Permutation of values on numpy array/matrix - python

I'm looking for a code that speed up a creation of permutation matrix.
i.e., I want to create a matrix of n columns, where each column value iterates over m values, creating a n^m combinations on each row.
On the example below, there are 2 methods to create the matrix, in this case n=7 and m=5 that creates a matrix similar to:
1 1 1 1 1 1 1
1 1 1 1 1 1 2
1 1 1 1 1 1 3
1 1 1 1 1 1 4
1 1 1 1 1 1 5
1 1 1 1 1 2 1
...
5 5 5 5 5 5 5
The order of the rows doesn't matter, only that all combinations are created.
I have written the following 2 methods to create the arrays, but the metod1 is very slow (although very verbose and clear to understand) and method2 is faster using numpy functions. But I still need to find a faster methodology to create the matrix.
import numpy as np
############################################
def permArray_meth1():
allArray = np.zeros((1,7))
for a1 in range(1,6):
for a2 in range(1,6):
for a3 in range(1,6):
for a4 in range(1,6):
for a5 in range(1,6):
for a6 in range(1,6):
for a7 in range(1,6):
allArray = np.append(allArray, np.array([a1,a2,a3,a4,a5,a6,a7]).reshape(1,7), axis=0)
allArray = np.delete(allArray, 0, 0)
return allArray
############################################
def permArray_meth2():
##### Create permutation matrix #####
a = np.arange(np.power(5,7)).reshape(5,5,5,5,5,5,5)
allArray = [(a1,a2,a3,a4,a5,a6,a7) for a1,a2,a3,a4,a5,a6,a7 in np.ndindex(a.shape)]
##### Convert list to array #####
allArray = np.asarray(allArray)+1
return allArray
############################################
if __name__ == "__main__":
allArray = permArray_meth1() # (50sec)
print 'allArray1', np.shape(allArray)
allArray = permArray_meth2() # (1sec)
print 'allArray2', np.shape(allArray)
I know that the speed is dependent also on the used CPU hardware, but I'm looking for a relatively faster code thatn the shown above.
Is there any other method/code?

You could do this by creating an (n, m, m, ..., m) array of indices for column 1, column 2, ..., column n using np.indices(), then reshaping the output into an (n ** m, n) array:
import numpy as np
def permgrid(m, n):
inds = np.indices((m,) * n)
return inds.reshape(n, -1).T
For example:
print(permgrid(2, 3))
# [[0 0 0]
# [0 0 1]
# [0 1 0]
# [0 1 1]
# [1 0 0]
# [1 0 1]
# [1 1 0]
# [1 1 1]]

