rangFloat for odd numbers [duplicate] - python
How do I iterate between 0 and 1 by a step of 0.1?
This says that the step argument cannot be zero:
for i in range(0, 1, 0.1):
print(i)
Rather than using a decimal step directly, it's much safer to express this in terms of how many points you want. Otherwise, floating-point rounding error is likely to give you a wrong result.
Use the linspace function from the NumPy library (which isn't part of the standard library but is relatively easy to obtain). linspace takes a number of points to return, and also lets you specify whether or not to include the right endpoint:
>>> np.linspace(0,1,11)
array([ 0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1. ])
>>> np.linspace(0,1,10,endpoint=False)
array([ 0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9])
If you really want to use a floating-point step value, use numpy.arange:
>>> import numpy as np
>>> np.arange(0.0, 1.0, 0.1)
array([ 0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9])
Floating-point rounding error will cause problems, though. Here's a simple case where rounding error causes arange to produce a length-4 array when it should only produce 3 numbers:
>>> numpy.arange(1, 1.3, 0.1)
array([1. , 1.1, 1.2, 1.3])
range() can only do integers, not floating point.
Use a list comprehension instead to obtain a list of steps:
[x * 0.1 for x in range(0, 10)]
More generally, a generator comprehension minimizes memory allocations:
xs = (x * 0.1 for x in range(0, 10))
for x in xs:
print(x)
Building on 'xrange([start], stop[, step])', you can define a generator that accepts and produces any type you choose (stick to types supporting + and <):
>>> def drange(start, stop, step):
... r = start
... while r < stop:
... yield r
... r += step
...
>>> i0=drange(0.0, 1.0, 0.1)
>>> ["%g" % x for x in i0]
['0', '0.1', '0.2', '0.3', '0.4', '0.5', '0.6', '0.7', '0.8', '0.9', '1']
>>>
Increase the magnitude of i for the loop and then reduce it when you need it.
for i * 100 in range(0, 100, 10):
print i / 100.0
EDIT: I honestly cannot remember why I thought that would work syntactically
for i in range(0, 11, 1):
print i / 10.0
That should have the desired output.
NumPy is a bit overkill, I think.
[p/10 for p in range(0, 10)]
[0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
Generally speaking, to do a step-by-1/x up to y you would do
x=100
y=2
[p/x for p in range(0, int(x*y))]
[0.0, 0.01, 0.02, 0.03, ..., 1.97, 1.98, 1.99]
(1/x produced less rounding noise when I tested).
scipy has a built in function arange which generalizes Python's range() constructor to satisfy your requirement of float handling.
from scipy import arange
Similar to R's seq function, this one returns a sequence in any order given the correct step value. The last value is equal to the stop value.
def seq(start, stop, step=1):
n = int(round((stop - start)/float(step)))
if n > 1:
return([start + step*i for i in range(n+1)])
elif n == 1:
return([start])
else:
return([])
Results
seq(1, 5, 0.5)
[1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0]
seq(10, 0, -1)
[10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
seq(10, 0, -2)
[10, 8, 6, 4, 2, 0]
seq(1, 1)
[ 1 ]
The range() built-in function returns a sequence of integer values, I'm afraid, so you can't use it to do a decimal step.
I'd say just use a while loop:
i = 0.0
while i <= 1.0:
print i
i += 0.1
If you're curious, Python is converting your 0.1 to 0, which is why it's telling you the argument can't be zero.
Here's a solution using itertools:
import itertools
def seq(start, end, step):
if step == 0:
raise ValueError("step must not be 0")
sample_count = int(abs(end - start) / step)
return itertools.islice(itertools.count(start, step), sample_count)
Usage Example:
for i in seq(0, 1, 0.1):
print(i)
[x * 0.1 for x in range(0, 10)]
in Python 2.7x gives you the result of:
[0.0, 0.1, 0.2, 0.30000000000000004, 0.4, 0.5, 0.6000000000000001, 0.7000000000000001, 0.8, 0.9]
but if you use:
[ round(x * 0.1, 1) for x in range(0, 10)]
gives you the desired:
[0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
import numpy as np
for i in np.arange(0, 1, 0.1):
print i
Best Solution: no rounding error
>>> step = .1
>>> N = 10 # number of data points
>>> [ x / pow(step, -1) for x in range(0, N + 1) ]
[0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
Or, for a set range instead of set data points (e.g. continuous function), use:
>>> step = .1
>>> rnge = 1 # NOTE range = 1, i.e. span of data points
>>> N = int(rnge / step
>>> [ x / pow(step,-1) for x in range(0, N + 1) ]
[0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
To implement a function: replace x / pow(step, -1) with f( x / pow(step, -1) ), and define f.
For example:
>>> import math
>>> def f(x):
return math.sin(x)
>>> step = .1
>>> rnge = 1 # NOTE range = 1, i.e. span of data points
>>> N = int(rnge / step)
>>> [ f( x / pow(step,-1) ) for x in range(0, N + 1) ]
[0.0, 0.09983341664682815, 0.19866933079506122, 0.29552020666133955, 0.3894183423086505,
0.479425538604203, 0.5646424733950354, 0.644217687237691, 0.7173560908995228,
0.7833269096274834, 0.8414709848078965]
And if you do this often, you might want to save the generated list r
r=map(lambda x: x/10.0,range(0,10))
for i in r:
print i
more_itertools is a third-party library that implements a numeric_range tool:
import more_itertools as mit
for x in mit.numeric_range(0, 1, 0.1):
print("{:.1f}".format(x))
Output
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
This tool also works for Decimal and Fraction.
My versions use the original range function to create multiplicative indices for the shift. This allows same syntax to the original range function.
I have made two versions, one using float, and one using Decimal, because I found that in some cases I wanted to avoid the roundoff drift introduced by the floating point arithmetic.
It is consistent with empty set results as in range/xrange.
Passing only a single numeric value to either function will return the standard range output to the integer ceiling value of the input parameter (so if you gave it 5.5, it would return range(6).)
