I am new to web scraping, so my apologies in advance if I'm misunderstanding anything...
I am trying to get data from ESPN. Here is my python code:
import pandas as pd
import requests
from bs4 import BeautifulSoup
url = 'http://espn.go.com/nba/teams'
r = requests.get(url)
soup = BeautifulSoup(r.text)
tables = soup.find_all('dl')
teams = []
prefix_1 = []
prefix_2 = []
teams_urls = []
for table in tables:
lis = table.find_all('dt', text=False)
print lis
for li in lis:
info = dt
teams.append(info.text)
url = info['href']
teams_urls.append(url)
prefix_1.append(url.split('/')[-2])
prefix_2.append(url.split('/')[-1])
print (teams)
When I print at various points, i am getting empty brackets [] as a return. Please help. Thanks.
You are extracting the team names from the menu, but the actual page content contains teams also.
Let's use CSS selectors to get to the each team link on the page. As a result, let's construct a list of dictionaries with team names and urls inside:
import requests
from bs4 import BeautifulSoup
url = 'http://espn.go.com/nba/teams'
r = requests.get(url, headers={'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.17 (KHTML, like Gecko) Chrome/24.0.1312.57 Safari/537.17'})
soup = BeautifulSoup(r.content, 'lxml')
teams = []
for link in soup.select('div.mod-table div.mod-content ul li h5 a[href]'):
teams.append({
'name': link.text,
'url': link['href']
})
print(teams)
Prints:
[
{'name': u'Boston Celtics', 'url': 'http://espn.go.com/nba/team/_/name/bos/boston-celtics'},
{'name': u'Brooklyn Nets', 'url': 'http://espn.go.com/nba/team/_/name/bkn/brooklyn-nets'},
...
{'name': u'Utah Jazz', 'url': 'http://espn.go.com/nba/team/_/name/utah/utah-jazz'}
]
Related
I can't scrape the "Product Details" section (scrolling down the webpage you'll find it) html by using requests or requests_html.
Find_all returns a 0 size object... Any Help?
from requests import session
from requests_html import HTMLSession
s = HTMLSession()
#s = session()
r = s.get("https://www.amazon.com/dp/B094HWN66Y")
soup = BeautifulSoup(r.text, 'html.parser')
len(soup.find_all("div", {"id":"detailBulletsWrapper_feature_div"}))
Product details with different information:
Code:
from bs4 import BeautifulSoup
import requests
cookies = {'session': '131-1062572-6801905'}
headers={'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/98.0.4758.102 Safari/537.36'}
r = requests.get("https://www.amazon.com/dp/B094HWN66Y",headers=headers,cookies=cookies)
print(r)
soup = BeautifulSoup(r.text, 'lxml')
key = [x.get_text(strip=True).replace('\u200f\n','').replace('\u200e','').replace(':\n','').replace('\n', '').strip() for x in soup.select('ul.a-unordered-list.a-nostyle.a-vertical.a-spacing-none.detail-bullet-list > li > span > span.a-text-bold')][:13]
#print(key)
value = [x.get_text(strip=True) for x in soup.select('ul.a-unordered-list.a-nostyle.a-vertical.a-spacing-none.detail-bullet-list > li > span > span:nth-child(2)')]
#print(value)
product_details = {k:v for k, v, in zip(key, value)}
print(product_details)
Output:
{'ASIN': 'B094HWN66Y', 'Publisher': 'Boldwood Books (September 7, 2021)', 'Publication date':
'September 7, 2021', 'Language': 'English', 'File size': '1883 KB', 'Text-to-Speech': 'Enabled', 'Screen Reader': 'Supported', 'Enhanced typesetting': 'Enabled', 'X-Ray': 'Enabled', 'Word
Wise': 'Enabled', 'Print length': '332 pages', 'Page numbers source ISBN': '1800487622', 'Lending': 'Not Enabled'}
This is an example of how to scrape the title of the product using bs4 and requests, easily expandable to getting other info from the product.
