradient.
it would be nice, if i could stay in the PIL library.
Thank you!

After some research i found that this could be a linear function. all i had to to was to put the minimum, maximum and length into this mathematical form : y=m*x+b
with the help of a kollegue we figured: y(the pixel value)= ((minvalue-maxvalue)/h(heigth of the image))*index_of_pixel+maxvalue. in code form:
extw=im.getextrema()
grad_b = 10
grad = Image.new('F', (grad_b, im_h))
pix = grad.load()
for i in range(grad.size[0]): # for every pixel:
for j in range(grad.size[1]):
pix[i,j] = (extw[0]-extw[1]/im_h)*j+extw[1]

Related

Visualize SimpleITK coordinates on Paraview

I am trying to just make an SimpleITK image where I want specific voxel values to be 1 and the rest to be 0. I am new to SimpleITK so I feel I am missing out on something.
Anyway, I have some indices that I have generated that I assign the voxel value of as 1. However, I want to be able to visualise how these samples are oriented with respect to each other in space. I have tried multiple ways from transforming an array full of zeroes with required indices as 1 to a NIFTI image however I am still not able to visualise it and see how these points look
Below is a basic code snippet I have tried
def WriteSampleToDisk():
"""Creates an empty image, assigns generated samples with voxel value 1 and writes it to disk.
returns image written to disk"""
img = sitk.Image(512, 512, 416, sitk.sitkInt16)
img.SetOrigin((0, 0, 0))
img.SetSpacing((1, 1, 1))
#Some code to get indices
for i in range(len(dimx)): #Same number of elements in every index dimension
img.SetPixel(dimz[i], dimy[i], dimx[i], 1)#Sitk convention takes z axis as the first axis
arr = sitk.GetArrayFromImage(img)
print(np.argwhere(arr == 1)) --> It's giving me the indices where I have Set the voxel value as 1
sitk.WriteImage(img, "image.nii")
return img
However when I try to view it on paraview even after setting the threshold, I still get nothing. What could be the reason for this? Is there a way to circumvent this problem?
Your voxel type is Int16 which has a range of -32768 to 32767. But you're setting your voxels to 1. Given the intensity range, that's not that different from 0 so it's pretty much going to be the same as 0, visually.
Try setting your on voxels to 32767. Also you might want to dilate your image after setting the voxels. A one voxel dot will be very small and difficult to see. Run the BinaryDilateFilter to grow the size of your dots.
UPDATE: ok, here's a example that I've written. It creates a UInt8 volume and sets random dots in it to 255. Then it creates a distance map volume from the dots volume.
import random
import SimpleITK as sitk
random.seed()
img = sitk.Image([512,512,512], sitk.sitkUInt8)
for i in range(1000):
x = random.randrange(512)
y = random.randrange(512)
z = random.randrange(512)
print(x,y,z)
img[x,y,z] = 255
sitk.WriteImage(img, "dots.nrrd")
dist = sitk.SignedMaurerDistanceMap(img)
sitk.WriteImage(dist, "dots.dist.nrrd")
sitk.Show(dist)
For the SignedMaurierDistanceMap, the voxels can be any value, as long as it's not the background value.

Is there a way to do einsum in Python with boolean logic to optimize it?

Okay, so basically i'm working on some sort of image blending thing, and i have a function that will blend every image in the given array according to some specified weight, like in the code below:
#Weighting Function
def weight_sym(n):
n = int(n/2)
r = range(n,-n,-1)
val = [math.exp(-(2*x/n)**2) for x in r]
val = val/np.sum(val)
return val
#Blending Function
def blend(imgs):
num = len(imgs)
Weight = weight_sym(num)
P = np.einsum("ijkl,i->jkl", imgs, Weight)
return P.astype(np.uint8)
Note : imgs is an array that holds multiple images in the form of pixel arrays, the shape is (n,1080,1920,3) where n is the amount of images, 1080 and 1920 is actual image dimension, and 3 is the rgb value.
Ok, but unfortunately for large amount of images, the code seems to slow down really badly, and because 75% of all images is just black background, i was wondering, can i only do einsum calculation only if the pixel value is actually changing at least once in every images. (Perhaps utilizing np.allclose() and use the boolean output (?))
What i mean by that is i want to reduce the amount of calculation needed by ignoring pixel that doesn't change value at all in every image. So my question is, is it actually possible to do that and get a better performance? if so, can you provide an example?

