Pass an array in python odeint - python

I am quite new to Python, so do excuse me if the following question has a 'duh' answer.
So, I'm trying to solve an ODE using odeint and wish to pass an array. But, the TypeError: can't multiply sequence by non-int of type 'float' keeps cropping up, in the line:
CA0 = (-kd-kn*Cv)*CAi/(1+(CAi/ks))
So, the code is:
from scipy.integrate import odeint
import numpy as np
Ap_data = [2, 7, 91, 1.6, 0.4, 5]
tdata= [0, 1, 4, 5, 4, 20]
Cv_data = [43, 580, 250, 34, 30, 3]
#Define parameters
kn = 1E-5 #change
ks = 1E+5 #change
kd = 0.058
def deriv (CAi,t, Cv):
CA0 = (-kd-kn*Cv)*CAi/(1+(CAi/ks))
return CA0
#Initial conditions
CA_init = 21.6
#Solve the ODE
(CAb_soln) = odeint (derivCAb, CA_init, tdata, (Cv_data,))
print CAb_soln
Some help, please?

Your immediate problem is that your deriv function is trying to multiply the ordinary Python list, Cv_data (passed in as Cv) by float values. If you want to vectorize this operation, use NumPy arrays:
Ap_data = np.array([2, 7, 91, 1.6, 0.4, 5])
tdata= np.array([0, 1, 4, 5, 4, 20])
Cv_data = np.array([43, 580, 250, 34, 30, 3])
to solve this. You now have the problem that odeint fails for the input you give it...
intdy-- t (=r1) illegal
in above message, r1 = 0.4000000000000D+01
t not in interval tcur - hu (= r1) to tcur (=r2)
in above, r1 = 0.4287484688360D+01 r2 = 0.5551311182627D+01
lsoda-- trouble from intdy. itask = i1, tout = r1ls
in above message, i1 = 1
in above message, r1 = 0.4000000000000D+01
Illegal input detected (internal error).
Run with full_output = 1 to get quantitative information.
[[ 21.6 ]
[ 20.37432613]
[ 17.09897165]
[ 16.12866355]
[ 16.12866355]
[ -0.90614016]]
Perhaps you can give more information about what your equation is and how it relates to Cv_data. In particular, your derivative doesn't depend on t, but you have a range of values for this parameter, Cv.
UPDATE: It fails because of your funny time series. odeint works properly if it is monotonic, for example:
from scipy.integrate import odeint
import numpy as np
Ap_data = [2, 7, 91, 1.6, 0.4, 5]
tdata= np.array([0, 1, 4, 5, 10, 20])
Cv_data = np.array([43, 580, 250, 34, 30, 3])
#Define parameters
kn = 1E-5 #change
ks = 1E+5 #change
kd = 0.058
def deriv (CAi,t, Cv):
CA0 = (-kd-kn*Cv)*CAi/(1+(CAi/ks))
return CA0
#Initial conditions
CA_init = 21.6
#Solve the ODE
(CAb_soln) = odeint (deriv, CA_init, tdata, (Cv_data,))
print CAb_soln
The result:
[[ 21.6 ]
[ 20.37432613]
[ 17.09897165]
[ 16.12866355]
[ 12.04306424]
[ 6.71431758]]

Well, as it turns out I cannot post an image yet (being new to stackoverflow). So, the code that I used was-
from scipy.integrate import odeint
import numpy as np
Ap_data = np.array([2, 7, 91, 1.6, 0.4, 5])
tdata= [0, 1, 4, 5, 4, 20]
Cv_data = np.array([43, 580, 250, 34, 30, 3])
#Define parameters
kn = 1E-5 #change
ks = 1E+5 #change
kd = 0.058
def deriv (CAi,t, Cv):
CA0 = (-kd-kn*Cv)*CAi/(1+(CAi/ks))
return CA0
#Initial conditions
CA_init = 21.6
#Solve the ODE
(CAb_soln) = odeint (deriv, CA_init, tdata, (Cv_data,), full_output=True)
print CAb_soln