Edit: the code below is now available as package on pypi: Franges
## frange.py
from math import ceil
# find best range function available to version (2.7.x / 3.x.x)
try:
_xrange = xrange
except NameError:
_xrange = range
def frange(start, stop = None, step = 1):
"""frange generates a set of floating point values over the
range [start, stop) with step size step
frange([start,] stop [, step ])"""
if stop is None:
for x in _xrange(int(ceil(start))):
yield x
else:
# create a generator expression for the index values
indices = (i for i in _xrange(0, int((stop-start)/step)))
# yield results
for i in indices:
yield start + step*i
## drange.py
import decimal
from math import ceil
# find best range function available to version (2.7.x / 3.x.x)
try:
_xrange = xrange
except NameError:
_xrange = range
def drange(start, stop = None, step = 1, precision = None):
"""drange generates a set of Decimal values over the
range [start, stop) with step size step
drange([start,] stop, [step [,precision]])"""
if stop is None:
for x in _xrange(int(ceil(start))):
yield x
else:
# find precision
if precision is not None:
decimal.getcontext().prec = precision
# convert values to decimals
start = decimal.Decimal(start)
stop = decimal.Decimal(stop)
step = decimal.Decimal(step)
# create a generator expression for the index values
indices = (
i for i in _xrange(
0,
((stop-start)/step).to_integral_value()
)
)
# yield results
for i in indices:
yield float(start + step*i)
## testranges.py
import frange
import drange
list(frange.frange(0, 2, 0.5)) # [0.0, 0.5, 1.0, 1.5]
list(drange.drange(0, 2, 0.5, precision = 6)) # [0.0, 0.5, 1.0, 1.5]
list(frange.frange(3)) # [0, 1, 2]
list(frange.frange(3.5)) # [0, 1, 2, 3]
list(frange.frange(0,10, -1)) # []
Lots of the solutions here still had floating point errors in Python 3.6 and didnt do exactly what I personally needed.
Function below takes integers or floats, doesnt require imports and doesnt return floating point errors.
def frange(x, y, step):
if int(x + y + step) == (x + y + step):
r = list(range(int(x), int(y), int(step)))
else:
f = 10 ** (len(str(step)) - str(step).find('.') - 1)
rf = list(range(int(x * f), int(y * f), int(step * f)))
r = [i / f for i in rf]
return r
Suprised no-one has yet mentioned the recommended solution in the Python 3 docs:
See also:
The linspace recipe shows how to implement a lazy version of range that suitable for floating point applications.
Once defined, the recipe is easy to use and does not require numpy or any other external libraries, but functions like numpy.linspace(). Note that rather than a step argument, the third num argument specifies the number of desired values, for example:
print(linspace(0, 10, 5))
# linspace(0, 10, 5)
print(list(linspace(0, 10, 5)))
# [0.0, 2.5, 5.0, 7.5, 10]
I quote a modified version of the full Python 3 recipe from Andrew Barnert below:
import collections.abc
import numbers
class linspace(collections.abc.Sequence):
"""linspace(start, stop, num) -> linspace object
Return a virtual sequence of num numbers from start to stop (inclusive).
If you need a half-open range, use linspace(start, stop, num+1)[:-1].
"""
def __init__(self, start, stop, num):
if not isinstance(num, numbers.Integral) or num <= 1:
raise ValueError('num must be an integer > 1')
self.start, self.stop, self.num = start, stop, num
self.step = (stop-start)/(num-1)
def __len__(self):
return self.num
def __getitem__(self, i):
if isinstance(i, slice):
return [self[x] for x in range(*i.indices(len(self)))]
if i < 0:
i = self.num + i
if i >= self.num:
raise IndexError('linspace object index out of range')
if i == self.num-1:
return self.stop
return self.start + i*self.step
def __repr__(self):
return '{}({}, {}, {})'.format(type(self).__name__,
self.start, self.stop, self.num)
def __eq__(self, other):
if not isinstance(other, linspace):
return False
return ((self.start, self.stop, self.num) ==
(other.start, other.stop, other.num))
def __ne__(self, other):
return not self==other
def __hash__(self):
return hash((type(self), self.start, self.stop, self.num))
This is my solution to get ranges with float steps.
Using this function it's not necessary to import numpy, nor install it.
I'm pretty sure that it could be improved and optimized. Feel free to do it and post it here.
from __future__ import division
from math import log
def xfrange(start, stop, step):
old_start = start #backup this value
digits = int(round(log(10000, 10)))+1 #get number of digits
magnitude = 10**digits
stop = int(magnitude * stop) #convert from
step = int(magnitude * step) #0.1 to 10 (e.g.)
if start == 0:
start = 10**(digits-1)
else:
start = 10**(digits)*start
data = [] #create array
#calc number of iterations
end_loop = int((stop-start)//step)
if old_start == 0:
end_loop += 1
acc = start
for i in xrange(0, end_loop):
data.append(acc/magnitude)
acc += step
return data
print xfrange(1, 2.1, 0.1)
print xfrange(0, 1.1, 0.1)
print xfrange(-1, 0.1, 0.1)
The output is:
[1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0]
[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1]
[-1.0, -0.9, -0.8, -0.7, -0.6, -0.5, -0.4, -0.3, -0.2, -0.1, 0.0]
For completeness of boutique, a functional solution:
def frange(a,b,s):
return [] if s > 0 and a > b or s < 0 and a < b or s==0 else [a]+frange(a+s,b,s)
You can use this function:
def frange(start,end,step):
return map(lambda x: x*step, range(int(start*1./step),int(end*1./step)))
It can be done using Numpy library. arange() function allows steps in float. But, it returns a numpy array which can be converted to list using tolist() for our convenience.
for i in np.arange(0, 1, 0.1).tolist():
print i
start and stop are inclusive rather than one or the other (usually stop is excluded) and without imports, and using generators
def rangef(start, stop, step, fround=5):
"""
Yields sequence of numbers from start (inclusive) to stop (inclusive)
by step (increment) with rounding set to n digits.