Straighten B-Spline

I've interpolated a spline to fit pixel data from an image with a curve that I would like to straighten. I'm not sure what tools are appropriate to solve this problem. Can someone recommend an approach?
Here's how I'm getting my spline:
import numpy as np
from skimage import io
from scipy import interpolate
import matplotlib.pyplot as plt
from sklearn.neighbors import NearestNeighbors
import networkx as nx
# Read a skeletonized image, return an array of points on the skeleton, and divide them into x and y coordinates
skeleton = io.imread('skeleton.png')
curvepoints = np.where(skeleton==False)
xpoints = curvepoints[1]
ypoints = -curvepoints[0]
# reformats x and y coordinates into a 2-dimensional array
inputarray = np.c_[xpoints, ypoints]
# runs a nearest neighbors algorithm on the coordinate array
clf = NearestNeighbors(2).fit(inputarray)
G = clf.kneighbors_graph()
T = nx.from_scipy_sparse_matrix(G)
# sorts coordinates according to their nearest neighbors order
order = list(nx.dfs_preorder_nodes(T, 0))
xx = xpoints[order]
yy = ypoints[order]
# Loops over all points in the coordinate array as origin, determining which results in the shortest path
paths = [list(nx.dfs_preorder_nodes(T, i)) for i in range(len(inputarray))]
mindist = np.inf
minidx = 0
for i in range(len(inputarray)):
p = paths[i] # order of nodes
ordered = inputarray[p] # ordered nodes
# find cost of that order by the sum of euclidean distances between points (i) and (i+1)
cost = (((ordered[:-1] - ordered[1:])**2).sum(1)).sum()
if cost < mindist:
mindist = cost
minidx = i
opt_order = paths[minidx]
xxx = xpoints[opt_order]
yyy = ypoints[opt_order]
# fits a spline to the ordered coordinates
tckp, u = interpolate.splprep([xxx, yyy], s=3, k=2, nest=-1)
xpointsnew, ypointsnew = interpolate.splev(np.linspace(0,1,270), tckp)
# prints spline variables
print(tckp)
# plots the spline
plt.plot(xpointsnew, ypointsnew, 'r-')
plt.show()
My broader project is to follow the approach outlined in A novel method for straightening curved text-lines in stylistic documents. That article is reasonably detailed in finding the line that describes curved text, but much less so where straightening the curve is concerned. I have trouble visualizing the only reference to straightening that I see is in the abstract:
find the angle between the normal at a point on the curve and the vertical line, and finally visit each point on the text and rotate by their corresponding angles.
I also found Geometric warp of image in python, which seems promising. If I could rectify the spline, I think that would allow me to set a range of target points for the affine transform to map to. Unfortunately, I haven't found an approach to rectify my spline and test it.
Finally, this program implements an algorithm to straighten splines, but the paper on the algorithm is behind a pay wall and I can't make sense of the javascript.
Basically, I'm lost and in need of pointers.
Update
The affine transformation was the only approach I had any idea how to start exploring, so I've been working on that since I posted. I generated a set of destination coordinates by performing an approximate rectification of the curve based on the euclidean distance between points on my b-spline.
From where the last code block left off:
# calculate euclidian distances between adjacent points on the curve
newcoordinates = np.c_[xpointsnew, ypointsnew]
l = len(newcoordinates) - 1
pointsteps = []
for index, obj in enumerate(newcoordinates):
if index < l:
ord1 = np.c_[newcoordinates[index][0], newcoordinates[index][1]]
ord2 = np.c_[newcoordinates[index + 1][0], newcoordinates[index + 1][1]]
length = spatial.distance.cdist(ord1, ord2)
pointsteps.append(length)
# calculate euclidian distance between first point and each consecutive point
xpositions = np.asarray(pointsteps).cumsum()
# compose target coordinates for the line after the transform
targetcoordinates = [(0,0),]
for element in xpositions:
targetcoordinates.append((element, 0))
# perform affine transformation with newcoordinates as control points and targetcoordinates as target coordinates
tform = PiecewiseAffineTransform()
tform.estimate(newcoordinates, targetcoordinates)
I'm presently hung up on errors with the affine transform (scipy.spatial.qhull.QhullError: QH6154 Qhull precision error: Initial simplex is flat (facet 1 is coplanar with the interior point)
), but I'm not sure whether it's because of a problem with how I'm feeding the data in, or because I'm abusing the transform to do my projection.
I got the same error with you when using scipy.spatial.ConvexHull.
First, let me explain my project: what i wanted to do is to segment the people from its background(image matting). In my code, first I read an image and a trimap, then according to the trimap, I segment the original image to foreground, bakground and unknown pixels. Here is part of the coed:
img = scipy.misc.imread('sweater_black.png') #color_image
trimap = scipy.misc.imread('sw_trimap.png', flatten='True') #trimap
bg = trimap == 0 #background
fg = trimap == 255 #foreground
unknown = True ^ np.logical_or(fg,bg) #unknown pixels
fg_px = img[fg] #here i got the rgb value of the foreground pixels,then send them to the ConvexHull
fg_hull = scipy.spatial.ConvexHull(fg_px)
But i got an error here.So I check the Array of fg_px and then I found this array is n*4. which means every scalar i send to ConvexHull has four values. Howerver, the input of ConvexHUll should be 3 dimension.
I source my error and found that the input color image is 32bits(rgb channel and alpha channel) which means it has an alpha channel. After transferring the image to 24 bit (which means only rgb channels), the code works.
In one sentence, the input of ConvexHull should be b*4, so check your input data! Hope this works for you~