Related

Evaluate parameter in symfit model

I am using symfit for fitting of two NMR data set simultaneously.I defined a cut-off gaussian distribution on one of the parameter. I summerized my explanation in the following simplified example:
import symfit as sf
from symfit import parameters, variables, Fit, Model, Ge
from symfit.core.minimizers import BFGS, BasinHopping, NelderMead, DifferentialEvolution
from symfit import GradientModel, CallableModel
xd= [1.1, 3, 5, 7, 9, 11, 14, 19, 25, 32, 44]
yd= [5.5, 8, 11, 14, 18, 22, 28, 35,45, 69, 110]
pi=3.14
x, y = variables('x, y')
a = sf.Parameter('a',value=3)
b = sf.Parameter('b',value=0.7)
sigma= sf.Parameter('sigma',value=0.7)
res=0
norm=0
for i in range(1,5):
atemp= (a + ((i-1)*3*sigma/2))
if atemp < 0:
atemp = 0
gauss= sf.exp(-(atemp-a)**2/(2*(sigma**2)))/sf.sqrt(2*pi*(sigma**2))
res= res+ gauss* (atemp * x + b)
norm= norm + gauss
if i == 4:
firstres= res
firstnorm= norm
res=0
norm=0
funfit = CallableModel({y: (firstres/firstnorm)})
fit = Fit(funfit, x= xd, y=yd, minimizer=[NelderMead, BFGS])
fit_result = fit.execute()
print(" Best-Fit Parameters: ", fit_result)
I need to check "atemp" be positive because negetive values does not have any physical meaning. I know that "atemp" is a parameter and is an expression but I need to get the value of this parameter. I tried atemp.evalf() and it does not work. I get such an error:
"TypeError: cannot determine truth value of Relational"

Gaussian fit to histogram on python seems off. What could I change to improve the fit?

I have created a Gaussian fit to data plotted as a bar chart. However, the fit does not look right, and I don't know what to change to improve the fit. My code is as follows:
import matplotlib.pyplot as plt
import math
import numpy as np
from collections import Counter
import collections
from scipy.optimize import curve_fit
from scipy.stats import norm
from scipy import stats
import matplotlib.mlab as mlab
k_list = [-40, -32, -30, -28, -26, -24, -22, -20, -18, -16, -14, -12, -10, -8, -6, -4, -3, -2, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34]
v_list = [1, 2, 11, 18, 65, 122, 291, 584, 1113, 2021, 3335, 5198, 7407, 10043, 12552, 14949, 1, 16599, 16770, 16728, 14772, 12475, 9932, 7186, 4987, 3286, 1950, 1080, 546, 285, 130, 54, 18, 11, 2, 2]
def func(x, A, beta, B, mu, sigma):
return (A * np.exp(-x/beta) + B * np.exp(-100.0 * (x - mu)**2 / (2 * sigma**2))) #Normal distribution
popt, pcov = curve_fit(func, xdata=k_list, ydata=v_list, p0=[10000, 5, 10000, 10, 10])
print(popt)
x = np.linspace(-50, 50, 1000)
plt.bar(k_list, v_list, label='myPLOT', color = 'b', width = 0.75)
plt.plot(x, func(x, *popt), color='darkorange', linewidth=2.5, label=r'Fitted function')
plt.xlim((-30, 45))
plt.legend()
plt.show()
The plot I obtain is as follows:
How can I adjust my fit?
You have a significant outlier here, possibly caused by a typo: (k, v) == (-3, 1) at index 16 in the data.
The representation of the data as a bar chart is not optimal here. The issue would be clearly visible if you showed the data in the same format as you show the fit. Either of the following would work better:
The outlier forces the peak down. Here is the fit if we remove the outlier manually:
You can remove the outlier automatically by checking its individual residual against the RMSE of the entire fit:
popt, pcov = curve_fit(func, xdata=k_list, ydata=v_list, p0=[10000, 5, 10000, 10, 10])
resid = np.abs(func(k_list, *popt) - v_list)
rmse = np.std(resid)
keep = resid < 3 * rmse
if keep.sum() < keep.size:
popt, pcov = curve_fit(func, xdata=k_list[keep], ydata=v_list[keep], p0=popt)
Or even a repeated application:
popt = [10000, 5, 10000, 10, 10]
while True:
popt, pcov = curve_fit(func, xdata=k_list, ydata=v_list, p0=popt)
resid = np.abs(func(k_list, *popt) - v_list)
rmse = np.std(resid)
keep = resid < 5 * rmse
if keep.sum() == keep.size:
break
k_list = k_list[keep]
v_list = v_list[keep]
A 3-sigma outlier will trim everything off your data after a couple of iterations, so I used 5-sigma. Keep in mind that this is a very quick and dirty way to denoise data. It's really basically manual, since you have to re-check the data to make sure that your choice of factor was correct.

