Confused with repect to working of GridSearchCV - python

GridSearchCV implements a fit method in which it performs n-fold cross validation to determine best parameters. After this we can directly apply the best estimator to the testing data using predict() - Following this link : - http://scikit-learn.org/stable/auto_examples/grid_search_digits.html
It says here "The model is trained on the full development set"
However we have only applied n fold cross validations here. Is the classifier somehow also training itself on the entire data? or is it just choosing the best trained estimator with best parameters amongst the n-folds when applying predict?

If you want to use predict, you'll need to set 'refit' to True. From the documentation:
refit : boolean
Refit the best estimator with the entire dataset.
If “False”, it is impossible to make predictions using
this GridSearchCV instance after fitting.
It looks like it is true by default, so in the example, predict is based on the whole training set.

Related

Confusion around the SKLearn GridSearchCV scoring parameter and using train test split

I'm a little bit confused about how GridSearchCV works with Train Test Split.
As far as I know, when creating models for the dataset I'm using, a paper used roc-auc.
I'm trying to replicate what this paper did, at least as well as I can. From reading a few other posts here, I've gathered that running GridSearchCV on the entire dataset is prone to overfitting, so we should split the data into a training partition and a testing partition. Then, we should run the training partition with GridSearchCV with whatever model and parameters, and then fit it, and then get a score using the test part of the dataset we set aside.
Now where I'm confused is with GridSearchCV, as far as I understand, it gives us scores for each of the folds that the data is split into when doing the search for parameters and using best_score_ we can pull the best of these scores. I don't understand what the scores represent and why you can pass in a scoring parameter to begin with, since the job of GridSearchCV is to always find the best possible parameters anyways? (Perhaps I'm making a poor assumption here but I'm assuming that there is an objective best set of parameters, regardless of scoring method). What I figured was that I would find the best parameters with GridSearchCV and then use the said parameters to create fit a model, and finally use that model and the partition I saved for testing and test it using the roc-auc scoring method.
So in the end, does it matter (if at all) what scoring methods I'm passing into GridSearchCV, as it will always look to give the best set of parameters anyways, which I will use to compute my final score with the testing partition?
This document may help.
Here you see that the scoring parameter allows you to have various metrics, such as roc_auc. See here all Scikit's metrics.
Optimizing over different metrics result in different optimal parameters. Just think about optimizing precision versus recall. Optimizing precision leads to less false positives while optimizing recall leads to less false negatives.
Also, in GridSearchCV, the CV stands for cross validated. Train/test splitting happens inside this function, it's taken care of. You only have to provide the splitter as an argument to GridSearchCV, for example cv=StratifiedKFold(n_splits=5, shuffle=True).

GridSearchCV and prediction errors analysis (scikit-learn)

I'd like to manually analyse the errors that my ML model (whichever) does, comparing its predictions with the labels. From my understanding, this should be done on instances of the validation set, not the training set.
I trained my model through GridSearchCV, extracting the best_estimator_, the one performing the best during the cross validation then retrained on the entire dataset.
Therefore, my question is: how can I get prediction on a validation set to compare with the labels (without touching the test set), if my best model is re-trained on the whole training set?
One solution would be to split the training set further before performing the GridSearchCV, but I guess there must be a better solution, for example to get the predictions on the validation sets during the cross validation. Is there a way to get these prediction for the best estimator?
Thank you!
You can compute a validation curve with the model that you obtained from GridSearchCV. Read the documentation here. You will just need to define arrays for the hyperparameters that you want to inspect and a scoring function. Here is an example:
train_scores, valid_scores = validation_curve(model, X_train, y_train, "alpha", np.logspace(-7, 3, 3), cv=5, scoring="accuracy")
I understood my conceptual error, I'll post here since maybe it can help some other ML beginners as me!
The solution that should work is to use cross_val_predict splitting the fold in the same way as done in GridSearchCV. In fact, cross_val_predict re-trains the model on each fold and do not use the previously trained model! So the result is the same as getting the prediction on the validation sets during GridSearchCV.