:param start: start of sequence
:param stop: end of sequence
:param step: int or float increment (e.g. 1 or 0.001)
:param fround: float rounding, n decimal places
:return:
"""
try:
i = 0
while stop >= start and step > 0:
if i==0:
yield start
elif start >= stop:
yield stop
elif start < stop:
if start == 0:
yield 0
if start != 0:
yield start
i += 1
start += step
start = round(start, fround)
else:
pass
except TypeError as e:
yield "type-error({})".format(e)
else:
pass
# passing
print(list(rangef(-100.0,10.0,1)))
print(list(rangef(-100,0,0.5)))
print(list(rangef(-1,1,0.2)))
print(list(rangef(-1,1,0.1)))
print(list(rangef(-1,1,0.05)))
print(list(rangef(-1,1,0.02)))
print(list(rangef(-1,1,0.01)))
print(list(rangef(-1,1,0.005)))
# failing: type-error:
print(list(rangef("1","10","1")))
print(list(rangef(1,10,"1")))
Python 3.6.2 (v3.6.2:5fd33b5, Jul 8 2017, 04:57:36) [MSC v.1900 64
bit (AMD64)]
I know I'm late to the party here, but here's a trivial generator solution that's working in 3.6:
def floatRange(*args):
start, step = 0, 1
if len(args) == 1:
stop = args[0]
elif len(args) == 2:
start, stop = args[0], args[1]
elif len(args) == 3:
start, stop, step = args[0], args[1], args[2]
else:
raise TypeError("floatRange accepts 1, 2, or 3 arguments. ({0} given)".format(len(args)))
for num in start, step, stop:
if not isinstance(num, (int, float)):
raise TypeError("floatRange only accepts float and integer arguments. ({0} : {1} given)".format(type(num), str(num)))
for x in range(int((stop-start)/step)):
yield start + (x * step)
return
then you can call it just like the original range()... there's no error handling, but let me know if there is an error that can be reasonably caught, and I'll update. or you can update it. this is StackOverflow.
To counter the float precision issues, you could use the Decimal module.
This demands an extra effort of converting to Decimal from int or float while writing the code, but you can instead pass str and modify the function if that sort of convenience is indeed necessary.
from decimal import Decimal
def decimal_range(*args):
zero, one = Decimal('0'), Decimal('1')
if len(args) == 1:
start, stop, step = zero, args[0], one
elif len(args) == 2:
start, stop, step = args + (one,)
elif len(args) == 3:
start, stop, step = args
else:
raise ValueError('Expected 1 or 2 arguments, got %s' % len(args))
if not all([type(arg) == Decimal for arg in (start, stop, step)]):
raise ValueError('Arguments must be passed as <type: Decimal>')
# neglect bad cases
if (start == stop) or (start > stop and step >= zero) or \
(start < stop and step <= zero):
return []
current = start
while abs(current) < abs(stop):
yield current
current += step
Sample outputs -
from decimal import Decimal as D
list(decimal_range(D('2')))
# [Decimal('0'), Decimal('1')]
list(decimal_range(D('2'), D('4.5')))
# [Decimal('2'), Decimal('3'), Decimal('4')]
list(decimal_range(D('2'), D('4.5'), D('0.5')))
# [Decimal('2'), Decimal('2.5'), Decimal('3.0'), Decimal('3.5'), Decimal('4.0')]
list(decimal_range(D('2'), D('4.5'), D('-0.5')))
# []
list(decimal_range(D('2'), D('-4.5'), D('-0.5')))
# [Decimal('2'),
# Decimal('1.5'),
# Decimal('1.0'),
# Decimal('0.5'),
# Decimal('0.0'),
# Decimal('-0.5'),
# Decimal('-1.0'),
# Decimal('-1.5'),
# Decimal('-2.0'),
# Decimal('-2.5'),
# Decimal('-3.0'),
# Decimal('-3.5'),
# Decimal('-4.0')]
Add auto-correction for the possibility of an incorrect sign on step:
def frange(start,step,stop):
step *= 2*((stop>start)^(step<0))-1
return [start+i*step for i in range(int((stop-start)/step))]
My solution:
def seq(start, stop, step=1, digit=0):
x = float(start)
v = []
while x <= stop:
v.append(round(x,digit))
x += step
return v
Here is my solution which works fine with float_range(-1, 0, 0.01) and works without floating point representation errors. It is not very fast, but works fine:
from decimal import Decimal
def get_multiplier(_from, _to, step):
digits = []
for number in [_from, _to, step]:
pre = Decimal(str(number)) % 1
digit = len(str(pre)) - 2
digits.append(digit)
max_digits = max(digits)
return float(10 ** (max_digits))
def float_range(_from, _to, step, include=False):
"""Generates a range list of floating point values over the Range [start, stop]
with step size step
include=True - allows to include right value to if possible
!! Works fine with floating point representation !!
"""
mult = get_multiplier(_from, _to, step)
# print mult
int_from = int(round(_from * mult))
int_to = int(round(_to * mult))
int_step = int(round(step * mult))
# print int_from,int_to,int_step
if include:
result = range(int_from, int_to + int_step, int_step)
result = [r for r in result if r <= int_to]
else:
result = range(int_from, int_to, int_step)
# print result
float_result = [r / mult for r in result]
return float_result
print float_range(-1, 0, 0.01,include=False)
assert float_range(1.01, 2.06, 5.05 % 1, True) ==\
[1.01, 1.06, 1.11, 1.16, 1.21, 1.26, 1.31, 1.36, 1.41, 1.46, 1.51, 1.56, 1.61, 1.66, 1.71, 1.76, 1.81, 1.86, 1.91, 1.96, 2.01, 2.06]
assert float_range(1.01, 2.06, 5.05 % 1, False)==\
[1.01, 1.06, 1.11, 1.16, 1.21, 1.26, 1.31, 1.36, 1.41, 1.46, 1.51, 1.56, 1.61, 1.66, 1.71, 1.76, 1.81, 1.86, 1.91, 1.96, 2.01]
I am only a beginner, but I had the same problem, when simulating some calculations. Here is how I attempted to work this out, which seems to be working with decimal steps.
I am also quite lazy and so I found it hard to write my own range function.
Basically what I did is changed my xrange(0.0, 1.0, 0.01) to xrange(0, 100, 1) and used the division by 100.0 inside the loop.
I was also concerned, if there will be rounding mistakes. So I decided to test, whether there are any. Now I heard, that if for example 0.01 from a calculation isn't exactly the float 0.01 comparing them should return False (if I am wrong, please let me know).
So I decided to test if my solution will work for my range by running a short test:
for d100 in xrange(0, 100, 1):
d = d100 / 100.0
fl = float("0.00"[:4 - len(str(d100))] + str(d100))
print d, "=", fl , d == fl
And it printed True for each.
Now, if I'm getting it totally wrong, please let me know.
The trick to avoid round-off problem is to use a separate number to move through the range, that starts and half the step ahead of start.
# floating point range
def frange(a, b, stp=1.0):
i = a+stp/2.0
while i<b:
yield a
a += stp
i += stp
Alternatively, numpy.arange can be used.