Related

changing the boolean values of an array according to a formula for the indices

I want to create a 64 components array showing all the squares in which the two rooks of an empty chessboard could move from their current position. So far I am doing it with for and while loops.
I first create a function just to better visualize the board:
import numpy as np
def from_array_to_matrix(v):
m=np.zeros((8,8)).astype('int')
for row in range(8):
for column in range(8):
m[row,column]=v[row*8+column]
return m
and here I show how I actually build the array:
# positions of the two rooks
a=np.zeros(64).astype('int')
a[15] = 1
a[25] = 1
print from_array_to_matrix(a)
# attack_a will be all the squares where they could move in the empty board
attack_a=np.zeros(64).astype('int')
for piece in np.where(a)[0]:
j=0
square=piece+j*8
while square<64:
attack_a[square]=1
j+=1
square=piece+j*8
j=0
square=piece-j*8
while square>=0:
attack_a[square]=1
j+=1
square=piece-j*8
j=0
square=piece+j
while square<8*(1+piece//8):
attack_a[square]=1
j+=1
square=piece+j
j=0
square=piece-j
while square>=8*(piece//8):
attack_a[square]=1
j+=1
square=piece-j
print attack_a
print from_array_to_matrix(attack_a)
I have been advised to avoid for and while loops whenever it is possible to use other ways, because they tend to be time consuming. Is there any way to achieve the same result without iterating the process with for and while loops ?
Perhaps using the fact that the indices to which I want to assign the value 1 can be determined by a function.
There are a couple of different ways to do this. The simplest thing is of course to work with matrices.
But you can vectorize operations on the raveled array as well. For example, say you had a rook at position 0 <= n < 64 in the linear array. To set the row to one, use integer division:
array[8 * (n // 8):8 * (n // 8 + 1)] = True
To set the column, use modulo:
array[n % 8::8] = True
You can convert to a matrix using reshape:
matrix = array.reshape(8, 8)
And back using ravel:
array = martix.ravel()
Or reshape:
array = matrix.reshape(-1)
Setting ones in a matrix is even simpler, given a specific row 0 <= m < 8 and column 0 <= n < 8:
matrix[m, :] = matrix[:, n] = True
Now the only question is how to vectorize multiple indices simultaneously. As it happens, you can use a fancy index in one axis. I.e, the expression above can be used with an m and n containing multiple elements:
m, n = np.nonzero(matrix)
matrix[m, :] = matrix[:, n] = True
You could even play games and do this with the array, also using fancy indexing:
n = np.nonzero(array)[0]
r = np.linspace(8 * (n // 8), 8 * (n // 8 + 1), 8, False).T.ravel()
c = np.linspace(n % 8, n % 8 + 64, 8, False)
array[r] = array[c] = True
Using linspace allows you to generate multiple sequences of the same size simultaneously. Each sequence is a column, so we transpose before raveling, although this is not required.
Use reshaping to convert 1-D array to 8x8 2-D matrix and then numpy advance indexing to select rows and columns to set to 1:
import numpy as np
def from_array_to_matrix(v):
return v.reshape(8,8)
# positions of the two rooks
a=np.zeros(64).astype('int')
a[15] = 1
a[25] = 1
a = from_array_to_matrix(a)
# attack_a will be all the squares where they could move in the empty board
attack_a=np.zeros(64).astype('int')
attack_a = from_array_to_matrix(attack_a)
#these two lines replace your for and while loops
attack_a[np.where(a)[0],:] = 1
attack_a[:,np.where(a)[1]] = 1
output:
a:
[[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 1]
[0 0 0 0 0 0 0 0]
[0 1 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0]]
attack_a:
[[0 1 0 0 0 0 0 1]
[1 1 1 1 1 1 1 1]
[0 1 0 0 0 0 0 1]
[1 1 1 1 1 1 1 1]
[0 1 0 0 0 0 0 1]
[0 1 0 0 0 0 0 1]
[0 1 0 0 0 0 0 1]
[0 1 0 0 0 0 0 1]]

How to assign ones and zeros to specific indices of an array using numpy?

I wanted to construct a 6 x 9 matrix with entries zeros and ones in a specific way as follows. In the zeroth row column, 0 to 2 should be 1 and in the first-row column,3 to 5 should be one and in the second-row column, 6 to 8 should be one, with all the other entries to be zeros. In the third row, element 0,3,6 should be one and the other should be zeros. In the fourth row, element 1,4,7 should be one and the other elements should be zeros. In the fifth row,2,5,8 should be one and the remaining should be zeros. Half of the rows follow one way enter the value 1 and the other half of the row follows different procedures to enter the value one. How do extend this some 20 x 100 case where the first 10 rows follow one procedure as mentioned above and the second half follows different procedures
The 6x9 by matrix looks as follows
[[1,1,1,0,0,0,0,0,0],
[0,0,0,1,1,1,0,0,0],
[0,0,0,0,0,0,1,1,1],
[1,0,0,1,0,0,1,0,0],
[0,1,0,0,1,0,0,1,0],
[0,0,1,0,0,1,0,0,1]]
EDIT: Code I used to create this matrix:
import numpy as np
m=int(input("Enter the value of m, no. of points = "))
pimatrix=np.zeros((2*m +1)*(m**2)).reshape((2*m+1),(m**2))
for i in range(2*m + 1):
for j in range(m**2):
if((i<m) and ((j<((i+1)*m) and j>=(i*m)))):
pimatrix[i][j]=1
if (i>(m-1)):
for k in range(-1,m-1,1):
if(j == i+(k*m)):
pimatrix[i][j]=1
if i==2*m:
pimatrix[i][j]=1
print(pimatrix)
Try to use numpy.put function numpy.put
The best approach depends on the rules you plan to follow, but an easy approach would be to initialise the array as an array of zeroes:
import numpy as np
a = np.zeros([3, 4], dtype = int)
You can then write the logic to loop over the appropriate rows and set 1's as needed. You can simply access any element of the array by its coordinates:
a[2,1] = 1
print(a)
Result:
[[0 0 0 0]
[0 0 0 0]
[0 1 0 0]]
Without a general rule, it's hard to say what your intended logic is exactly, but assuming these rules: the top half of the array has runs of three ones on each consecutive row, starting in the upper left and moving down a row at the end of every run, until it reaches the bottom of the top half, where it wraps around to the top; the bottom half has runs of single ones, following the same pattern.
Implementing that, with your given example:
import numpy as np
a = np.zeros([6, 9], dtype=int)
def set_ones(a, run_length, start, end):
for n in range(a.shape[1]):
a[start + ((n // run_length) % (end - start)), n] = 1
set_ones(a, 3, 0, a.shape[0] // 2)
set_ones(a, 1, a.shape[0] // 2, a.shape[0])
print(a)
Result:
[[1 1 1 0 0 0 0 0 0]
[0 0 0 1 1 1 0 0 0]
[0 0 0 0 0 0 1 1 1]
[1 0 0 1 0 0 1 0 0]
[0 1 0 0 1 0 0 1 0]
[0 0 1 0 0 1 0 0 1]]