Peak detection in a noisy 2d array

I'm trying to get python to return, as close as possible, the center of the most obvious clustering in an image like the one below:
In my previous question I asked how to get the global maximum and the local maximums of a 2d array, and the answers given worked perfectly. The issue is that the center estimation I can get by averaging the global maximum obtained with different bin sizes is always slightly off than the one I would set by eye, because I'm only accounting for the biggest bin instead of a group of biggest bins (like one does by eye).
I tried adapting the answer to this question to my problem, but it turns out my image is too noisy for that algorithm to work. Here's my code implementing that answer:
import numpy as np
from scipy.ndimage.filters import maximum_filter
from scipy.ndimage.morphology import generate_binary_structure, binary_erosion
import matplotlib.pyplot as pp
from os import getcwd
from os.path import join, realpath, dirname
# Save path to dir where this code exists.
mypath = realpath(join(getcwd(), dirname(__file__)))
myfile = 'data_file.dat'
x, y = np.loadtxt(join(mypath,myfile), usecols=(1, 2), unpack=True)
xmin, xmax = min(x), max(x)
ymin, ymax = min(y), max(y)
rang = [[xmin, xmax], [ymin, ymax]]
paws = []
for d_b in range(25, 110, 25):
# Number of bins in x,y given the bin width 'd_b'
binsxy = [int((xmax - xmin) / d_b), int((ymax - ymin) / d_b)]
H, xedges, yedges = np.histogram2d(x, y, range=rang, bins=binsxy)
paws.append(H)
def detect_peaks(image):
"""
Takes an image and detect the peaks usingthe local maximum filter.
Returns a boolean mask of the peaks (i.e. 1 when
the pixel's value is the neighborhood maximum, 0 otherwise)
"""
# define an 8-connected neighborhood
neighborhood = generate_binary_structure(2,2)
#apply the local maximum filter; all pixel of maximal value
#in their neighborhood are set to 1
local_max = maximum_filter(image, footprint=neighborhood)==image
#local_max is a mask that contains the peaks we are
#looking for, but also the background.
#In order to isolate the peaks we must remove the background from the mask.
#we create the mask of the background
background = (image==0)
#a little technicality: we must erode the background in order to
#successfully subtract it form local_max, otherwise a line will
#appear along the background border (artifact of the local maximum filter)
eroded_background = binary_erosion(background, structure=neighborhood, border_value=1)
#we obtain the final mask, containing only peaks,
#by removing the background from the local_max mask
detected_peaks = local_max - eroded_background
return detected_peaks
#applying the detection and plotting results
for i, paw in enumerate(paws):
detected_peaks = detect_peaks(paw)
pp.subplot(4,2,(2*i+1))
pp.imshow(paw)
pp.subplot(4,2,(2*i+2) )
pp.imshow(detected_peaks)
pp.show()
and here's the result of that (varying the bin size):
Clearly my background is too noisy for that algorithm to work, so the question is: how can I make that algorithm less sensitive? If an alternative solution exists then please let me know.
EDIT
Following Bi Rico advise I attempted smoothing my 2d array before passing it on to the local maximum finder, like so:
H, xedges, yedges = np.histogram2d(x, y, range=rang, bins=binsxy)
H1 = gaussian_filter(H, 2, mode='nearest')
paws.append(H1)
These were the results with a sigma of 2, 4 and 8:
EDIT 2
A mode ='constant' seems to work much better than nearest. It converges to the right center with a sigma=2 for the largest bin size:
So, how do I get the coordinates of the maximum that shows in the last image?
Answering the last part of your question, always you have points in an image, you can find their coordinates by searching, in some order, the local maximums of the image. In case your data is not a point source, you can apply a mask to each peak in order to avoid the peak neighborhood from being a maximum while performing a future search. I propose the following code:
import matplotlib.image as mpimg
import matplotlib.pyplot as plt
import numpy as np
import copy
def get_std(image):
return np.std(image)
def get_max(image,sigma,alpha=20,size=10):
i_out = []
j_out = []
image_temp = copy.deepcopy(image)
while True:
k = np.argmax(image_temp)
j,i = np.unravel_index(k, image_temp.shape)
if(image_temp[j,i] >= alpha*sigma):
i_out.append(i)
j_out.append(j)
x = np.arange(i-size, i+size)
y = np.arange(j-size, j+size)
xv,yv = np.meshgrid(x,y)
image_temp[yv.clip(0,image_temp.shape[0]-1),
xv.clip(0,image_temp.shape[1]-1) ] = 0
print xv
else:
break
return i_out,j_out
#reading the image
image = mpimg.imread('ggd4.jpg')
#computing the standard deviation of the image
sigma = get_std(image)
#getting the peaks
i,j = get_max(image[:,:,0],sigma, alpha=10, size=10)
#let's see the results
plt.imshow(image, origin='lower')
plt.plot(i,j,'ro', markersize=10, alpha=0.5)
plt.show()
The image ggd4 for the test can be downloaded from:
http://www.ipac.caltech.edu/2mass/gallery/spr99/ggd4.jpg
The first part is to get some information about the noise in the image. I did it by computing the standard deviation of the full image (actually is better to select an small rectangle without signal). This is telling us how much noise is present in the image.
The idea to get the peaks is to ask for successive maximums, which are above of certain threshold (let's say, 3, 4, 5, 10, or 20 times the noise). This is what the function get_max is actually doing. It performs the search of maximums until one of them is below the threshold imposed by the noise. In order to avoid finding the same maximum many times it is necessary to remove the peaks from the image. In the general way, the shape of the mask to do so depends strongly on the problem that one want to solve. for the case of stars, it should be good to remove the star by using a Gaussian function, or something similar. I have chosen for simplicity a square function, and the size of the function (in pixels) is the variable "size".
I think that from this example, anybody can improve the code by adding more general things.
EDIT:
The original image looks like:
While the image after identifying the luminous points looks like this:
Too much of a n00b on Stack Overflow to comment on Alejandro's answer elsewhere here. I would refine his code a bit to use a preallocated numpy array for output:
def get_max(image,sigma,alpha=3,size=10):
from copy import deepcopy
import numpy as np
# preallocate a lot of peak storage
k_arr = np.zeros((10000,2))
image_temp = deepcopy(image)
peak_ct=0
while True:
k = np.argmax(image_temp)
j,i = np.unravel_index(k, image_temp.shape)
if(image_temp[j,i] >= alpha*sigma):
k_arr[peak_ct]=[j,i]
# this is the part that masks already-found peaks.
x = np.arange(i-size, i+size)
y = np.arange(j-size, j+size)
xv,yv = np.meshgrid(x,y)
# the clip here handles edge cases where the peak is near the
# image edge
image_temp[yv.clip(0,image_temp.shape[0]-1),
xv.clip(0,image_temp.shape[1]-1) ] = 0