My answer is similar to others using map(), without need of NumPy, and without using lambda (though you could). To get a list of float values from 0.0 to t_max in steps of dt:
def xdt(n):
return dt*float(n)
tlist = map(xdt, range(int(t_max/dt)+1))
Related
FInd float numbers that have at least two multiples in given list
I need a function to find all float numbers that have at least two multiples in a given list. Do you know if an already existing and efficient function exists in pandas, scipy or numpy for this purpose? Example of expected behavior Given the list [3.3, 3.4, 4.4, 5.1], I want a function that returns [.2, .3, 1.1, 1.7]
You can do something like: import itertools from itertools import chain from math import sqrt l = [3.3, 3.4, 4.4, 5.1] def divisors(n): # Find all divisors return set(chain.from_iterable((i,n//i) for i in range(1,int(sqrt(n))+1) if n%i == 0)) # Multiply all numbers by 10, make integer, concatenate all divisors from all numbers divisors_all = list(itertools.chain(*[list(divisors(int(x*10))) for x in l])) # Take divisors with more than 2 multiples, then multiply by 10 back div, counts = np.unique(divisors_all, return_counts=True) result = div[counts > 1]/10 Output: array([0.1, 0.2, 0.3, 1.1, 1.7]) This makes the hypothesis that all number have one decimal maximum in the original set. This keeps 1 as it divides everything, but can be removed easily.
I think numpy.gcd() can be used to do what your question asks subject to the following clarifying constraints: the input numbers will be examined to 1 decimal precision inputs must be > 0 results must be > 1.0 import numpy as np a = [3.3, 3.4, 4.4, 5.1] b = [int(10*x) for x in a] res = {np.gcd(x, y) for i, x in enumerate(b) for j, y in enumerate(b) if i != j} res = [x/10 for x in res if x > 10] Output: [1.1, 1.7] UPDATE: To exactly match the results in the question after edit by OP (namely: [.2, .3, 1.1, 1.7]), we can do this: import numpy as np a = [3.3, 3.4, 4.4, 5.1] b = [int(10*x) for x in a] res = sorted({np.gcd(x, y) / 10 for i, x in enumerate(b) for j, y in enumerate(b) if i != j} - {1 / 10}) Output: [0.2, 0.3, 1.1, 1.7]
Python create list with n elements with identical distance [duplicate]
How do I iterate between 0 and 1 by a step of 0.1? This says that the step argument cannot be zero: for i in range(0, 1, 0.1): print(i)
Rather than using a decimal step directly, it's much safer to express this in terms of how many points you want. Otherwise, floating-point rounding error is likely to give you a wrong result. Use the linspace function from the NumPy library (which isn't part of the standard library but is relatively easy to obtain). linspace takes a number of points to return, and also lets you specify whether or not to include the right endpoint: >>> np.linspace(0,1,11) array([ 0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1. ]) >>> np.linspace(0,1,10,endpoint=False) array([ 0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]) If you really want to use a floating-point step value, use numpy.arange: >>> import numpy as np >>> np.arange(0.0, 1.0, 0.1) array([ 0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]) Floating-point rounding error will cause problems, though. Here's a simple case where rounding error causes arange to produce a length-4 array when it should only produce 3 numbers: >>> numpy.arange(1, 1.3, 0.1) array([1. , 1.1, 1.2, 1.3])
range() can only do integers, not floating point. Use a list comprehension instead to obtain a list of steps: [x * 0.1 for x in range(0, 10)] More generally, a generator comprehension minimizes memory allocations: xs = (x * 0.1 for x in range(0, 10)) for x in xs: print(x)
Building on 'xrange([start], stop[, step])', you can define a generator that accepts and produces any type you choose (stick to types supporting + and <): >>> def drange(start, stop, step): ... r = start ... while r < stop: ... yield r ... r += step ... >>> i0=drange(0.0, 1.0, 0.1) >>> ["%g" % x for x in i0] ['0', '0.1', '0.2', '0.3', '0.4', '0.5', '0.6', '0.7', '0.8', '0.9', '1'] >>>
Increase the magnitude of i for the loop and then reduce it when you need it. for i * 100 in range(0, 100, 10): print i / 100.0 EDIT: I honestly cannot remember why I thought that would work syntactically for i in range(0, 11, 1): print i / 10.0 That should have the desired output.
NumPy is a bit overkill, I think. [p/10 for p in range(0, 10)] [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] Generally speaking, to do a step-by-1/x up to y you would do x=100 y=2 [p/x for p in range(0, int(x*y))] [0.0, 0.01, 0.02, 0.03, ..., 1.97, 1.98, 1.99] (1/x produced less rounding noise when I tested).
scipy has a built in function arange which generalizes Python's range() constructor to satisfy your requirement of float handling. from scipy import arange
Similar to R's seq function, this one returns a sequence in any order given the correct step value. The last value is equal to the stop value. def seq(start, stop, step=1): n = int(round((stop - start)/float(step))) if n > 1: return([start + step*i for i in range(n+1)]) elif n == 1: return([start]) else: return([]) Results seq(1, 5, 0.5) [1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0] seq(10, 0, -1) [10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0] seq(10, 0, -2) [10, 8, 6, 4, 2, 0] seq(1, 1) [ 1 ]
The range() built-in function returns a sequence of integer values, I'm afraid, so you can't use it to do a decimal step. I'd say just use a while loop: i = 0.0 while i <= 1.0: print i i += 0.1 If you're curious, Python is converting your 0.1 to 0, which is why it's telling you the argument can't be zero.
Here's a solution using itertools: import itertools def seq(start, end, step): if step == 0: raise ValueError("step must not be 0") sample_count = int(abs(end - start) / step) return itertools.islice(itertools.count(start, step), sample_count) Usage Example: for i in seq(0, 1, 0.1): print(i)
[x * 0.1 for x in range(0, 10)] in Python 2.7x gives you the result of: [0.0, 0.1, 0.2, 0.30000000000000004, 0.4, 0.5, 0.6000000000000001, 0.7000000000000001, 0.8, 0.9] but if you use: [ round(x * 0.1, 1) for x in range(0, 10)] gives you the desired: [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
import numpy as np for i in np.arange(0, 1, 0.1): print i
Best Solution: no rounding error >>> step = .1 >>> N = 10 # number of data points >>> [ x / pow(step, -1) for x in range(0, N + 1) ] [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0] Or, for a set range instead of set data points (e.g. continuous function), use: >>> step = .1 >>> rnge = 1 # NOTE range = 1, i.e. span of data points >>> N = int(rnge / step >>> [ x / pow(step,-1) for x in range(0, N + 1) ] [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0] To implement a function: replace x / pow(step, -1) with f( x / pow(step, -1) ), and define f. For example: >>> import math >>> def f(x): return math.sin(x) >>> step = .1 >>> rnge = 1 # NOTE range = 1, i.e. span of data points >>> N = int(rnge / step) >>> [ f( x / pow(step,-1) ) for x in range(0, N + 1) ] [0.0, 0.09983341664682815, 0.19866933079506122, 0.29552020666133955, 0.3894183423086505, 0.479425538604203, 0.5646424733950354, 0.644217687237691, 0.7173560908995228, 0.7833269096274834, 0.8414709848078965]
And if you do this often, you might want to save the generated list r r=map(lambda x: x/10.0,range(0,10)) for i in r: print i
more_itertools is a third-party library that implements a numeric_range tool: import more_itertools as mit for x in mit.numeric_range(0, 1, 0.1): print("{:.1f}".format(x)) Output 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 This tool also works for Decimal and Fraction.