Numeric integration in numpy

I want to do something quite simple but I'm unable to find it in the depths of numpy. I want to numerically and continuously integrate a function given by its values (not by its formula!). That means I simply want an array which holds the sums of the beginning of the input array. Example:
Input:
[ 4, 3, 5, 8 ]
Output:
[ 4, 7, 12, 20 ] # [ sum(i[0:1]), sum(i[0:2]), sum(i[0:3]), sum(i[0:4]) ]
Sounds pretty straight forward, so I'm hopeful this must be easy with some numpy functionality I'm currently unable to find.
I found stuff like scipy.integrate.quad() but that seems to integrate over a given range (from a to b) and the returns a single value. I need an array as output.
You're looking for numpy.cumsum:
>>> numpy.cumsum([ 4, 3, 5, 8 ])
array([ 4, 7, 12, 20])
You would simply need numpy.cumsum().
import numpy as np
a = np.array([ 4, 3, 5, 8 ])
print np.cumsum(a) # prints [ 4 7 12 20]
You can use quadpy (pip install quadpy), a project of mine, which as opposed to scipy.integrate.quad() does vectorized compution. Provide it with many intervals, and get all the integral values over these intervals back.
import numpy
import quadpy
a = 0.0
b = 3.0
h = 1.0e-2
n = int((b-a) / h)
x0 = numpy.linspace(a, b, num=n, endpoint=False)
x1 = x0 + h
intervals = numpy.stack([x0, x1])
vals = quadpy.line_segment.integrate(
lambda x: numpy.sin(x),
intervals,
quadpy.line_segment.GaussLegendre(5)
)
res = numpy.cumsum(vals)
import matplotlib.pyplot as plt
plt.plot(x1, numpy.sin(x1), label='f')
plt.plot(x1, res, label='F')
plt.legend()
plt.show()
You don't need numpy to get the output. Using standard itertools we get the following:
from itertools import accumulate
a = [4, 3, 5, 8]
*b, = accumulate(a)
print(b)
# [4, 7, 12, 20]