Find all paths of length 2 in a graph

I've tried to create an algorithm for finding all paths of length 2, but it doesn't seem to work properly:
input_split = input().split(' ')
node_count = int(input_split[0])
input_count = int(input_split[1])
items = np.zeros((node_count, node_count), dtype=np.int32) # matrix of adjacency
for j in range(input_count):
split = input().split(' ')
x = int(split[0]) - 1 # convert 1 based coordinates to 0 based
y = int(split[1]) - 1
items[x][y] = 1
items[y][x] = 1
result = np.linalg.matrix_power(items, 2)
result_sum = int(np.sum(result) / 2) # reverse paths are counted only once
print(result_sum)
Sample input:
6 7
1 2
2 3
3 1
2 4
4 5
5 6
6 2
The result should be 11, but it prints 18.
You're on the right track when calculating the square of the adjacency matrix. After the exponentiation you would get result matrix that looks like this:
[[2 1 1 1 0 1]
[1 4 1 0 2 0]
[1 1 2 1 0 1]
[1 0 1 2 0 2]
[0 2 0 0 2 0]
[1 0 1 2 0 2]]
First you need to exclude all diagonal entries from this matrix, because those denote walks that are not paths, as their starting and ending node is the same. Note that for length 2 that is the only way how nodes can be repeating.
The other entries need to be counted only once, because of symmetry. So only look at the upper right triangle of the matrix.
One way to do it is:
result_sum = 0
for i in range(input_count - 1):
for j in range(i + 1, input_count - 1):
result_sum += result[i][j]
print(result_sum) # prints 11
More Pythonic way, one-liner using numpy.trace():
result_sum = (np.sum(result) - np.trace(result)) // 2
You are calculating walks, which would include walks 6-7-6 (which is not a P2)
this discussion might help:
https://math.stackexchange.com/questions/1890620/finding-path-lengths-by-the-power-of-adjacency-matrix-of-an-undirected-graph

Evenly Split 3D Numpy Arays of Varying Sizes [duplicate]