Using cross-validation to determine weights of machine learning algorithms (GridSearchCv,RidgeCV,StackingClassifier)

My question has to do with GridSearchCV, RidgeCV, and StackingClassifier/Regressor.
Stacking Classifier/Regressor-AFAIK, it first trains the whole train set individually for each base estimator. Then, it uses a cross validation scheme, using the predictions for each base estimator as the new features to train the new final estimator. From the documentation: "To generalize and avoid over-fitting, the final_estimator is trained on out-samples using sklearn.model_selection.cross_val_predict internally."
My question is, what exactly does this mean? Does it break the train data into k folds, and then for each fold, train the final estimator on the training section of the fold, test it on the testing section of the fold, and then take the final estimator weights from the fold with the best score? or what?
I think I can group GridSearchCV and RidgeCV into the same question as they are quite similar. ( albeit, ridgeCV uses one vs all CV by default)
-To find the best hyperparameters, do they do a CV on all the folds, for each hyperparameter, find the hyperparameters that had the best average score AND THEN AFTER finding the best hyperparameters, train the model with the best hyperparameters, using the WHOLE training set? Or am I looking at it wrong?
If anyone could shed some light on this, that would be great. Thanks!
You're exactly right. The process looks like this:
Select the first set of hyperparameters
Partition the data into k-folds
Run the model on each fold
Obtain the average score (loss, r2, or whatever specified criteria)
Repeat steps 2-4 for all other sets of hyperparameters
Choose the set of hyperparameters with the best score
Retrain the model on the entire dataset (as opposed to a single fold) using the best hyperparameters

Does GridSearchCV perform cross-validation?

I'm currently working on a problem which compares three different machine learning algorithms performance on the same data-set. I divided the data-set into 70/30 training/testing sets and then performed grid search for the best parameters of each algorithm using GridSearchCV and X_train, y_train.
First question, am I suppose to perform grid search on the training set or is it suppose to be on the whole data-set?
Second question, I know that GridSearchCV uses K-fold in its' implementation, does it mean that I performed cross-validation if I used the same X_train, y_train for all three algorithms I compare in the GridSearchCV?
Any answer would be appreciated, thank you.
All estimators in scikit where name ends with CV perform cross-validation.
But you need to keep a separate test set for measuring the performance.
So you need to split your whole data to train and test. Forget about this test data for a while.
And then pass this train data only to grid-search. GridSearch will split this train data further into train and test to tune the hyper-parameters passed to it. And finally fit the model on the whole train data with best found parameters.
Now you need to test this model on the test data you kept aside in the beginning. This will give you the near real world performance of model.
If you use the whole data into GridSearchCV, then there would be leakage of test data into parameter tuning and then the final model may not perform that well on newer unseen data.
You can look at my other answers which describe the GridSearch in more detail:
Model help using Scikit-learn when using GridSearch
scikit-learn GridSearchCV with multiple repetitions
Yes, GridSearchCV performs cross-validation. If I understand the concept correctly - you want to keep part of your data set unseen for the model in order to test it.
So you train your models against train data set and test them on a testing data set.
Here I was doing almost the same - you might want to check it...

How to run scikit's cross validation with several classifiers on the same folds

I'm currently working on a research study about classifiers performances comparison. To evaluate those performances, I'm computing the accuracy, the area under curve and the squared error for each classifier on all the datasets I have. Besides I need to perform tuning parameters for some of the classifiers in order to select the best parameters in terms of accuracy, so a validation test is required (I chose 20% of the dataset).
I was told that, in order to make this comparison even more meaningful, the cross validation should be performed on the same sets for each classifier.
So basically, is there a way to use the cross_val_score method so that it runs always on the same folds for all the classifiers or should I rewrite from scratch some code that can do this job ?
Thank you in advance.
cross_val_score accepts a cv parameter which represents the cross validation object you want to use. You probably want StratifiedKFold, which accepts a shuffle parameter, which specifies if you want to shuffle the data prior to running cross validation on it.
cv can also be an int, in which case a StratifiedKFold or KFold object will be created automatically with K = cv.
As you can tell from the documentation, shuffle is False by default, so by default it will already be performed on the same folds for all of your classifiers.
You can test it by running it twice on the same classifier to make sure (you should get the exact same results).
You can specify it yourself like this:
your_cv = StratifiedKFold(your_y, n_folds=10, shuffle=True) # or shuffle=False
cross_val_score(your_estimator, your_X, y=your_y, cv=your_cv)

Categories

Resources