Piecewise regresion Python

Hi I'm trying to figure out how to fit those values with a piecewise linear function. I have read this question but I can't get forward (How to apply piecewise linear fit in Python? ). In this example is show how to implement a piecewise function for a 2 segment case. But I need to do it in a three segment case as in figure.
I'have written this code:
from scipy import optimize
import matplotlib.pyplot as plt
import numpy as np
x1 = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ,11, 12, 13, 14, 15,16,17,18,19,20,21], dtype=float)
y1 = np.array([5, 7, 9, 11, 13, 15, 28.92, 42.81, 56.7, 70.59, 84.47, 98.36, 112.25, 126.14, 140.03,145,147,149,151,153,155])
x = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ,11, 12, 13, 14, 15], dtype=float)
y = np.array([5, 7, 9, 11, 13, 15, 28.92, 42.81, 56.7, 70.59, 84.47, 98.36, 112.25, 126.14, 140.03])
def piecewise(x,x0,x1,y0,y1,k0,k1,k2):
return np.piecewise(x , [x <= x0, (x>= x1)] , [lambda x:k0*x + y0-k0*x0, lambda x:k1*(x-(x1+x0))-y1, lambda x:k2*x + y1-k2*x1])
p , e = optimize.curve_fit(piecewise_linear, x1, y1)
xd = np.linspace(0, 15, 100)
plt.figure()
plt.plot(x1, y1, "o")
plt.plot(xd, piecewise_linear(xd, *p))
but this is the output
Any suggestion? I belive that the problem is in return np.piecewise(x , [x <= x0, (x>= x1)] , [lambda x:k0*x + y0-k0*x0, lambda x:k1*(x-(x1+x0))-y1, lambda x:k2*x + y1-k2*x1]) in particular in the second lambda.
EDIT 1:
If I try to different data the solution provided by A.L. I don't get good results.
I get this result:
with
x=[ 16.01690476, 16.13801587, 14.63628571, 15.32664399,
15.8145 , 15.71507143, 15.56107143, 15.553 ,
15.08734524, 14.97275 , 15.51958333, 16.61981859,
16.36589286, 14.78708333, 14.41565476, 13.47763158,
13.42412281, 12.95551378, 13.66601504, 13.63315789,
13.21463659, 13.53464286, 14.60130952, 14.7774881 ,
13.04319048, 12.53385965, 12.65745614, 13.90535714,
14.82412281, 14.6565 , 15.09541667, 13.41434524,
13.66033333, 14.57964286, 13.55416667, 13.43041667,
13.01137566, 12.76429825, 11.55241667, 11.0634881 ,
10.92729762, 11.21625 , 10.72092857, 11.80380952,
12.55233333, 12.11307143, 11.78892857, 12.45458333,
11.05539286, 10.69214286, 10.32566667, 11.3439881 ,
9.69563492, 10.72535714, 10.26180272, 7.77272727,
6.37704082, 8.49666667, 8.5389881 , 5.68547619,
7.00616667, 8.22015873, 10.20315476, 15.35736842,
12.25158333, 11.09622153, 10.4118254 , 9.8602381 ,
10.16727273, 15.10858333, 13.82215539, 12.44719298,
10.92341667, 11.44565476, 11.43333333, 10.5045 ,
11.14357143, 10.37625 , 8.93421769, 9.48444444,
10.43483333, 10.8659881 , 10.96166667, 10.12872619,
9.64663265, 9.29979762, 9.67173469, 8.978322 ,
9.10419501, 9.45411565, 10.46411565, 7.95739229,
8.72616667, 7.03892857, 7.32547619, 7.56441667,
6.61022676, 9.09014739, 10.78141667, 10.85918367,
11.11665476, 10.141 , 9.17760771, 8.27968254,
11.02625 , 12.34809524, 11.17807018, 11.25416667,
11.29236905, 9.28357143, 9.77033333, 11.52086168,
9.8625 , 12.60281955, 12.42785714, 12.11902256,
13.1 , 13.02791667, 13.87779449, 15.09857143,
13.93935185, 13.69821429, 13.39880952, 12.45692982,
12.76921053, 13.23708333, 13.71666667, 15.39807143,
15.27916667, 14.66464286, 13.38694444, 10.97555556,
10.02191667, 11.99608333, 14.26325 , 15.40991667,
15.12908333, 15.76265476, 12.12763158, 15.01641667,
14.39602381, 12.98532143, 14.98807018, 18.30547619,
16.7564966 , 16.82982143, 19.8487013 , 19.18600907]
and
y=[ 2.36846863, 2.73722628, 2.77177583, 2.63930636, 2.80864749,
2.57066667, 2.65277287, 2.57162347, 2.76295667, 2.79835391,
2.60431154, 2.17326401, 2.67740698, 2.47138153, 2.49882574,
2.60987338, 2.69935565, 2.60755362, 2.77702029, 2.62996942,