peak_ct+=1
else:
break
# trim the output for only what we've actually found
return k_arr[:peak_ct]
In profiling this and Alejandro's code using his example image, this code about 33% faster (0.03 sec for Alejandro's code, 0.02 sec for mine.) I expect on images with larger numbers of peaks, it would be even faster - appending the output to a list will get slower and slower for more peaks.
I think the first step needed here is to express the values in H in terms of the standard deviation of the field:
import numpy as np
H = H / np.std(H)
Now you can put a threshold on the values of this H. If the noise is assumed to be Gaussian, picking a threshold of 3 you can be quite sure (99.7%) that this pixel can be associated with a real peak and not noise. See here.
Now the further selection can start. It is not exactly clear to me what exactly you want to find. Do you want the exact location of peak values? Or do you want one location for a cluster of peaks which is in the middle of this cluster?
Anyway, starting from this point with all pixel values expressed in standard deviations of the field, you should be able to get what you want. If you want to find clusters you could perform a nearest neighbour search on the >3-sigma gridpoints and put a threshold on the distance. I.e. only connect them when they are close enough to each other. If several gridpoints are connected you can define this as a group/cluster and calculate some (sigma-weighted?) center of the cluster.
Hope my first contribution on Stackoverflow is useful for you!
The way I would do it:
1) normalize H between 0 and 1.
2) pick a threshold value, as tcaswell suggests. It could be between .9 and .99 for example
3) use masked arrays to keep only the x,y coordinates with H above threshold:
import numpy.ma as ma
x_masked=ma.masked_array(x, mask= H < thresold)
y_masked=ma.masked_array(y, mask= H < thresold)
4) now you can weight-average on the masked coordinates, with weight something like (H-threshold)^2, or any other power greater or equal to one, depending on your taste/tests.
Comment:
1) This is not robust with respect to the type of peaks you have, since you may have to adapt the thresold. This is the minor problem;
2) This DOES NOT work with two peaks as it is, and will give wrong results if the 2nd peak is above threshold.
Nonetheless, it will always give you an answer without crashing (with pros and cons of the thing..)
I'm adding this answer because it's the solution I ended up using. It's a combination of Bi Rico's comment here (May 30 at 18:54) and the answer given in this question: Find peak of 2d histogram.
As it turns out using the peak detection algorithm from this question Peak detection in a 2D array only complicates matters. After applying the Gaussian filter to the image all that needs to be done is to ask for the maximum bin (as Bi Rico pointed out) and then obtain the maximum in coordinates.
So instead of using the detect-peaks function as I did above, I simply add the following code after the Gaussian 2D histogram is obtained:
# Get 2D histogram.
H, xedges, yedges = np.histogram2d(x, y, range=rang, bins=binsxy)
# Get Gaussian filtered 2D histogram.
H1 = gaussian_filter(H, 2, mode='nearest')
# Get center of maximum in bin coordinates.
x_cent_bin, y_cent_bin = np.unravel_index(H1.argmax(), H1.shape)
# Get center in x,y coordinates.
x_cent_coor , y_cent_coord = np.average(xedges[x_cent_bin:x_cent_bin + 2]), np.average(yedges[y_cent_g:y_cent_g + 2])

