So I have this DataFrame with 3 columns 'Order ID, 'Order Qty' and 'Fill Qty'
I want to sum the Fill Qty per order then compare it to Order Qty, Ideally I will return only a dataframe that gives me Order ID whenever aggregate Fill Qty is greater than Order Qty.
In SQL I think what I'm looking for is
SELECT * FROM DataFrame GROUP BY Order ID, Order Qty HAVING sum(Fill Qty)>Order Qty
So far I have this:
SumFills= DataFrame.groupby(['Order ID','Order Qty']).sum()
output:
....................................Fill Qty
Order ID - Order Qty -
1--------- 300 --------- 300
2 --------- 80 ----------- 40
3 --------- 20 ----------- 20
4 --------- 110 ---------- 220
5 --------- 100 ---------- 200
6 --------- 100 ---------- 200
Above is aggregated already, I would ideally like to return a list/array of [4,5,6] since those have sum(fill qty) > Order Qty
View original dataframe:
In [57]: print original_df
Order Id Fill Qty Order Qty
0 1 419 334
1 2 392 152
2 3 167 469
3 4 470 359
4 5 447 441
5 6 154 190
6 7 365 432
7 8 209 181
8 9 140 136
9 10 112 358
10 11 384 302
11 12 307 376
12 13 119 237
13 14 147 342
14 15 279 197
15 16 280 137
16 17 148 381
17 18 313 498
18 19 193 328
19 20 291 193
20 21 100 357
21 22 161 286
22 23 453 168
23 24 349 283
Create and view new dataframe summing the Fill Qty:
In [58]: new_df = original_df.groupby(['Order Id','Order Qty'], as_index=False).sum()
In [59]: print new_df
Order Id Order Qty Fill Qty
0 1 334 419
1 2 152 392
2 3 469 167
3 4 359 470
4 5 441 447
5 6 190 154
6 7 432 365
7 8 181 209
8 9 136 140
9 10 358 112
10 11 302 384
11 12 376 307
12 13 237 119
13 14 342 147
14 15 197 279
15 16 137 280
16 17 381 148
17 18 498 313
18 19 328 193
19 20 193 291
20 21 357 100
21 22 286 161
22 23 168 453
23 24 283 349
Slice new dataframe to only those rows where Fill Qty > Order Qty:
In [60]: new_df = new_df.loc[new_df['Fill Qty'] > new_df['Order Qty'],:]
In [61]: print new_df
Order Id Order Qty Fill Qty
0 1 334 419
1 2 152 392
3 4 359 470
4 5 441 447
7 8 181 209
8 9 136 140
10 11 302 384
14 15 197 279
15 16 137 280
19 20 193 291
22 23 168 453
23 24 283 349
Related
I have a dataframe that looks like this.
SectorID MyDate PrevMainCost OutageCost
0 123 10/31/2022 332 193
1 123 9/30/2022 308 269
2 123 8/31/2022 33 440
3 123 7/31/2022 230 147
4 123 6/30/2022 264 184
5 123 5/31/2022 290 46
6 123 4/30/2022 51 150
7 123 3/31/2022 69 253
8 123 2/28/2022 257 308
9 123 1/31/2022 441 349
10 456 10/31/2022 280 188
11 456 9/30/2022 432 150
12 456 8/31/2022 357 307
13 456 7/31/2022 425 45
14 456 6/30/2022 101 278
15 456 5/31/2022 62 240
16 456 4/30/2022 407 46
17 456 3/31/2022 35 218
18 456 2/28/2022 403 113
19 456 1/31/2022 295 200
20 456 12/31/2021 20 235
21 456 11/30/2021 440 403
22 789 10/31/2022 145 181
23 789 9/30/2022 320 259
24 789 8/31/2022 485 472
25 789 7/31/2022 59 24
26 789 6/30/2022 345 64
27 789 5/31/2022 34 480
28 789 4/30/2022 260 162
29 789 3/31/2022 46 399
30 999 10/31/2022 491 346
31 999 9/30/2022 77 212
32 999 8/31/2022 316 112
33 999 7/31/2022 106 351
34 999 6/30/2022 481 356
35 999 5/31/2022 20 269
36 999 4/30/2022 246 268
37 999 3/31/2022 377 173
38 999 2/28/2022 426 413
39 999 1/31/2022 341 168
40 999 12/31/2021 144 471
41 999 11/30/2021 358 393
42 999 10/31/2021 340 197
43 999 9/30/2021 119 252
44 999 8/31/2021 470 203
45 999 7/31/2021 359 163
46 999 6/30/2021 410 383
47 999 5/31/2021 200 119
48 999 4/30/2021 230 291
I am trying to find the minimum of PrevMainCost and OutageCost, after grouping by SectorID. Here's my primitive code.