2.45959517, 2.52750434, 2.73833005, 2.52009 , 2.80933226,
1.63807085, 2.49230099, 2.55441614, 3.19256506, 2.52609288,
1.02931596, 2.40266963, 2.3306463 , 2.69094276, 2.60779985,
2.48351648, 2.45131766, 2.40526763, 2.03952569, 1.86217009,
1.79971848, 1.91772218, 1.85895421, 2.32725731, 2.28189713,
2.11835833, 2.09636517, 2.2230303 , 1.85863317, 1.77550406,
1.68862391, 1.79187765, 1.70887476, 1.81911193, 1.74802483,
1.65776432, 1.58012849, 1.67781494, 1.62451541, 1.60555884,
1.56172214, 1.60083809, 1.65256994, 2.74794704, 2.27089627,
1.80364982, 1.51412482, 1.77738757, 1.56979564, 2.46538633,
2.37679625, 2.40389294, 2.04165763, 1.82086407, 1.90609219,
1.87480978, 1.8877854 , 1.76080074, 1.68369028, 1.57419297,
1.66470126, 1.74522552, 1.72459756, 1.65510503, 1.72131148,
1.6254417 , 1.57091907, 1.68755268, 1.70307911, 1.59445121,
1.74393783, 1.72913779, 1.66883237, 1.59859545, 1.62335831,
1.73378184, 1.62621588, 1.79532164, 1.78289992, 1.79475101,
1.7826266 , 1.68778918, 1.64484127, 1.62332696, 1.75372393,
1.99038021, 1.87268137, 1.86124502, 1.82435911, 1.62927102,
1.66443723, 1.86743516, 1.62745098, 2.20200312, 2.09641026,
2.26649111, 2.63271605, 2.18050721, 2.57138433, 2.51833359,
2.74684184, 2.57209998, 2.63762019, 2.30027877, 2.28471286,
2.40323668, 2.37103313, 2.16414489, 1.01027109, 2.64181007,
2.45467765, 2.05773672, 1.73624917, 2.05233688, 2.70820669,
2.65594222, 2.67445635, 2.37212985, 2.48221803, 2.77655216,
2.62839879, 2.26481307, 2.58005799, 2.1188172 , 2.14017268,
2.16459571, 1.95083406, 1.46224418]
Fitting a piecewise linear function is a nonlinear optimization problem which may have local optimas. The result you see is probably one of the local optimas where your optimization algorithm gets stuck.
One way to solve this problem is to repeat your optimization algorithm with different initial values and take the best fit. I used the mean absolute error (MAE) to compare the different fits against each other.
perr = np.sum(np.abs(y1-piecewise(x1, *p)))
I also changed your piecewise funtion because it was a bit confusing for me. But it still a piecewise function as before
Further think you forgot to extend the x and xd array to the value of 21. (thats why the green line ends early).
from scipy import optimize
import matplotlib.pyplot as plt
import numpy as np
def piecewise(x,x0,x1,y0,y1,k0,k1,k2):
return np.piecewise(x , [x <= x0, np.logical_and(x0<x, x<= x1),x>x1] , [lambda x:k0*x + y0, lambda x:k1*(x-x0)+y1+k0*x0,
lambda x:k2*(x-x1) + y0+y1+k0*x0+k1*(x1-x0)])
x1 = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ,11, 12, 13, 14, 15,16,17,18,19,20,21], dtype=float)
y1 = np.array([5, 7, 9, 11, 13, 15, 28.92, 42.81, 56.7, 70.59, 84.47, 98.36, 112.25, 126.14, 140.03,145,147,149,151,153,155])
x = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ,11, 12, 13, 14, 15,16,17,18,19,20,21], dtype=float)
y = np.array([5, 7, 9, 11, 13, 15, 28.92, 42.81, 56.7, 70.59, 84.47, 98.36, 112.25, 126.14, 140.03,145,147,149,151,153,155])
perr_min = np.inf
p_best = None
for n in range(100):
k = np.random.rand(7)*20
p , e = optimize.curve_fit(piecewise, x1, y1,p0=k)
perr = np.sum(np.abs(y1-piecewise(x1, *p)))
if(perr < perr_min):
perr_min = perr
p_best = p
xd = np.linspace(0, 21, 100)
plt.figure()
plt.plot(x1, y1, "o")
y_out = piecewise(xd, *p_best)
plt.plot(xd, y_out)
plt.show()
this gives me:
with p = [ 6.34259491 15.00000023 2.97272604 7.05498314 2.00751828
13.88881542 1.99960597]
Edit1
You edited your question, and this ist the answer to the edited one.
Sorry Iam new at stackoverlfow and not sure if I should post another answer instead