My versions use the original range function to create multiplicative indices for the shift. This allows same syntax to the original range function. I have made two versions, one using float, and one using Decimal, because I found that in some cases I wanted to avoid the roundoff drift introduced by the floating point arithmetic. It is consistent with empty set results as in range/xrange. Passing only a single numeric value to either function will return the standard range output to the integer ceiling value of the input parameter (so if you gave it 5.5, it would return range(6).) Edit: the code below is now available as package on pypi: Franges ## frange.py from math import ceil # find best range function available to version (2.7.x / 3.x.x) try: _xrange = xrange except NameError: _xrange = range def frange(start, stop = None, step = 1): """frange generates a set of floating point values over the range [start, stop) with step size step frange([start,] stop [, step ])""" if stop is None: for x in _xrange(int(ceil(start))): yield x else: # create a generator expression for the index values indices = (i for i in _xrange(0, int((stop-start)/step))) # yield results for i in indices: yield start + step*i ## drange.py import decimal from math import ceil # find best range function available to version (2.7.x / 3.x.x) try: _xrange = xrange except NameError: _xrange = range def drange(start, stop = None, step = 1, precision = None): """drange generates a set of Decimal values over the range [start, stop) with step size step drange([start,] stop, [step [,precision]])""" if stop is None: for x in _xrange(int(ceil(start))): yield x else: # find precision if precision is not None: decimal.getcontext().prec = precision # convert values to decimals start = decimal.Decimal(start) stop = decimal.Decimal(stop) step = decimal.Decimal(step) # create a generator expression for the index values indices = ( i for i in _xrange( 0, ((stop-start)/step).to_integral_value() ) ) # yield results for i in indices: yield float(start + step*i) ## testranges.py import frange import drange list(frange.frange(0, 2, 0.5)) # [0.0, 0.5, 1.0, 1.5] list(drange.drange(0, 2, 0.5, precision = 6)) # [0.0, 0.5, 1.0, 1.5] list(frange.frange(3)) # [0, 1, 2] list(frange.frange(3.5)) # [0, 1, 2, 3] list(frange.frange(0,10, -1)) # []
Lots of the solutions here still had floating point errors in Python 3.6 and didnt do exactly what I personally needed. Function below takes integers or floats, doesnt require imports and doesnt return floating point errors. def frange(x, y, step): if int(x + y + step) == (x + y + step): r = list(range(int(x), int(y), int(step))) else: f = 10 ** (len(str(step)) - str(step).find('.') - 1) rf = list(range(int(x * f), int(y * f), int(step * f))) r = [i / f for i in rf] return r
Suprised no-one has yet mentioned the recommended solution in the Python 3 docs: See also: The linspace recipe shows how to implement a lazy version of range that suitable for floating point applications. Once defined, the recipe is easy to use and does not require numpy or any other external libraries, but functions like numpy.linspace(). Note that rather than a step argument, the third num argument specifies the number of desired values, for example: print(linspace(0, 10, 5)) # linspace(0, 10, 5) print(list(linspace(0, 10, 5))) # [0.0, 2.5, 5.0, 7.5, 10] I quote a modified version of the full Python 3 recipe from Andrew Barnert below: import collections.abc import numbers class linspace(collections.abc.Sequence): """linspace(start, stop, num) -> linspace object Return a virtual sequence of num numbers from start to stop (inclusive). If you need a half-open range, use linspace(start, stop, num+1)[:-1]. """ def __init__(self, start, stop, num): if not isinstance(num, numbers.Integral) or num <= 1: raise ValueError('num must be an integer > 1') self.start, self.stop, self.num = start, stop, num self.step = (stop-start)/(num-1) def __len__(self): return self.num def __getitem__(self, i): if isinstance(i, slice): return [self[x] for x in range(*i.indices(len(self)))] if i < 0: i = self.num + i if i >= self.num: raise IndexError('linspace object index out of range') if i == self.num-1: return self.stop return self.start + i*self.step def __repr__(self): return '{}({}, {}, {})'.format(type(self).__name__, self.start, self.stop, self.num) def __eq__(self, other): if not isinstance(other, linspace): return False return ((self.start, self.stop, self.num) == (other.start, other.stop, other.num)) def __ne__(self, other): return not self==other def __hash__(self): return hash((type(self), self.start, self.stop, self.num))
This is my solution to get ranges with float steps. Using this function it's not necessary to import numpy, nor install it. I'm pretty sure that it could be improved and optimized. Feel free to do it and post it here. from __future__ import division from math import log def xfrange(start, stop, step): old_start = start #backup this value digits = int(round(log(10000, 10)))+1 #get number of digits magnitude = 10**digits stop = int(magnitude * stop) #convert from step = int(magnitude * step) #0.1 to 10 (e.g.) if start == 0: start = 10**(digits-1) else: start = 10**(digits)*start data = [] #create array #calc number of iterations end_loop = int((stop-start)//step) if old_start == 0: end_loop += 1 acc = start for i in xrange(0, end_loop): data.append(acc/magnitude) acc += step return data print xfrange(1, 2.1, 0.1) print xfrange(0, 1.1, 0.1) print xfrange(-1, 0.1, 0.1) The output is: [1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0] [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1] [-1.0, -0.9, -0.8, -0.7, -0.6, -0.5, -0.4, -0.3, -0.2, -0.1, 0.0]
For completeness of boutique, a functional solution: def frange(a,b,s): return [] if s > 0 and a > b or s < 0 and a < b or s==0 else [a]+frange(a+s,b,s)
You can use this function: def frange(start,end,step): return map(lambda x: x*step, range(int(start*1./step),int(end*1./step)))
It can be done using Numpy library. arange() function allows steps in float. But, it returns a numpy array which can be converted to list using tolist() for our convenience. for i in np.arange(0, 1, 0.1).tolist(): print i