import numpy as np
import pandas
df = pandas.read_clipboard(sep='\\s+')
df
df_sum = df.groupby('SectorID').sum()
df_sum
df_sum.loc[df_sum['PrevMainCost'] <= df_sum['OutageCost'], 'Result'] = 'Main'
df_sum.loc[df_sum['PrevMainCost'] > df_sum['OutageCost'], 'Result'] = 'Out'
Result: (result column shows flags whether PrevMainCost is lower or OutageCost is lower)
PrevMainCost OutageCost Result
SectorID
123 2275 2339 Main
456 3257 2423 Out
789 1694 2041 Main
999 5511 5140 Out
I am trying to figure out how to use Scipy Optimization to solve this problem. I Googled this problem and came up with this simple code sample.
from scipy.optimize import *
df_sum.groupby(by=['SectorID']).apply(lambda g: minimize(equation, g.Result, options={'xtol':0.001}).x)
When I run that, I get an error saying 'NameError: name 'equation' is not defined'.
How can I find the minimum of either the preventative maintenance cost or the outage cost, after grouping by SectorID? Also, how can I add some kind of constraint, such as no more than 30% of all resources can be used by one any particular SectorID?
I have a 2 X 2 mattrix that looks like this :
DNA_pol3_beta_3 121 Paja_0001_peg_[locus_tag=BCY86_RS00005] 384 1.2e+03 16 44 23 49
DNA_pol3_beta_3 121 Paja_0001_peg_[locus_tag=BCY86_RS00005] 384 6.3e-27 2 121 264 383
DNA_pol3_beta_2 116 Paja_0001_peg_[locus_tag=BCY86_RS00005] 384 3.7 2 96 5 95
DNA_pol3_beta_2 116 Paja_0001_peg_[locus_tag=BCY86_RS00005] 384 5e-20 3 115 133 260
DNA_pol3_beta_2 116 Paja_0001_peg_[locus_tag=BCY86_RS00005] 384 1.3e+03 3 21 277 295
DNA_pol3_beta_2 116 Paja_0001_peg_[locus_tag=BCY86_RS00005] 384 4.1e+03 14 29 345 360
DNA_pol3_beta 121 Paja_0001_peg_[locus_tag=BCY86_RS00005] 384 6.9e-18 1 121 1 121
DNA_pol3_beta 121 Paja_0001_peg_[locus_tag=BCY86_RS00005] 384 4.1e+02 30 80 157 209
DNA_pol3_beta 121 Paja_0001_peg_[locus_tag=BCY86_RS00005] 384 0.94 2 101 273 369
SMC_N 220 Paja_0002_peg_[locus_tag=BCY86_RS00010] 378 1.2e-14 3 199 19 351
AAA_21 303 Paja_0002_peg_[locus_tag=BCY86_RS00010] 378 0.00011 1 32 40 68
AAA_21 303 Paja_0002_peg_[locus_tag=BCY86_RS00010] 378 0.0015 231 300 279 352
AAA_15 369 Paja_0002_peg_[locus_tag=BCY86_RS00010] 378 4e-05 4 53 19 67
AAA_15 369 Paja_0002_peg_[locus_tag=BCY86_RS00010] 378 8.8e+02 347 363 332 348
AAA_23 200 Paja_0002_peg_[locus_tag=BCY86_RS00010] 378 0.0014 3 41 22 60
I want to filter out the results so that for example, for the item "DNA_pol3_beta_3" there are 2 entries. out of these two entries, I want to extract only that row whose respective value at the 5th column is the lowest. so that means, out of the two entries :
DNA_pol3_beta_3 121 Paja_0001_peg_[locus_tag=BCY86_RS00005] 384 6.3e-27 2 121 264 383
the above one should be in the result. similarly for "DNA_pol3_beta_2" there are 4 entries and the program should extract only
DNA_pol3_beta_2 116 Paja_0001_peg_[locus_tag=BCY86_RS00005] 384 5e-20 3 115 133 260
because it has the lowest value of 5th column among 4. Also, the program should ignore the entries whose value at 5th column is less than 1E-5.