The reason yours doesn't work is your request has no headers so Amazon realises your a bot and doesn't want you scraping their site. This is shown by your request being returned as <Response [503]> and explained in r.text.
I believe Amazon have an API for this (that they'd probably like you to use) but it'll be fine to scrape like this for small-scale stuff.
import requests
import bs4
# Amazon don't like you scrapeing them however these headers should stop them from noticing a small number of requests
HEADERS = ({'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64)AppleWebKit/537.36 (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36','Accept-Language': 'en-US, en;q=0.5'})
def main():
url = "https://www.amazon.com/dp/B094HWN66Y"
title = get_title(url)
print("The title of %s is: %s" % (url, title))
def get_title(url: str) -> str:
"""Returns the title of the amazon product."""
# The request
r = requests.get(url, headers=HEADERS)
# Parse the content
soup = bs4.BeautifulSoup(r.content, 'html.parser')
title = soup.find("span", attrs={"id": 'productTitle'}).string
return title
if __name__ == "__main__":
main()
Output:
The title of https://www.amazon.com/dp/B094HWN66Y is: Will They, Won't They?
I'm writing a code for web-scrape Transfermarkt website, but I'm having some issues on the code.
The code had returned an error that was fixed thru the topic: Loop thru multiple URLs in Python - InvalidSchema("No connection adapters were found for {!r}".format
After this fix, other problems came in.
First: the code is duplicating the results on data frame.
Second one, the code is taking only the last element of each URL. In fact, what I want is get all the agencies URLs in the pagina = range(1) and then scrape all players in each agency, thru the URL scrapped in the first part.
ps.: pagina = range(1) it will be range (1,40), its the numbers of pages that i will scrape to get all agency's links.
Can anyone give me a hand on this issues?
Thanks!
import requests
from bs4 import BeautifulSoup
import pandas as pd
import time
from requests.sessions import default_headers
nome=[]
posicao=[]
nacionalidade=[]
idade=[]
clube=[]
contrato=[]
valor=[]
tf = f"http://www.transfermarkt.com.br"
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:75.0) Gecko/20100101 Firefox/75.0'
}
pagina = range(1,5)
def main(url):
with requests.Session() as req:
links = []
for lea in pagina:
print(f"Extraindo links da página {lea}")
r = req.get(url.format(lea), headers=headers)
soup = BeautifulSoup(r.content, 'html.parser')
link = [f"{tf}{item.next_element.get('href')}" for item in soup.findAll(
"td", class_="hauptlink")]
links.extend(link)
print(f"Collected {len(links)} Links")
time.sleep(1)
for url in links:
r= requests.get(url, headers=headers)
r.status_code
soup = BeautifulSoup(r.text, 'html.parser')
player_info= soup.find_all('tr', class_=['odd', 'even'])
for info in player_info:
player = info.find_all("td")
vall= info.find('td', {'class': 'zentriert hauptlink'})
nome.append(player[2].text)
posicao.append(player[3].text)
nacionalidade.append(player[4].img['alt'])
idade.append(player[5].text)
clube.append(player[6].img['alt'])
contrato.append(player[7].text)
valor.append(vall)
time.sleep(1)
df = pd.DataFrame(
{"NOME":nome,
"POSICAO":posicao,
"NACIONALIDADE":nacionalidade,
"IDADE":idade,
"CLUBE":clube,
"CONTRATO":contrato,
"VALOR":valor}
)
print(df)
df
#df.to_csv('MBB.csv', index=False)
main("https://www.transfermarkt.com.br/berater/beraterfirmenuebersicht/berater?ajax=yw1&page={}")
I am using bs4 to write a webscraper to obtain funding news data.
The first part of my code extracts the title, link, summary and date
of each article for n number of pages.
The second part of my code loops through the link column and inputs
the resulting url in a new function, which extracts the url of the
company in question.
