When does using list comprehension in Python become inefficient? - python

I see that using list comprehension provides a very simple way to create new lists in Python.
However, if instead of creating a new list I just want to call a void function for each argument in a list without expecting any sort of return value, should I use list comprehension or just use a for loop to iterate? Does the simplicity in the code justify creating a new list (even if it remains empty) for each set of iterations? Even if this added cost is negligible in small programs, does it make sense to do it in large-scale programs/production?
Thanks!

List comprehensions are the wrong way if you don't actually need a list. Use this instead:
for i in seq:
some_function(i)
This is both more efficient and more expressive than using:
[some_function(i) for i in seq]
Note that there is something similar that doesn't work (and in particular it's not a tuple comprehension):
(some_function(i) for i in seq)
because that only creates an iterator. If you actually pass a list around that only gets iterated once, passing such an iterator around is a much better solution though.

for x in lst: f(x)
looks about equally short (it's actually one character shorter) as
[f(x) for x in lst]
Or is that not what you were trying to do?

There are more possible solutions for calling a funcion on every member of a list:
numpy can vectorize functions
import numpy as np
def func(i):
print i
v_func = np.vectorize(func)
v_func(['one', 'two', 'three'])
python has a builtin map function, that maps a function on every member of an iterable
def func(i):
print i
map(func, ['one', 'two', 'three'])

Are you asking if it is inefficient to create a list you don't need? Put that way, the answer should be obvious.
(To satisfy the answer police: yes, it is less efficient to create a list you don't need.)

Related

Renaming files with map function [duplicate]

Think about a function that I'm calling for its side effects, not return values (like printing to screen, updating GUI, printing to a file, etc.).
def fun_with_side_effects(x):
...side effects...
return y
Now, is it Pythonic to use list comprehensions to call this func:
[fun_with_side_effects(x) for x in y if (...conditions...)]
Note that I don't save the list anywhere
Or should I call this func like this:
for x in y:
if (...conditions...):
fun_with_side_effects(x)
Which is better and why?
It is very anti-Pythonic to do so, and any seasoned Pythonista will give you hell over it. The intermediate list is thrown away after it is created, and it could potentially be very, very large, and therefore expensive to create.
You shouldn't use a list comprehension, because as people have said that will build a large temporary list that you don't need. The following two methods are equivalent:
consume(side_effects(x) for x in xs)
for x in xs:
side_effects(x)
with the definition of consume from the itertools man page:
def consume(iterator, n=None):
"Advance the iterator n-steps ahead. If n is none, consume entirely."
# Use functions that consume iterators at C speed.
if n is None:
# feed the entire iterator into a zero-length deque
collections.deque(iterator, maxlen=0)
else:
# advance to the empty slice starting at position n
next(islice(iterator, n, n), None)
Of course, the latter is clearer and easier to understand.
List comprehensions are for creating lists. And unless you are actually creating a list, you should not use list comprehensions.
So I would got for the second option, just iterating over the list and then call the function when the conditions apply.
Second is better.
Think of the person who would need to understand your code. You can get bad karma easily with the first :)
You could go middle between the two by using filter(). Consider the example:
y=[1,2,3,4,5,6]
def func(x):
print "call with %r"%x
for x in filter(lambda x: x>3, y):
func(x)
Depends on your goal.
If you are trying to do some operation on each object in a list, the second approach should be adopted.
If you are trying to generate a list from another list, you may use list comprehension.
Explicit is better than implicit.
Simple is better than complex. (Python Zen)
You can do
for z in (fun_with_side_effects(x) for x in y if (...conditions...)): pass
but it's not very pretty.
Using a list comprehension for its side effects is ugly, non-Pythonic, inefficient, and I wouldn't do it. I would use a for loop instead, because a for loop signals a procedural style in which side-effects are important.
But, if you absolutely insist on using a list comprehension for its side effects, you should avoid the inefficiency by using a generator expression instead. If you absolutely insist on this style, do one of these two:
any(fun_with_side_effects(x) and False for x in y if (...conditions...))
or:
all(fun_with_side_effects(x) or True for x in y if (...conditions...))
These are generator expressions, and they do not generate a random list that gets tossed out. I think the all form is perhaps slightly more clear, though I think both of them are confusing and shouldn't be used.
I think this is ugly and I wouldn't actually do it in code. But if you insist on implementing your loops in this fashion, that's how I would do it.
I tend to feel that list comprehensions and their ilk should signal an attempt to use something at least faintly resembling a functional style. Putting things with side effects that break that assumption will cause people to have to read your code more carefully, and I think that's a bad thing.