start and stop are inclusive rather than one or the other (usually stop is excluded) and without imports, and using generators def rangef(start, stop, step, fround=5): """ Yields sequence of numbers from start (inclusive) to stop (inclusive) by step (increment) with rounding set to n digits. :param start: start of sequence :param stop: end of sequence :param step: int or float increment (e.g. 1 or 0.001) :param fround: float rounding, n decimal places :return: """ try: i = 0 while stop >= start and step > 0: if i==0: yield start elif start >= stop: yield stop elif start < stop: if start == 0: yield 0 if start != 0: yield start i += 1 start += step start = round(start, fround) else: pass except TypeError as e: yield "type-error({})".format(e) else: pass # passing print(list(rangef(-100.0,10.0,1))) print(list(rangef(-100,0,0.5))) print(list(rangef(-1,1,0.2))) print(list(rangef(-1,1,0.1))) print(list(rangef(-1,1,0.05))) print(list(rangef(-1,1,0.02))) print(list(rangef(-1,1,0.01))) print(list(rangef(-1,1,0.005))) # failing: type-error: print(list(rangef("1","10","1"))) print(list(rangef(1,10,"1"))) Python 3.6.2 (v3.6.2:5fd33b5, Jul 8 2017, 04:57:36) [MSC v.1900 64 bit (AMD64)]
I know I'm late to the party here, but here's a trivial generator solution that's working in 3.6: def floatRange(*args): start, step = 0, 1 if len(args) == 1: stop = args[0] elif len(args) == 2: start, stop = args[0], args[1] elif len(args) == 3: start, stop, step = args[0], args[1], args[2] else: raise TypeError("floatRange accepts 1, 2, or 3 arguments. ({0} given)".format(len(args))) for num in start, step, stop: if not isinstance(num, (int, float)): raise TypeError("floatRange only accepts float and integer arguments. ({0} : {1} given)".format(type(num), str(num))) for x in range(int((stop-start)/step)): yield start + (x * step) return then you can call it just like the original range()... there's no error handling, but let me know if there is an error that can be reasonably caught, and I'll update. or you can update it. this is StackOverflow.
To counter the float precision issues, you could use the Decimal module. This demands an extra effort of converting to Decimal from int or float while writing the code, but you can instead pass str and modify the function if that sort of convenience is indeed necessary. from decimal import Decimal def decimal_range(*args): zero, one = Decimal('0'), Decimal('1') if len(args) == 1: start, stop, step = zero, args[0], one elif len(args) == 2: start, stop, step = args + (one,) elif len(args) == 3: start, stop, step = args else: raise ValueError('Expected 1 or 2 arguments, got %s' % len(args)) if not all([type(arg) == Decimal for arg in (start, stop, step)]): raise ValueError('Arguments must be passed as <type: Decimal>') # neglect bad cases if (start == stop) or (start > stop and step >= zero) or \ (start < stop and step <= zero): return [] current = start while abs(current) < abs(stop): yield current current += step Sample outputs - from decimal import Decimal as D list(decimal_range(D('2'))) # [Decimal('0'), Decimal('1')] list(decimal_range(D('2'), D('4.5'))) # [Decimal('2'), Decimal('3'), Decimal('4')] list(decimal_range(D('2'), D('4.5'), D('0.5'))) # [Decimal('2'), Decimal('2.5'), Decimal('3.0'), Decimal('3.5'), Decimal('4.0')] list(decimal_range(D('2'), D('4.5'), D('-0.5'))) # [] list(decimal_range(D('2'), D('-4.5'), D('-0.5'))) # [Decimal('2'), # Decimal('1.5'), # Decimal('1.0'), # Decimal('0.5'), # Decimal('0.0'), # Decimal('-0.5'), # Decimal('-1.0'), # Decimal('-1.5'), # Decimal('-2.0'), # Decimal('-2.5'), # Decimal('-3.0'), # Decimal('-3.5'), # Decimal('-4.0')]
Add auto-correction for the possibility of an incorrect sign on step: def frange(start,step,stop): step *= 2*((stop>start)^(step<0))-1 return [start+i*step for i in range(int((stop-start)/step))]
My solution: def seq(start, stop, step=1, digit=0): x = float(start) v = [] while x <= stop: v.append(round(x,digit)) x += step return v
Here is my solution which works fine with float_range(-1, 0, 0.01) and works without floating point representation errors. It is not very fast, but works fine: from decimal import Decimal def get_multiplier(_from, _to, step): digits = [] for number in [_from, _to, step]: pre = Decimal(str(number)) % 1 digit = len(str(pre)) - 2 digits.append(digit) max_digits = max(digits) return float(10 ** (max_digits)) def float_range(_from, _to, step, include=False): """Generates a range list of floating point values over the Range [start, stop] with step size step include=True - allows to include right value to if possible !! Works fine with floating point representation !! """ mult = get_multiplier(_from, _to, step) # print mult int_from = int(round(_from * mult)) int_to = int(round(_to * mult)) int_step = int(round(step * mult)) # print int_from,int_to,int_step if include: result = range(int_from, int_to + int_step, int_step) result = [r for r in result if r <= int_to] else: result = range(int_from, int_to, int_step) # print result float_result = [r / mult for r in result] return float_result print float_range(-1, 0, 0.01,include=False) assert float_range(1.01, 2.06, 5.05 % 1, True) ==\ [1.01, 1.06, 1.11, 1.16, 1.21, 1.26, 1.31, 1.36, 1.41, 1.46, 1.51, 1.56, 1.61, 1.66, 1.71, 1.76, 1.81, 1.86, 1.91, 1.96, 2.01, 2.06] assert float_range(1.01, 2.06, 5.05 % 1, False)==\ [1.01, 1.06, 1.11, 1.16, 1.21, 1.26, 1.31, 1.36, 1.41, 1.46, 1.51, 1.56, 1.61, 1.66, 1.71, 1.76, 1.81, 1.86, 1.91, 1.96, 2.01]
I am only a beginner, but I had the same problem, when simulating some calculations. Here is how I attempted to work this out, which seems to be working with decimal steps. I am also quite lazy and so I found it hard to write my own range function. Basically what I did is changed my xrange(0.0, 1.0, 0.01) to xrange(0, 100, 1) and used the division by 100.0 inside the loop. I was also concerned, if there will be rounding mistakes. So I decided to test, whether there are any. Now I heard, that if for example 0.01 from a calculation isn't exactly the float 0.01 comparing them should return False (if I am wrong, please let me know). So I decided to test if my solution will work for my range by running a short test: for d100 in xrange(0, 100, 1): d = d100 / 100.0 fl = float("0.00"[:4 - len(str(d100))] + str(d100)) print d, "=", fl , d == fl And it printed True for each. Now, if I'm getting it totally wrong, please let me know.