For the most part, the code works fine (40 pages scraped without errors). I am trying to stress test it by raising it to 80 pages, but i'm running into KeyError: 'href' and I don't know how to fix this.
import requests
import pandas as pd
import numpy as np
from bs4 import BeautifulSoup
from tqdm import tqdm
def clean_data(column):
df[column]= df[column].str.encode('ascii', 'ignore').str.decode('ascii')
#extract
def extract(page):
headers = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.1.2 Safari/605.1.15'}
url = f'https://www.uktechnews.info/category/investment-round/series-a/page/{page}/'
r = requests.get(url, headers)
soup = BeautifulSoup(r.content, 'html.parser')
return soup
#transform
def transform(soup):
for item in soup.find_all('div', class_ = 'post-block-style'):
title = item.find('h3', {'class': 'post-title'}).text.replace('\n','')
link = item.find('a')['href']
summary = item.find('p').text
date = item.find('span', {'class': 'post-meta-date'}).text.replace('\n','')
news = {
'title': title,
'link': link,
'summary': summary,
'date': date
}
newslist.append(news)
return
newslist = []
#subpage
def extract_subpage(url):
headers = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.1.2 Safari/605.1.15'}
r = requests.get(url, headers)
soup_subpage = BeautifulSoup(r.text, 'html.parser')
return soup_subpage
def transform_subpage(soup_subpage):
main_data = soup_subpage.select("div.entry-content.clearfix > p > a")
if len(main_data):
subpage_link = {
'subpage_link': main_data[0]['href']
}
subpage.append(subpage_link)
else:
subpage_link = {
'subpage_link': '--'
}
subpage.append(subpage_link)
return
subpage = []
#load
page = np.arange(0, 80, 1).tolist()
for page in tqdm(page):
try:
c = extract(page)
transform(c)
except:
None
df1 = pd.DataFrame(newslist)
for url in tqdm(df1['link']):
t = extract_subpage(url)
transform_subpage(t)
df2 = pd.DataFrame(subpage)
Here is a screenshot of the error:
Screenshot
I think the issue is that my if statement for the transform_subpage function does not account for instances where main_data is not an empty list but does not contain href links. I am relatively new to Python so any help would be much appreciated!
You are correct, it's caused by main_data[0] not having an 'href' attribute at some point. You can try changing the logic to something like:
def transform_subpage(soup_subpage):
main_data = soup_subpage.select("div.entry-content.clearfix > p > a")
if len(main_data):
if 'href' in main_data[0].attrs:
subpage_link = {
'subpage_link': main_data[0]['href']
}
subpage.append(subpage_link)
else:
subpage_link = {
'subpage_link': '--'
}
subpage.append(subpage_link)
Also just a note, it's probably not a great idea to iterate through a variable list, and use the same variable name for each item in the list. So change to something like:
page_list = np.arange(0, 80, 1).tolist()
for page in tqdm(page_list):
I'm trying to scrape website from a job postings data, and the output looks like this:
[{'job_title': 'Junior Data Scientist','company': '\n\n BBC',
summary': "\n We're now seeking a Junior Data Scientist to
come and work with our Marketing & Audiences team in London. The Data
Science team are responsible for designing...", 'link':
'www.jobsite.com',
'summary_text': "Job Introduction\nImagine if Netflix, The Huffington Post, ESPN, and Spotify were all rolled into one....etc
I want to create a dataframe, or a CSV, that looks like this:
right now, this is the loop I'm using:
for page in pages:
source = requests.get('https://www.jobsite.co.uk/jobs?q=data+scientist&start='.format()).text
soup = BeautifulSoup(source, 'lxml')
results = []
for jobs in soup.findAll(class_='result'):
result = {
'job_title': '',
'company': '',
'summary': '',
'link': '',
'summary_text': ''
}
and after using the loop, I just print the results.