Idiomatic way to call method on all objects in a list of objects Python 3

I have a list of objects and they have a method called process. In Python 2 one could do this
map(lambda x: x.process, my_object_list)
In Python 3 this will not work because map doesn't call the function until the iterable is traversed. One could do this:
list(map(lambda x: x.process(), my_object_list))
But then you waste memory with a throwaway list (an issue if the list is big). I could also use a 2-line explicit loop. But this pattern is so common for me that I don't want to, or think I should need to, write a loop every time.
Is there a more idiomatic way to do this in Python 3?
Don't use map or a list comprehension where simple for loop will do:
for x in list_of_objs:
x.process()
It's not significantly longer than any function you might use to abstract it, but it is significantly clearer.
Of course, if process returns a useful value, then by all means, use a list comprehension.
results = [x.process() for x in list_of_objs]
or map:
results = list(map(lambda x: x.process(), list_of_objs))
There is a function available that makes map a little less clunky, especially if you would reuse the caller:
from operator import methodcaller
processor = methodcaller('process')
results = list(map(processor, list_of_objs))
more_results = list(map(processor, another_list_of_objs))
If you are looking for a good name for a function to wrap the loop, Haskell has a nice convention: a function name ending with an underscore discards its "return value". (Actually, it discards the result of a monadic action, but I'd rather ignore that distinction for the purposes of this answer.)
def map_(f, *args):
for f_args in zip(*args):
f(*f_args)
# Compare:
map(f, [1,2,3]) # -- return value of [f(1), f(2), f(3)] is ignored
map_(f, [1,2,3]) # list of return values is never built
Since you're looking for a Pythonic solution, why would even bother trying to adapt map(lambda x: x.process, my_object_list) for Python 3 ?
Isn't a simple for loop enough ?
for x in my_object_list:
x.process()
I mean, this is concise, readable and avoid creating an unnecessary list if you don't need return values.

python (3.5) list comprehension vs foor loop over void funcs [duplicate]

Think about a function that I'm calling for its side effects, not return values (like printing to screen, updating GUI, printing to a file, etc.).
def fun_with_side_effects(x):
...side effects...
return y
Now, is it Pythonic to use list comprehensions to call this func:
[fun_with_side_effects(x) for x in y if (...conditions...)]
Note that I don't save the list anywhere
Or should I call this func like this:
for x in y:
if (...conditions...):
fun_with_side_effects(x)
Which is better and why?
It is very anti-Pythonic to do so, and any seasoned Pythonista will give you hell over it. The intermediate list is thrown away after it is created, and it could potentially be very, very large, and therefore expensive to create.
You shouldn't use a list comprehension, because as people have said that will build a large temporary list that you don't need. The following two methods are equivalent:
consume(side_effects(x) for x in xs)
for x in xs:
side_effects(x)
with the definition of consume from the itertools man page:
def consume(iterator, n=None):
"Advance the iterator n-steps ahead. If n is none, consume entirely."
# Use functions that consume iterators at C speed.
if n is None:
# feed the entire iterator into a zero-length deque
collections.deque(iterator, maxlen=0)
else:
# advance to the empty slice starting at position n
next(islice(iterator, n, n), None)
Of course, the latter is clearer and easier to understand.
List comprehensions are for creating lists. And unless you are actually creating a list, you should not use list comprehensions.
So I would got for the second option, just iterating over the list and then call the function when the conditions apply.
Second is better.
Think of the person who would need to understand your code. You can get bad karma easily with the first :)
You could go middle between the two by using filter(). Consider the example:
y=[1,2,3,4,5,6]
def func(x):
print "call with %r"%x
for x in filter(lambda x: x>3, y):
func(x)
Depends on your goal.
If you are trying to do some operation on each object in a list, the second approach should be adopted.
If you are trying to generate a list from another list, you may use list comprehension.
Explicit is better than implicit.
Simple is better than complex. (Python Zen)
You can do
for z in (fun_with_side_effects(x) for x in y if (...conditions...)): pass
but it's not very pretty.
Using a list comprehension for its side effects is ugly, non-Pythonic, inefficient, and I wouldn't do it. I would use a for loop instead, because a for loop signals a procedural style in which side-effects are important.
But, if you absolutely insist on using a list comprehension for its side effects, you should avoid the inefficiency by using a generator expression instead. If you absolutely insist on this style, do one of these two:
any(fun_with_side_effects(x) and False for x in y if (...conditions...))
or:
all(fun_with_side_effects(x) or True for x in y if (...conditions...))
These are generator expressions, and they do not generate a random list that gets tossed out. I think the all form is perhaps slightly more clear, though I think both of them are confusing and shouldn't be used.
I think this is ugly and I wouldn't actually do it in code. But if you insist on implementing your loops in this fashion, that's how I would do it.
I tend to feel that list comprehensions and their ilk should signal an attempt to use something at least faintly resembling a functional style. Putting things with side effects that break that assumption will cause people to have to read your code more carefully, and I think that's a bad thing.