The trick to avoid round-off problem is to use a separate number to move through the range, that starts and half the step ahead of start. # floating point range def frange(a, b, stp=1.0): i = a+stp/2.0 while i<b: yield a a += stp i += stp Alternatively, numpy.arange can be used.
My answer is similar to others using map(), without need of NumPy, and without using lambda (though you could). To get a list of float values from 0.0 to t_max in steps of dt: def xdt(n): return dt*float(n) tlist = map(xdt, range(int(t_max/dt)+1))
How to find the smallest integer that, when multiplied to a list of floats, makes all values integers?
I am trying to write a function that returns the value of the smallest integer that needs to be multiplied for a list of floats to be all integers. I tried implementing something with the "Least Common Multiple," but I'm not sure if the math checks out... Say I have the following list (or list-like object) of float values: example = [0.5, 0.4, 0.2, 0.1] How could I write a function that returns func(example) = 10 ? Another example would be... example = [0.05, 0.1, 0.7, 0.8] > func(example) 20 Since... > 20 * np.array(example) np.array([1, 2, 14, 16]) And all are integers.
Find the largest decimal places, multiply it to the list, find gcd, and find the minimum integer multiplier. import numpy as np import decimal from math import gcd from functools import reduce def find_gcd(lst): x = reduce(gcd, lst) return x example = [0.05, 0.1, 0.7, 0.8, 0.9] decimal_places = min([decimal.Decimal(str(val)).as_tuple().exponent for val in example]) x1 = np.array(example) multiplier = 1/(10**decimal_places) gcd_val = find_gcd(map(int, x1 * multiplier)) min_multipler = int(multiplier/gcd_val) print('Minimum Integer Multipler: ', min_multipler) If you don't like Decimal. example = [0.05, 0.1, 0.7, 0.8, 0.9] n_places = max([len(str(val).split('.')[1]) for val in example]) multiplier = 10**n_places x1 = np.array(example) gcd_val = find_gcd(map(int, x1 * multiplier)) min_multipler = int(multiplier/gcd_val) print('Minimum Integer Multipler: ', min_multipler)
If you have an upper bound den_max on plausible denominators the fractions.Fraction class has a handy limit_denominator method. For example: import fractions max_den = 1000 fractions.Fraction(1/3) # probably not what we want # Fraction(6004799503160661, 18014398509481984) fractions.Fraction(1/3).limit_denominator(max_den) # better # Fraction(1, 3) import sympy example = [0.5, 0.4, 0.2, 0.1] sympy.lcm([fractions.Fraction(x).limit_denominator(max_den).denominator for x in example]) # 10 example = [0.05, 0.1, 0.7, 0.8] sympy.lcm([fractions.Fraction(x).limit_denominator(max_den).denominator for x in example]) # 20
Python: Range or numpy Arange with end limit include
I am looking to get : input: arange(0.0,0.6,0.2) output: 0.,0.4 I want 0.,0.2,0.4,0.6 how do i achieve using range or arange. If not what is alternate ?
A simpler approach to get the desired output is to add the step size in the upper limit. For instance, np.arange(start, end + step, step) would allow you to include the end point as well. In your case: np.arange(0.0, 0.6 + 0.2, 0.2) would result in array([0. , 0.2, 0.4, 0.6]).
In short I wrote a function crange, which does what you require. In the example below, orange does the job of numpy.arange crange(1, 1.3, 0.1) >>> [1. 1.1 1.2 1.3] orange(1, 1.3, 0.1) >>> [1. 1.1 1.2] crange(0.0, 0.6, 0.2) >>> [0. 0.2 0.4 0.6] orange(0.0, 0.6, 0.2) >>> [0. 0.2 0.4] Background information I had your problem a view times as well. I usually quick-fixed it with adding a small value to stop. As mentioned by Kasrâmvd in the comments, the issue is a bit more complex, as floating point rounding errors can occur in numpy.arange (see here and here). Unexpected behavior can be found in this example: >>> numpy.arange(1, 1.3, 0.1) array([1. , 1.1, 1.2, 1.3]) To clear up things a bit for myself, I decided to stop using numpy.arange if not needed specifically. I instead use my self defined function orange to avoid unexpected behavior. This combines numpy.isclose and numpy.linspace. Here is the Code Enough bla bla - here is the code ^^ import numpy as np def cust_range(*args, rtol=1e-05, atol=1e-08, include=[True, False]): """ Combines numpy.arange and numpy.isclose to mimic open, half-open and closed intervals. Avoids also floating point rounding errors as with >>> numpy.arange(1, 1.3, 0.1) array([1. , 1.1, 1.2, 1.3]) args: [start, ]stop, [step, ] as in numpy.arange rtol, atol: floats floating point tolerance as in numpy.isclose include: boolean list-like, length 2 if start and end point are included """ # process arguments if len(args) == 1: start = 0 stop = args[0] step = 1 elif len(args) == 2: start, stop = args step = 1 else: assert len(args) == 3 start, stop, step = tuple(args) # determine number of segments n = (stop-start)/step + 1 # do rounding for n if np.isclose(n, np.round(n), rtol=rtol, atol=atol): n = np.round(n) # correct for start/end is exluded if not include[0]: n -= 1 start += step if not include[1]: n -= 1 stop -= step return np.linspace(start, stop, int(n)) def crange(*args, **kwargs): return cust_range(*args, **kwargs, include=[True, True]) def orange(*args, **kwargs): return cust_range(*args, **kwargs, include=[True, False]) print('crange(1, 1.3, 0.1) >>>', crange(1, 1.3, 0.1)) print('orange(1, 1.3, 0.1) >>>', orange(1, 1.3, 0.1)) print('crange(0.0, 0.6, 0.2) >>>', crange(0.0, 0.6, 0.2)) print('orange(0.0, 0.6, 0.2) >>>', orange(0.0, 0.6, 0.2))
Interesting that you get that output. Running arange(0.0,0.6,0.2) I get: array([0. , 0.2, 0.4]) Regardless, from the numpy.arange docs: Values are generated within the half-open interval [start, stop) (in other words, the interval including start but excluding stop). Also from the docs: When using a non-integer step, such as 0.1, the results will often not be consistent. It is better to use numpy.linspace for these cases The only thing I can suggest to achieve what you want is to modify the stop parameter and add a very small amount, for example np.arange(0.0, 0.6 + 0.001 ,0.2) Returns array([0. , 0.2, 0.4, 0.6]) Which is your desired output. Anyway, it is better to use numpy.linspace and set endpoint=True
Old question, but it can be done much easier. def arange(start, stop, step=1, endpoint=True): arr = np.arange(start, stop, step) if endpoint and arr[-1]+step==stop: arr = np.concatenate([arr,[end]]) return arr print(arange(0, 4, 0.5, endpoint=True)) print(arange(0, 4, 0.5, endpoint=False)) which gives [0. 0.5 1. 1.5 2. 2.5 3. 3.5 4. ] [0. 0.5 1. 1.5 2. 2.5 3. 3.5]
A simple example using np.linspace (mentioned numerous times in other answers, but no simple examples were present): import numpy as np start = 0.0 stop = 0.6 step = 0.2 num = round((stop - start) / step) + 1 # i.e. length of resulting array np.linspace(start, stop, num) >>> array([0.0, 0.2, 0.4, 0.6]) Assumption: stop is a multiple of step. round is necessary to correct for floating point error.