In your second dataset you added noise to data. In my opinion there are two kinds of noises. A gaussian one, which places the points close to the underlying piecewise line and outlier noise which places points far away from the original underlying line.
Under the hood the optimization algorithm you use optimizes the following according to p:
E = sum(square(y-piecewise(x,p)))
http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html#scipy.optimize.curve_fit
The gaussian noise is not very problematic. The optimization you use assumes indirectly this gaussian noise (by minimizing the least square error) and fits the line as good as possible. The real problem comes in with the outliers.
The problem is that outliers are far way from the original function. Even if the optimization tries the optimal parameters, the Energy function E will be not minimal, as your outliers are far away from the original function and this distance is even squared so it shifts away the minimum of the Function E far away from the true parameters of your function.
So whats the solution ?
Get rid of the outliers.
An automized approach to to that is ransac
https://en.wikipedia.org/wiki/RANSAC.
In Brief: You choose a random subset of the original data. You hope the subset has not outliers. You fit your function to the subset and discard the points, which are far way from the fitted function. If enough points survived this step, you take all the surviving points and repeat the fit. The error on this "inlier" set is a measure of the quality of your fit. Then you repeat the whole process and take the best final fit.
I ajusted my script accordingly:
from scipy import optimize
import matplotlib.pyplot as plt
import numpy as np
def piecewise(x,x0,x1,y0,y1,k0,k1,k2):
return np.piecewise(x , [x <= x0, np.logical_and(x0<x, x<= x1),x>x1] , [lambda x:k0*x + y0, lambda x:k1*(x-x0)+y1+k0*x0,
lambda x:k2*(x-x1) + y0+y1+k0*x0+k1*(x1-x0)])
x = np.array(x)
y = np.array(y)
x1 = x
y1 = y
perr_min = np.inf
p_best = None
for n in range(100):
idx = np.random.choice(np.arange(len(x)), 10, replace=False)
x_sample = x[idx]
y_sample = y[idx]
k = np.random.rand(7)*20
try:
p , e = optimize.curve_fit(piecewise, x_sample,y_sample ,p0=k)
each_error = np.abs(y-piecewise(x, *p))
x_inliner = x[each_error < 1]
y_inlier = y[each_error < 1]
if(x_inliner.shape[0] < 0.8 * x.shape[0]):
continue
p_inlier , e_inlier = optimize.curve_fit(piecewise, x_inliner,y_inlier ,p0=p)
perr = np.sum(np.abs(y-piecewise(x, *p_inlier)))
if(perr < perr_min):
perr_min = perr
p_best = p_inlier
except RuntimeError:
pass
xd = np.linspace(0, 21, 100)
plt.figure()
plt.plot(x, y, "o")
y_out = piecewise(xd, *p_best)
plt.plot(xd, y_out)
print p_best
plt.show()
With 100 repetitions I get the following result:
The piecewise-regression python library can fit models with different numbers of breakpoints.
First of all, for demonstration purposes generate some data with 2 breakpoints:
import numpy as np
gradients = [2.5,12,2]
constant = 0
breakpoints = [6, 15]
n_points = 100
np.random.seed(1)
xx = np.linspace(0, 25, n_points)
yy = constant + gradients[0]*xx + np.random.normal(size=n_points)*10
for bp_n in range(len(breakpoints)):
yy += (gradients[bp_n+1] - gradients[bp_n]) * np.maximum(xx - breakpoints[bp_n], 0)
To fit and plot the model:
import piecewise_regression
import matplotlib.pyplot as plt
pw_fit = piecewise_regression.Fit(xx, yy, n_breakpoints=2)
pw_fit.plot()
plt.xlabel("x")
plt.ylabel("y")
plt.show()
It also gives you a statistical analysis:
pw_fit.summary()
It won't work well with the data you provided in your edit, because there are outliers that dominate the error cost function. This will be an issue whichever method you use to fit the data, you need to decide how to handle the outliers in this instance.