What would be a good way to get the output in a dataframe? Thanks!
Look at the pandas Dataframe API. There are several ways you can initialize a dataframe
list of dictionaries
list of lists
You just need to append either a list or a dictionary to a global variable, and you should be good to go.
results = []
for page in pages:
source = requests.get('https://www.jobsite.co.uk/jobs?q=data+scientist&start='.format()).text
soup = BeautifulSoup(source, 'lxml')
for jobs in soup.findAll(class_='result'):
result = {
'job_title': '', # assuming this has value like you shared in the example in your question
'company': '',
'summary': '',
'link': '',
'summary_text': ''
}
results.append(result)
# results is now a list of dictionaries
df= pandas.DataFrame(results)
One other suggestion, don't think about dumping this in a dataframe within the same program. Dump all your HTML files first into a folder, and then parse them again. This way if you need more information from the page which you hadn't considered before, or if a program terminates due to some parsing error or timeout, the work is not lost. Keep parsing separate from crawling logic.
I think you need to define the number of pages and add that into your url (ensure you have a placeholder for the value which I don't think your code, nor the other answer have). I have done this via extending your url to include a page parameter in the querystring which incorporates a placeholder.
Is your selector of class result correct? You could certainly also use for job in soup.select('.job'):. You then need to define appropriate selectors to populate values. I think it easier to grab all the job links for each page then visit the page and extract the values from a json like string in the page. Add Session to re-use connection.
Explicit waits required to prevent being blocked
import requests
from bs4 import BeautifulSoup as bs
import json
import pandas as pd
import time
headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/60.0.3112.113 Safari/537.36'}
results = []
links = []
pages = 3
with requests.Session() as s:
for page in range(1, pages + 1):
try:
url = 'https://www.jobsite.co.uk/jobs?q=data+scientist&start=1&page={}'.format(page)
source = s.get(url, headers = headers).text
soup = bs(source, 'lxml')
links.append([link['href'] for link in soup.select('.job-title a')])
except Exception as e:
print(e, url )
finally:
time.sleep(2)
final_list = [item for sublist in links for item in sublist]
for link in final_list:
source = s.get(link, headers = headers).text
soup = bs(source, 'lxml')
data = soup.select_one('#jobPostingSchema').text #json like string containing all info
item = json.loads(data)
result = {
'Title' : item['title'],
'Company' : item['hiringOrganization']['name'],
'Url' : link,
'Summary' :bs(item['description'],'lxml').text
}
results.append(result)
time.sleep(1)
df = pd.DataFrame(results, columns = ['Title', 'Company', 'Url', 'Summary'])
print(df)
df.to_csv(r'C:\Users\User\Desktop\data.csv', sep=',', encoding='utf-8-sig',index = False )
Sample of results:
I can't imagine you want all pages but you could use something similar to:
import requests
from bs4 import BeautifulSoup as bs
import json
import pandas as pd
import time
headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/60.0.3112.113 Safari/537.36'}
results = []
links = []
pages = 0
def get_links(url, page):
try:
source = s.get(url, headers = headers).text
soup = bs(source, 'lxml')
page_links = [link['href'] for link in soup.select('.job-title a')]
if page == 1:
global pages
pages = int(soup.select_one('.page-title span').text.replace(',',''))
except Exception as e:
print(e, url )
finally:
time.sleep(1)
return page_links
with requests.Session() as s:
links.append(get_links('https://www.jobsite.co.uk/jobs?q=data+scientist&start=1&page=1',1))
for page in range(2, pages + 1):
url = 'https://www.jobsite.co.uk/jobs?q=data+scientist&start=1&page={}'.format(page)