I have a 3D image with size: Deep x Weight x Height (for example: 10x20x30, means 10 images, and each image has size 20x30.
Given a patch size is pd x pw x ph (such as pd <Deep, pw<Weight, ph<Height), for example patch size: 4x4x4. The center point location of the path will be: pd/2 x pw/2 x ph/2. Let's call the distance between time t and time t+1 of the center point be stride, for example stride=2.
I want to extract the original 3D image into patches with size and stride given above. How can I do it in python? Thank you
.
Use np.lib.stride_tricks.as_strided. This solution does not require the strides to divide the corresponding dimensions of the input stack. It even allows for overlapping patches (Just do not write to the result in this case, or make a copy.). It therefore is more flexible than other approaches:
import numpy as np
from numpy.lib import stride_tricks
def cutup(data, blck, strd):
sh = np.array(data.shape)
blck = np.asanyarray(blck)
strd = np.asanyarray(strd)
nbl = (sh - blck) // strd + 1
strides = np.r_[data.strides * strd, data.strides]
dims = np.r_[nbl, blck]
data6 = stride_tricks.as_strided(data, strides=strides, shape=dims)
return data6#.reshape(-1, *blck)
#demo
x = np.zeros((5, 6, 12), int)
y = cutup(x, (2, 2, 3), (3, 3, 5))
y[...] = 1
print(x[..., 0], '\n')
print(x[:, 0, :], '\n')
print(x[0, ...], '\n')
Output:
[[1 1 0 1 1 0]
[1 1 0 1 1 0]
[0 0 0 0 0 0]
[1 1 0 1 1 0]
[1 1 0 1 1 0]]
[[1 1 1 0 0 1 1 1 0 0 0 0]
[1 1 1 0 0 1 1 1 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0]
[1 1 1 0 0 1 1 1 0 0 0 0]
[1 1 1 0 0 1 1 1 0 0 0 0]]
[[1 1 1 0 0 1 1 1 0 0 0 0]
[1 1 1 0 0 1 1 1 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0]
[1 1 1 0 0 1 1 1 0 0 0 0]
[1 1 1 0 0 1 1 1 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0]]
Explanation. Numpy arrays are organised in terms of strides, one for each dimension, data point [x,y,z] is located in memory at address base + stridex * x + stridey * y + stridez * z.
The stride_tricks.as_strided factory allows to directly manipulate the strides and shape of a new array sharing its memory with a given array. Try this only if you know what you're doing because no checks are performed, meaning you are allowed to shoot your foot by addressing out-of-bounds memory.
The code uses this function to split up each of the three existing dimensions into two new ones, one for the corresponding within block coordinate (this will have the same stride as the original dimension, because adjacent points in a block corrspond to adjacent points in the whole stack) and one dimension for the block index along this axis; this will have stride = original stride x block stride.
All the code does is computing the correct strides and dimensions (= block dimensions and block counts along the three axes).
Since the data are shared with the original array, when we set all points of the 6d array to 1, they are also set in the original array exposing the block structure in the demo. Note that the commented out reshape in the last line of the function breaks this link, because it forces a copy.
the skimage module offer you an integrated solution with view_as_blocks.
The source is on line.
Take care to choose Deep,Weight,Height multiple of pd, pw, ph, because as_strided do not check bounds.

quickly calculate randomized 3D numpy array from 2D numpy array

I have a 2-dimensional array of integers, we'll call it "A".
I want to create a 3-dimensional array "B" of all 1s and 0s such that:
for any fixed (i,j) sum(B[i,j,:])==A[i.j], that is, B[i,j,:] contains A[i,j] 1s in it
the 1s are randomly placed in the 3rd dimension.
I know how I would do this using standard python indexing but this turns out to be very slow.
I am looking for a way to do this that takes advantage of the features that can make Numpy fast.
Here is how I would do it using standard indexing:
B=np.zeros((X,Y,Z))
indexoptions=range(Z)
for i in xrange(Y):
for j in xrange(X):
replacedindices=np.random.choice(indexoptions,size=A[i,j],replace=False)
B[i,j,[replacedindices]]=1
Can someone please explain how I can do this in a faster way?
Edit: Here is an example "A":
A=np.array([[0,1,2,3,4],[0,1,2,3,4],[0,1,2,3,4],[0,1,2,3,4],[0,1,2,3,4]])
in this case X=Y=5 and Z>=5
Essentially the same idea as #JohnZwinck and #DSM, but with a shuffle function for shuffling a given axis:
import numpy as np
def shuffle(a, axis=-1):
"""
Shuffle `a` in-place along the given axis.
Apply numpy.random.shuffle to the given axis of `a`.
Each one-dimensional slice is shuffled independently.
"""
b = a.swapaxes(axis,-1)
# Shuffle `b` in-place along the last axis. `b` is a view of `a`,
# so `a` is shuffled in place, too.
shp = b.shape[:-1]
for ndx in np.ndindex(shp):
np.random.shuffle(b[ndx])
return
def random_bits(a, n):
b = (a[..., np.newaxis] > np.arange(n)).astype(int)
shuffle(b)
return b
if __name__ == "__main__":
np.random.seed(12345)
A = np.random.randint(0, 5, size=(3,4))
Z = 6
B = random_bits(A, Z)
print "A:"
print A
print "B:"
print B
Output:
A:
[[2 1 4 1]
[2 1 1 3]
[1 3 0 2]]
B:
[[[1 0 0 0 0 1]
[0 1 0 0 0 0]
[0 1 1 1 1 0]
[0 0 0 1 0 0]]
[[0 1 0 1 0 0]
[0 0 0 1 0 0]
[0 0 1 0 0 0]
[1 0 1 0 1 0]]
[[0 0 0 0 0 1]
[0 0 1 1 1 0]
[0 0 0 0 0 0]
[0 0 1 0 1 0]]]

Categories

Resources