i tried following code :
for i in lines:
if lines[i+1] == lines [i]:
if lines[i+1][4] > lines [i][4]:
evalue = lines[i][4]
else:
evalue = lines[i+1][4]
You would better use pandas for this. See below:
import pandas as pd
df=pd.read_csv('yourfile.txt', sep=' ', skipinitialspace=True, names=(range(9)))
df=df[df[4]>=0.00001]
result=df.loc[df.groupby(0)[4].idxmin()].sort_index().reset_index(drop=True)
Output:
>>> print(result)
0 1 2 3 4 5 6 7 8
0 DNA_pol3_beta_3 121 Paja_0001_peg_[locus_tag=BCY86_RS00005] 384 1200.00000 16 44 23 49
1 DNA_pol3_beta_2 116 Paja_0001_peg_[locus_tag=BCY86_RS00005] 384 3.70000 2 96 5 95
2 DNA_pol3_beta 121 Paja_0001_peg_[locus_tag=BCY86_RS00005] 384 0.94000 2 101 273 369
3 AAA_21 303 Paja_0002_peg_[locus_tag=BCY86_RS00010] 378 0.00011 1 32 40 68
4 AAA_15 369 Paja_0002_peg_[locus_tag=BCY86_RS00010] 378 0.00004 4 53 19 67
5 AAA_23 200 Paja_0002_peg_[locus_tag=BCY86_RS00010] 378 0.00140
If you want the file back to csv, you can save it with df.to_csv()
This question already has answers here:
Set maximum value (upper bound) in pandas DataFrame
(3 answers)
Closed 3 years ago.
I have some data that that looks like this:
Date X Y Z
0 Jan-18 247 58 163
1 Feb-18 399 52 182
2 Mar-18 269 209 186
3 Apr-18 124 397 353
4 May-18 113 387 35
5 Jun-18 6 23 3
6 Jul-18 335 284 34
7 Aug-18 154 364 72
8 Sep-18 159 291 349
9 Oct-18 199 253 201
10 Nov-18 106 334 117
11 Dec-18 38 274 23
12 Jan-19 6 326 102
13 Feb-19 124 237 339
14 Mar-19 263 68 75
15 Apr-19 121 116 21
Using python I want to be able to set a maximum value that each value can be. I wan't the maximum to be 300, so that any entry that is over 300 (e.g. 326) is changed to 300.
My desired result looks like this:
Date x y z
0 Jan-18 247 58 163
1 Feb-18 300 52 182
2 Mar-18 269 209 186
3 Apr-18 124 300 300
4 May-18 113 300 35
5 Jun-18 6 23 3
6 Jul-18 300 284 34
7 Aug-18 154 300 72
8 Sep-18 159 291 300
9 Oct-18 199 253 201
10 Nov-18 106 300 117
11 Dec-18 38 274 23
12 Jan-19 6 300 102
13 Feb-19 124 237 300
14 Mar-19 263 68 75
15 Apr-19 121 116 21
Is this achievable to do in Python?
Thanks.