Ok I will leave this solution, here. First step is to calculate the fractional portion of number of items given the bounds [a,b] and the step amount. Next calculate an appropriate amount to add to the end that will not effect the size of the result numpy array and then call the np.arrange(). import numpy as np def np_arange_fix(a, b, step): nf = (lambda n: n-int(n))((b - a)/step+1) bb = (lambda x: step*max(0.1, x) if x < 0.5 else 0)(nf) arr = np.arange(a, b+bb, step) if int((b-a)/step+1) != len(arr): print('I failed, expected {} items, got {} items, arr-out{}'.format(int((b-a)/step), len(arr), arr)) raise return arr print(np_arange_fix(1.0, 4.4999999999999999, 1.0)) print(np_arange_fix(1.0, 4 + 1/3, 1/3)) print(np_arange_fix(1.0, 4 + 1/3, 1/3 + 0.1)) print(np_arange_fix(1.0, 6.0, 1.0)) print(np_arange_fix(0.1, 6.1, 1.0)) Prints: [1. 2. 3. 4.] [1. 1.33333333 1.66666667 2. 2.33333333 2.66666667 3. 3.33333333 3.66666667 4. 4.33333333] [1. 1.43333333 1.86666667 2.3 2.73333333 3.16666667 3.6 4.03333333] [1. 2. 3. 4. 5. 6.] [0.1 1.1 2.1 3.1 4.1 5.1 6.1] If you want to compact this down to a function: def np_arange_fix(a, b, step): b += (lambda x: step*max(0.1, x) if x < 0.5 else 0)((lambda n: n-int(n))((b - a)/step+1)) return np.arange(a, b, step)
Normalizing data to certain range of values
I am a new in Python, is there any function that can do normalizing a data? For example, I have set of list in range 0 - 1 example : [0.92323, 0.7232322, 0,93832, 0.4344433] I want to normalize those all values to range 0.25 - 0.50 Thank you,
The following function considers the generic case: def normalize(values, bounds): return [bounds['desired']['lower'] + (x - bounds['actual']['lower']) * (bounds['desired']['upper'] - bounds['desired']['lower']) / (bounds['actual']['upper'] - bounds['actual']['lower']) for x in values] Use: normalize( [0.92323, 0.7232322, 0.93832, 0.4344433], {'actual': {'lower': 0, 'upper': 1}, 'desired': {'lower': 0.25, 'upper': 0.5}} ) # [0.4808075, 0.43080805, 0.48458, 0.35861082499999997] normalize( [5, 7.5, 10, 12.5, 15], {'actual':{'lower':5,'upper':15},'desired':{'lower':1,'upper':2}} ) # [1.0, 1.25, 1.5, 1.75, 2.0] I chose a two-level dict as the argument but you could give it in multiple ways, for example in two separate tuples, one for the actual bounds and the other for the desired, being the first element the lower bound and the second the upper: def normalize(values, actual_bounds, desired_bounds): return [desired_bounds[0] + (x - actual_bounds[0]) * (desired_bounds[1] - desired_bounds[0]) / (actual_bounds[1] - actual_bounds[0]) for x in values] Use: normalize( [0.92323, 0.7232322, 0.93832, 0.4344433], (0,1), (0.25,0.5) ) # [0.4808075, 0.43080805, 0.48458, 0.35861082499999997] normalize( [5, 7.5, 10, 12.5, 15], (5,15), (1,2) ) # [1.0, 1.25, 1.5, 1.75, 2.0]
You could do sth along the following lines: >>> l = [0.92323, 0.7232322, 0.93832, 0.4344433] >>> lower, upper = 0.25, 0.5 >>> l_norm = [lower + (upper - lower) * x for x in l] >>> l_norm [0.4808075, 0.43080805, 0.48458, 0.35861082499999997]
You can use sklearn.preprocessing for a lot of types of pre-processing tasks including normalization.
Note that the above answers do not give you the values in the range you are asking. Here I present an alternative function that may be easy to follow and gives you the result in the range you are asking. def normalize(x, newRange=(0, 1)): #x is an array. Default range is between zero and one xmin, xmax = np.min(x), np.max(x) #get max and min from input array norm = (x - xmin)/(xmax - xmin) # scale between zero and one if newRange == (0, 1): return(norm) # wanted range is the same as norm elif newRange != (0, 1): return norm * (newRange[1] - newRange[0]) + newRange[0] #scale to a different range. #add other conditions here. For example, an error message Aplying our new function to your problem x = np.array([0.92323, 0.7232322, 0.93832, 0.4344433]) #your input vector must be an array normalize(x, newRange=(0.25, 0.5)) #set your range as a python tuple #array([0.49251305, 0.39328352, 0.5 , 0.25 ]) #note that the new values have a maximum value of 0.5 (the third entry) and minimum of 0.25 (the last value).