Compare similarity of images using OpenCV with Python

I'm trying to compare a image to a list of other images and return a selection of images (like Google search images) of this list with up to 70% of similarity.
I get this code in this post and change for my context
# Load the images
img =cv2.imread(MEDIA_ROOT + "/uploads/imagerecognize/armchair.jpg")
# Convert them to grayscale
imgg =cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
# SURF extraction
surf = cv2.FeatureDetector_create("SURF")
surfDescriptorExtractor = cv2.DescriptorExtractor_create("SURF")
kp = surf.detect(imgg)
kp, descritors = surfDescriptorExtractor.compute(imgg,kp)
# Setting up samples and responses for kNN
samples = np.array(descritors)
responses = np.arange(len(kp),dtype = np.float32)
# kNN training
knn = cv2.KNearest()
knn.train(samples,responses)
modelImages = [MEDIA_ROOT + "/uploads/imagerecognize/1.jpg", MEDIA_ROOT + "/uploads/imagerecognize/2.jpg", MEDIA_ROOT + "/uploads/imagerecognize/3.jpg"]
for modelImage in modelImages:
# Now loading a template image and searching for similar keypoints
template = cv2.imread(modelImage)
templateg= cv2.cvtColor(template,cv2.COLOR_BGR2GRAY)
keys = surf.detect(templateg)
keys,desc = surfDescriptorExtractor.compute(templateg, keys)
for h,des in enumerate(desc):
des = np.array(des,np.float32).reshape((1,128))
retval, results, neigh_resp, dists = knn.find_nearest(des,1)
res,dist = int(results[0][0]),dists[0][0]
if dist<0.1: # draw matched keypoints in red color
color = (0,0,255)
else: # draw unmatched in blue color
#print dist
color = (255,0,0)
#Draw matched key points on original image
x,y = kp[res].pt
center = (int(x),int(y))
cv2.circle(img,center,2,color,-1)
#Draw matched key points on template image
x,y = keys[h].pt
center = (int(x),int(y))
cv2.circle(template,center,2,color,-1)
cv2.imshow('img',img)
cv2.imshow('tm',template)
cv2.waitKey(0)
cv2.destroyAllWindows()
My question is, how can I compare the image with the list of images and get only the similar images? Is there any method to do this?
I suggest you to take a look to the earth mover's distance (EMD) between the images.
This metric gives a feeling on how hard it is to tranform a normalized grayscale image into another, but can be generalized for color images. A very good analysis of this method can be found in the following paper:
robotics.stanford.edu/~rubner/papers/rubnerIjcv00.pdf
It can be done both on the whole image and on the histogram (which is really faster than the whole image method). I'm not sure of which method allow a full image comparision, but for histogram comparision you can use the cv.CalcEMD2 function.
The only problem is that this method does not define a percentage of similarity, but a distance that you can filter on.
I know that this is not a full working algorithm, but is still a base for it, so I hope it helps.
EDIT:
Here is a spoof of how the EMD works in principle. The main idea is having two normalized matrices (two grayscale images divided by their sum), and defining a flux matrix that describe how you move the gray from one pixel to the other from the first image to obtain the second (it can be defined even for non normalized one, but is more difficult).
In mathematical terms the flow matrix is actually a quadridimensional tensor that gives the flow from the point (i,j) of the old image to the point (k,l) of the new one, but if you flatten your images you can transform it to a normal matrix, just a little more hard to read.
This Flow matrix has three constraints: each terms should be positive, the sum of each row should return the same value of the desitnation pixel and the sum of each column should return the value of the starting pixel.
Given this you have to minimize the cost of the transformation, given by the sum of the products of each flow from (i,j) to (k,l) for the distance between (i,j) and (k,l).
It looks a little complicated in words, so here is the test code. The logic is correct, I'm not sure why the scipy solver complains about it (you should look maybe to openOpt or something similar):
#original data, two 2x2 images, normalized
x = rand(2,2)
x/=sum(x)
y = rand(2,2)
y/=sum(y)
#initial guess of the flux matrix
# just the product of the image x as row for the image y as column
#This is a working flux, but is not an optimal one
F = (y.flatten()*x.flatten().reshape((y.size,-1))).flatten()
#distance matrix, based on euclidean distance
row_x,col_x = meshgrid(range(x.shape[0]),range(x.shape[1]))
row_y,col_y = meshgrid(range(y.shape[0]),range(y.shape[1]))
rows = ((row_x.flatten().reshape((row_x.size,-1)) - row_y.flatten().reshape((-1,row_x.size)))**2)
cols = ((col_x.flatten().reshape((row_x.size,-1)) - col_y.flatten().reshape((-1,row_x.size)))**2)
D = np.sqrt(rows+cols)
D = D.flatten()
x = x.flatten()
y = y.flatten()
#COST=sum(F*D)
#cost function