links.append(get_links(url, page))
final_list = [item for sublist in links for item in sublist]
for link in final_list:
source = s.get(link, headers = headers).text
soup = bs(source, 'lxml')
data = soup.select_one('#jobPostingSchema').text #json like string containing all info
item = json.loads(data)
result = {
'Title' : item['title'],
'Company' : item['hiringOrganization']['name'],
'Url' : link,
'Summary' :bs(item['description'],'lxml').text
}
results.append(result)
time.sleep(1)
df = pd.DataFrame(results, columns = ['Title', 'Company', 'Url', 'Summary'])
print(df)
df.to_csv(r'C:\Users\User\Desktop\data.csv', sep=',', encoding='utf-8-sig',index = False )
I want to search for different company names on the website. Website link: https://www.firmenwissen.de/index.html
On this website, I want to use the search engine and search companies. Here is the code I am trying to use:
from bs4 import BeautifulSoup as BS
import requests
import re
companylist = ['ABEX Dachdecker Handwerks-GmbH']
url = 'https://www.firmenwissen.de/index.html'
payloads = {
'searchform': 'UFT-8',
'phrase':'ABEX Dachdecker Handwerks-GmbH',
"mainSearchField__button":'submit'
}
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/71.0.3578.98 Safari/537.36'}
html = requests.post(url, data=payloads, headers=headers)
soup = BS(html.content, 'html.parser')
link_list= []
links = soup.findAll('a')
for li in links:
link_list.append(li.get('href'))
print(link_list)
This code should bring me the next page with company information. But unfortunately, it returns only the home page. How can I do this?
Change your initial url you are doing search for. Grab the appropriate hrefs only and add to a set to ensure no duplicates (or alter selector to return only one match if possible); add those items to a final set for looping to ensure only looping required number of links. I have used Session on assumption you will repeat for many companies.
Iterate over the set using selenium to navigate to each company url and extract whatever info you need.
This is an outline.
from bs4 import BeautifulSoup as BS
import requests
from selenium import webdriver
d = webdriver.Chrome()
companyList = ['ABEX Dachdecker Handwerks-GmbH','SUCHMEISTEREI GmbH']
url = 'https://www.firmenwissen.de/ergebnis.html'
baseUrl = 'https://www.firmenwissen.de'
headers = {'User-Agent': 'Mozilla/5.0'}
finalLinks = set()
## searches section; gather into set
with requests.Session() as s:
for company in companyList:
payloads = {
'searchform': 'UFT-8',
'phrase':company,
"mainSearchField__button":'submit'
}
html = s.post(url, data=payloads, headers=headers)
soup = BS(html.content, 'lxml')
companyLinks = {baseUrl + item['href'] for item in soup.select("[href*='firmeneintrag/']")}
# print(soup.select_one('.fp-result').text)
finalLinks = finalLinks.union(companyLinks)
for item in finalLinks:
d.get(item)
info = d.find_element_by_css_selector('.yp_abstract_narrow')
address = d.find_element_by_css_selector('.yp_address')
print(info.text, address.text)
d.quit()
Just the first links:
from bs4 import BeautifulSoup as BS
import requests
from selenium import webdriver
d = webdriver.Chrome()
companyList = ['ABEX Dachdecker Handwerks-GmbH','SUCHMEISTEREI GmbH', 'aktive Stuttgarter']
url = 'https://www.firmenwissen.de/ergebnis.html'
baseUrl = 'https://www.firmenwissen.de'
headers = {'User-Agent': 'Mozilla/5.0'}
finalLinks = []
## searches section; add to list
with requests.Session() as s:
for company in companyList:
payloads = {
'searchform': 'UFT-8',
'phrase':company,
"mainSearchField__button":'submit'
}
html = s.post(url, data=payloads, headers=headers)
soup = BS(html.content, 'lxml')
companyLink = baseUrl + soup.select_one("[href*='firmeneintrag/']")['href']
finalLinks.append(companyLink)
for item in set(finalLinks):
d.get(item)
info = d.find_element_by_css_selector('.yp_abstract_narrow')
address = d.find_element_by_css_selector('.yp_address')
print(info.text, address.text)
d.quit()