Minimize objective function using limfit.minimize in Python

I am having a problem with package lmfit.minimize minimization procedure. Actually, I could not create a correct objective function for my problem.
Problem definition
My function: yn = a_11*x1**2 + a_12*x2**2 + ... + a_m*xn**2,where xn- unknowns, a_m -
coefficients. n = 1..N, m = 1..M
In my case, N=5 for x1,..,x5 and M=3 for y1, y2, y3.
I need to find the optimum: x1, x2,...,x5 so that it can satisfy the y
My question:
Error: ValueError: operands could not be broadcast together with shapes (3,) (3,5).
Did I create the objective function of my problem properly in Python?
My code:
import numpy as np
from lmfit import Parameters, minimize
def func(x,a):
return np.dot(a, x**2)
def residual(pars, a, y):
vals = pars.valuesdict()
x = vals['x']
model = func(x,a)
return y - model
def main():
# simple one: a(M,N) = a(3,5)
a = np.array([ [ 0, 0, 1, 1, 1 ],
[ 1, 0, 1, 0, 1 ],
[ 0, 1, 0, 1, 0 ] ])
# true values of x
x_true = np.array([10, 13, 5, 8, 40])
# data without noise
y = func(x_true,a)
#************************************
# Apriori x0
x0 = np.array([2, 3, 1, 4, 20])
fit_params = Parameters()
fit_params.add('x', value=x0)
out = minimize(residual, fit_params, args=(a, y))
print out
if __name__ == '__main__':
main()
Directly using scipy.optimize.minimize() the code below solves this problem. Note that with more points yn you will tend to get the same result as x_true, otherwise more than one solution exists. You can minimize the effect of the ill-constrained optimization by adding boundaries (see the bounds parameter used below).
import numpy as np
from scipy.optimize import minimize
def residual(x, a, y):
s = ((y - a.dot(x**2))**2).sum()
return s
def main():
M = 3
N = 5
a = np.random.random((M, N))
x_true = np.array([10, 13, 5, 8, 40])
y = a.dot(x_true**2)
x0 = np.array([2, 3, 1, 4, 20])
bounds = [[0, None] for x in x0]
out = minimize(residual, x0=x0, args=(a, y), method='L-BFGS-B', bounds=bounds)
print(out.x)
If M>=N you could also use scipy.optimize.leastsq for this task:
import numpy as np
from scipy.optimize import leastsq
def residual(x, a, y):
return y - a.dot(x**2)
def main():
M = 5
N = 5
a = np.random.random((M, N))
x_true = np.array([10, 13, 5, 8, 40])
y = a.dot(x_true**2)
x0 = np.array([2, 3, 1, 4, 20])
out = leastsq(residual, x0=x0, args=(a, y))
print(out[0])

Categories

Resources