Can one use list comprehension derivatives in its methods?

Consider the following code:
a = [... for i in input]
i = a.index(f(a))
I'm wondering whether I could be able to do an one-liner. Obvious try is:
i = [... for i in input].index(f([... for i in input]))
But this solution requires list to be generated twice.
Not-so-obvious try is:
i = [ a.index(f(a)) for a in [[... for i in input],] ]
Which does the trick, but makes code really weird.
This leads me to idea that probably there is possibility to somehow use list, generated by list comprehension, in its own method call. Something like (both not working, obviously):
i = [... for i in input].index(f(_))
# or
i = [... for i in input].index(f(self))
Can it be done?
As you are doing a recursion task, based on what your function does you can mix your function with a list comprehension or a generator expression.
for example consider the following code :
>>> f=lambda x:next(i for i in x if i.startswith('a'))
>>>
>>> a=['df','sr','t','aaf','ar','trf']
>>> a.index(f(a))
3
You can mix like following using enumerate :
>>> next(i for i,j in enumerate(a) if j.startswith('a'))
3
So its all based on your function that how you can put its structure within a list comprehension or a generator expression,and then apply some changes on it and use python tools based on your needs (in this case we used enumerate).
One way that avoids repeating the list-comprehension is to create an anonymous function and calling it directly (untested):
i = (lambda a: a.index(f(a)))([... for i in input])
This is still a bit ugly, though. Your first example that used the temporary variable a is much clearer. Writing one-liners as an exercise is fun, but it is usually not the best way for writing maintainable code.

Best / most pythonic way to get an ordered list of unique items

I have one or more unordered sequences of (immutable, hashable) objects with possible duplicates and I want to get a sorted sequence of all those objects without duplicates.
Right now I'm using a set to quickly gather all the elements discarding duplicates, convert it to a list and then sort that:
result = set()
for s in sequences:
result = result.union(s)
result = list(result)
result.sort()
return result
It works but I wouldn't call it "pretty". Is there a better way?
This should work:
sorted(set(itertools.chain.from_iterable(sequences)))
I like your code just fine. It is straightforward and easy to understand.
We can shorten it just a little bit by chaining off the list():
result = set()
for s in sequences:
result = result.union(s)
return sorted(result)
I really have no desire to try to boil it down beyond that, but you could do it with reduce():
result = reduce(lambda s, x: s.union(x), sequences, set())
return sorted(result)
Personally, I think this is harder to understand than the above, but people steeped in functional programming might prefer it.
EDIT: #agf is much better at this reduce() stuff than I am. From the comments below:
return sorted(reduce(set().union, sequences))
I had no idea this would work. If I correctly understand how this works, we are giving reduce() a callable which is really a method function on one instance of a set() (call it x for the sake of discussion, but note that I am not saying that Python will bind the name x with this object). Then reduce() will feed this function the first two iterables from sequences, returning x, the instance whose method function we are using. Then reduce() will repeatedly call the .union() method and ask it to take the union of x and the next iterable from sequences. Since the .union() method is likely smart enough to notice that it is being asked to take the union with its own instance and not bother to do any work, it should be just as fast to call x.union(x, some_iterable) as to just call x.union(some_iterable). Finally, reduce() will return x, and we have the set we want.
This is a bit tricky for my personal taste. I had to think this through to understand it, while the itertools.chain() solution made sense to me right away.
EDIT: #agf made it less tricky:
return sorted(reduce(set.union, sequences, set()))
What this is doing is much simpler to understand! If we call the instance returned by set() by the name of x again (and just like above with the understanding that I am not claiming that Python will bind the name x with this instance); and if we use the name n to refer to each "next" value from sequences; then reduce() will be repeatedly calling set.union(x, n). And of course this is exactly the same thing as x.union(n). IMHO if you want a reduce() solution, this is the best one.
--
If you want it to be fast, ask yourself: is there any way we can apply itertools to this? There is a pretty good way:
from itertools import chain
return sorted(set(chain(*sequences)))
itertools.chain() called with *sequences serves to "flatten" the list of lists into a single iterable. It's a little bit tricky, but only a little bit, and it's a common idiom.
EDIT: As #Jbernardo wrote in the most popular answer, and as #agf observes in comments, itertools.chain() returns an object that has a .from_iterable() method, and the documentation says it evaluates an iterable lazily. The * notation forces building a list, which may consume considerable memory if the iterable is a long sequence. In fact, you could have a never-ending generator, and with itertools.chain().from_iterable() you would be able to pull values from it for as long as you want to run your program, while the * notation would just run out of memory.
As #Jbernardo wrote:
sorted(set(itertools.chain.from_iterable(sequences)))
This is the best answer, and I already upvoted it.

Categories

Resources