Sure you can using
df.loc[:,'X':]=df.loc[:,'X':].clip_upper(300)
df
Out[118]:
Date X Y Z
0 Jan-18 247 58 163
1 Feb-18 300 52 182
2 Mar-18 269 209 186
3 Apr-18 124 300 300
4 May-18 113 300 35
5 Jun-18 6 23 3
6 Jul-18 300 284 34
7 Aug-18 154 300 72
8 Sep-18 159 291 300
9 Oct-18 199 253 201
10 Nov-18 106 300 117
11 Dec-18 38 274 23
12 Jan-19 6 300 102
13 Feb-19 124 237 300
14 Mar-19 263 68 75
15 Apr-19 121 116 21
Or
df=df.mask(df>300,300)
I have a dataframe as shown below:
Category 1 2 3 4 5 6 7 8 9 10 11 12 13
A 424 377 161 133 2 81 141 169 297 153 53 50 197
B 231 121 111 106 4 79 68 70 92 93 71 65 66
C 480 379 159 139 2 116 148 175 308 150 98 82 195
D 88 56 38 40 0 25 24 55 84 36 24 26 36
E 1084 1002 478 299 7 256 342 342 695 378 175 132 465
F 497 246 283 206 4 142 151 168 297 224 194 198 148
H 8 5 4 3 0 2 3 2 7 5 3 2 0
G 3191 2119 1656 856 50 826 955 739 1447 1342 975 628 1277
K 58 26 27 51 1 18 22 42 47 35 19 20 14
S 363 254 131 105 6 82 86 121 196 98 81 57 125
T 54 59 20 4 0 9 12 7 36 23 5 4 20
O 554 304 207 155 3 130 260 183 287 204 98 106 195
P 756 497 325 230 5 212 300 280 448 270 201 140 313
PP 64 43 26 17 1 15 35 17 32 28 18 9 27
R 265 157 109 89 1 68 68 104 154 96 63 55 90
S 377 204 201 114 5 112 267 136 209 172 147 90 157
St 770 443 405 234 5 172 464 232 367 270 290 136 294
Qs 47 33 11 14 0 18 14 19 26 17 5 6 13
Y 1806 626 1102 1177 14 625 619 1079 1273 981 845 891 455
W 123 177 27 28 0 18 62 34 64 27 14 4 51
Z 2770 1375 1579 1082 17 900 1630 1137 1465 1383 861 755 1201
I want to sort the dataframe by values in each row. Once done, I want to sort the index also.
For example the values in first row corresponding to category A, should appear as:
2 50 53 81 133 141 153 161 169 197 297 377 424
I have tried df.sort_values(by=df.index.tolist(), ascending=False, axis=1) but this doesn't work. The values don't appear in sorted order at all
np.sort + sort_index
You can use np.sort along axis=1, then sort_index:
cols, idx = df.columns[1:], df.iloc[:, 0]
res = pd.DataFrame(np.sort(df.iloc[:, 1:].values, axis=1), columns=cols, index=idx)\
.sort_index()
print(res)
1 2 3 4 5 6 7 8 9 10 11 12 \
Category
A 2 50 53 81 133 141 153 161 169 197 297 377
B 4 65 66 68 70 71 79 92 93 106 111 121
C 2 82 98 116 139 148 150 159 175 195 308 379
D 0 24 24 25 26 36 36 38 40 55 56 84
E 7 132 175 256 299 342 342 378 465 478 695 1002
F 4 142 148 151 168 194 198 206 224 246 283 297
G 50 628 739 826 856 955 975 1277 1342 1447 1656 2119
H 0 0 2 2 2 3 3 3 4 5 5 7
K 1 14 18 19 20 22 26 27 35 42 47 51
O 3 98 106 130 155 183 195 204 207 260 287 304
P 5 140 201 212 230 270 280 300 313 325 448 497
PP 1 9 15 17 17 18 26 27 28 32 35 43
Qs 0 5 6 11 13 14 14 17 18 19 26 33
R 1 55 63 68 68 89 90 96 104 109 154 157
S 6 57 81 82 86 98 105 121 125 131 196 254
S 5 90 112 114 136 147 157 172 201 204 209 267
St 5 136 172 232 234 270 290 294 367 405 443 464
T 0 4 4 5 7 9 12 20 20 23 36 54
W 0 4 14 18 27 27 28 34 51 62 64 123
Y 14 455 619 625 626 845 891 981 1079 1102 1177 1273
Z 1 17 755 861 900 1082 1137 1375 1383 1465 1579 1630
One way is to apply sorted setting 1 as axis, applying pd.Series to return a dataframe instead of a list, and finally sorting by Category:
df.loc[:,'1':].apply(sorted, axis = 1).apply(pd.Series)
.set_index(df.Category).sort_index()
Category 0 1 2 3 4 5 6 7 8 9 10 ...