fun = lambda F: sum(F*D)
jac = lambda F: D
#array of constraint
#the constraint of sum one is implicit given the later constraints
cons = []
#each row and columns should sum to the value of the start and destination array
cons += [ {'type': 'eq', 'fun': lambda F: sum(F.reshape((x.size,y.size))[i,:])-x[i]} for i in range(x.size) ]
cons += [ {'type': 'eq', 'fun': lambda F: sum(F.reshape((x.size,y.size))[:,i])-y[i]} for i in range(y.size) ]
#the values of F should be positive
bnds = (0, None)*F.size
from scipy.optimize import minimize
res = minimize(fun=fun, x0=F, method='SLSQP', jac=jac, bounds=bnds, constraints=cons)
the variable res contains the result of the minimization...but as I said I'm not sure why it complains about a singular matrix.
The only problem with this algorithm is that is not very fast, so it's not possible to do it on demand, but you have to perform it with patience on the creation of the dataset and store somewhere the results
You are embarking on a massive problem, referred to as "content based image retrieval", or CBIR. It's a massive and active field. There are no finished algorithms or standard approaches yet, although there are a lot of techniques all with varying levels of success.
Even Google image search doesn't do this (yet) - they do text-based image search - e.g., search for text in a page that's like the text you searched for. (And I'm sure they're working on using CBIR; it's the holy grail for a lot of image processing researchers)
If you have a tight deadline or need to get this done and working soon... yikes.
Here's a ton of papers on the topic:
http://scholar.google.com/scholar?q=content+based+image+retrieval
Generally you will need to do a few things:
Extract features (either at local interest points, or globally, or somehow, SIFT, SURF, histograms, etc.)
Cluster / build a model of image distributions
This can involve feature descriptors, image gists, multiple instance learning. etc.
I wrote a program to do something very similar maybe 2 years ago using Python/Cython. Later I rewrote it to Go to get better performance. The base idea comes from findimagedupes IIRC.
It basically computes a "fingerprint" for each image, and then compares these fingerprints to match similar images.
The fingerprint is generated by resizing the image to 160x160, converting it to grayscale, adding some blur, normalizing it, then resizing it to 16x16 monochrome. At the end you have 256 bits of output: that's your fingerprint. This is very easy to do using convert:
convert path[0] -sample 160x160! -modulate 100,0 -blur 3x99 \
-normalize -equalize -sample 16x16 -threshold 50% -monochrome mono:-
(The [0] in path[0] is used to only extract the first frame of animated GIFs; if you're not interested in such images you can just remove it.)
After applying this to 2 images, you will have 2 (256-bit) fingerprints, fp1 and fp2.
The similarity score of these 2 images is then computed by XORing these 2 values and counting the bits set to 1. To do this bit counting, you can use the bitsoncount() function from this answer:
# fp1 and fp2 are stored as lists of 8 (32-bit) integers
score = 0
for n in range(8):
score += bitsoncount(fp1[n] ^ fp2[n])
score will be a number between 0 and 256 indicating how similar your images are. In my application I divide it by 2.56 (normalize to 0-100) and I've found that images with a normalized score of 20 or less are often identical.
If you want to implement this method and use it to compare lots of images, I strongly suggest you use Cython (or just plain C) as much as possible: XORing and bit counting is very slow with pure Python integers.
I'm really sorry but I can't find my Python code anymore. Right now I only have a Go version, but I'm afraid I can't post it here (tightly integrated in some other code, and probably a little ugly as it was my first serious program in Go...).
There's also a very good "find by similarity" function in GQView/Geeqie; its source is here.
For a simpler implementation of Earth Mover's Distance (aka Wasserstein Distance) in Python, you could use Scipy:
from keras.preprocessing.image import load_img, img_to_array
from scipy.stats import wasserstein_distance
import numpy as np
def get_histogram(img):
'''
Get the histogram of an image. For an 8-bit, grayscale image, the
histogram will be a 256 unit vector in which the nth value indicates
the percent of the pixels in the image with the given darkness level.
The histogram's values sum to 1.
'''
h, w = img.shape[:2]
hist = [0.0] * 256
for i in range(h):
for j in range(w):
hist[img[i, j]] += 1
return np.array(hist) / (h * w)
a = img_to_array(load_img('a.jpg', grayscale=True))
b = img_to_array(load_img('b.jpg', grayscale=True))
a_hist = get_histogram(a)
b_hist = get_histogram(b)
dist = wasserstein_distance(a_hist, b_hist)
print(dist)

Categories

Resources