0 A 2 50 53 81 133 141 153 161 169 197 297 ...
1 B 4 65 66 68 70 71 79 92 93 106 111 ...
I have a dataframe containing many rows of the following form.
> all_rel = pandas.read_csv('../data/sv_abundances.csv')
> all_rel.head()
name day sample count tax_id rel
0 seq00000079;size=189384 204 37 1060 CYCL 0.122275
1 seq00000102;size=143633 204 37 639 SPLEN 0.073711
2 seq00000123;size=118889 204 37 813 723171 0.093782
3 seq00000326;size=50743 204 13 470 553239 0.097571
4 seq00000332;size=49099 204 13 468 TAS 0.097156
My goal is to get the top 5 rows sorted by the rel column for each unique combination of day, sample, and count. I have the unique combinations in a dataframe:
#get combinations of days, tax_ids, and samples present in dataset
> t = all_rel.drop_duplicates(['day', 'tax_id', 'sample'])[['day', 'tax_id', 'sample']]
> t.head()
day tax_id sample
0 204 CYCL 37
1 204 SPLEN 37
2 204 723171 37
3 204 553239 13
4 204 TAS 13
The only way I know to accomplish the goal is to use a for loop to iterate over the unique combinations and build up a dataframe.
hacky_df = pandas.DataFrame()
for (day, tax_id, sample) in t.values:
match = all_rel[(all_rel['tax_id']==tax_id) & (all_rel['day']==day) & (all_rel['sample']==sample)]
top_5 = match.sort('rel', ascending=False).head()
hacky_df.append(top_5)
hacky_df.head()
But this takes a long time (still hasn't finished) and doesn't take advantage of the fact that these are numpy arrays under the hood. Is there a way to accomplish my goal with a pandas.df.apply call instead of using a for loop?
The following code gave the intended results:
top_5_df = all_rel.sort('rel', ascending=False).groupby(['day', 'tax_id', 'sample']).head(5).sort(['day', 'sample', 'tax_id'])
print top_5_df.head(20)
name day sample count tax_id rel
136 seq00025622;size=605 204 13 28 188144 0.005813
2596 seq07169587;size=2 204 13 2 188144 0.000415
2438 seq05675680;size=2 204 13 2 188144 0.000415
2419 seq05517001;size=2 204 13 2 188144 0.000415
2123 seq03049127;size=3 204 13 1 188144 0.000208
4448 seq42562010;size=1 204 13 1 28173 0.000208
60 seq00008910;size=1787 204 13 15 335972 0.003114
1074 seq00182900;size=72 204 13 2 335972 0.000415
2151 seq03232487;size=3 204 13 1 335972 0.000208
3302 seq20519515;size=1 204 13 1 335972 0.000208
2451 seq05760125;size=2 204 13 1 335972 0.000208
750 seq00099976;size=139 204 13 23 428643 0.004775
2546 seq06674971;size=2 204 13 2 428643 0.000415
2207 seq03714229;size=3 204 13 1 428643 0.000208
3234 seq19173942;size=1 204 13 1 428643 0.000208
3201 seq18402810;size=1 204 13 1 428643 0.000208
3 seq00000326;size=50743 204 13 470 553239 0.097571
531 seq00066543;size=216 204 13 45 553239 0.009342
72 seq00010509;size=1528 204 13 17 553239 0.003529
117 seq00021191;size=745 204 13 11 553239 0.002284
df.groupby().head() will call head() on each group independently and return a dataframe of the resulting rows.
Here are the docs: http://pandas.pydata.org/pandas-docs/stable/groupby.html#filtration