Using Fibonacci Program to Sum Even Elements - python

I am trying to solve the following using Python:
Each new term in the Fibonacci sequence is generated by adding the previous two terms. By starting with 1 and 2, the first 10 terms will be:
1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...
By considering the terms in the Fibonacci sequence whose values do not exceed four million, find the sum of the even-valued terms.
So far, I have been able to generate the Fibonacci elements but in trying to sum the even elements, my code seems to stall. Here is the code below:
def fib(n):
if n==0:
return 0
elif n==1:
return 1
if n>1:
return fib(n-1)+fib(n-2)
n=0
total=0
while fib(n)<=4000000:
if fib(n)%2==0:
total+=fib(n)
print(total)
Any suggestions would be welcome.

You have an infinite loop as n isn't ever incremented up from zero in your while loop. Additionally, why not sum your Fibonacci total as well as find the next Fibonacci value in the same while loop, like this:
x= 1
y=1
total = 0
while x <= 4000000:
if x % 2 == 0:
total += x
x, y = y, x + y
print (total)
Outputs:
4613732

since this looks like a homework assignment, I threw in some interesting Python
from math import sqrt
# Using Binet's formula
def fib(n):
return int(((1+sqrt(5))**n-(1-sqrt(5))**n)/(2**n*sqrt(5)))
def sum_even_terms(limit = 4000000):
n = total = 0
while True:
term = fib(n)
n += 1
if term > limit: break
if term % 2 == 0:
total += term
return total
print sum_even_terms()
def is_nth_term_even(n):
return (fib(n) % 2 == 0)
print is_nth_term_even(30)

Just for fun, here's a really short solution:
def fib_even_sum(limit=4*10**6):
"""Sum of the even Fibonacci numbers up to the given limit."""
b, c = 1, 2
while c <= limit:
a = b + c; b = c + a; c = a + b
return b // 2
print fib_even_sum() # outputs 4613732
It's based on the following facts:
Every third Fibonacci number is even.
If Fib(n) is even, then the sum of the even Fibonacci numbers up to Fib(n) is equal to the sum of the odd Fibonacci numbers up to Fib(n) (because each even Fibonacci number is the sum of the two preceding odd Fibonacci numbers).
The sum of all Fibonacci numbers (even and odd) up to and including Fib(n) is Fib(n+2) - 1 (via an easy proof by induction).
So if Fib(n) is the last even number to be included in the sum, then
the total you want is just (Fib(n+2) - 1) / 2.

You can also use a generator and add the numbers
def fib():
a, b = 0, 1
while 1:
yield a
a, b = b, a + b
f = fib()
total = 0
while total <= 4000000:
current = f.next()
if current % 2 == 0:
total += current
print total

Related

How do I write a function that finds the sum of factorial of even numbers?

I've got a question- how do I write a function sum_even_factorials that finds the sum of the factorials of the even numbers that are less than or equal to n.
Eg:
sum_even_factorials(1)=
1
sum_even_factorials (3)=
3
sum_even_factorials (6)=
747
This is my current code:
Is there a logical error in the current code?
Is there a logical error in the current code?
To begin with, function sum_even_factorial doesn't return a value in every execution flow:
if cond1:
return val1
elif cond2:
return val2
else: # this part is missing in your code
return val3
In addition, note that when you call this function, you are not doing anything with the value that it returns:
sum_even_factorial(6)
Finally, although parts of your code are not visible in your question, I tend to guess that you cannot recursively compute the factorials of even numbers the way you did it, because the factorial of an even number n depends on the factorial of the odd number n - 1.
I think the code needs a loop. I'd write it like so:
def factorial(n):
if n == 0 or n == 1:
return 1;
else:
return n * factorial(n-1)
def sum_even_factorial(n):
current_sum = 0
while n >= 0:
if n % 2 == 0:
current_sum += factorial(n)
n -= 1
return current_sum
print(sum_even_factorial(6))
If you return tuples from the function, you can do it with one single function. See the comments in the code on how it works ...
def factorial_with_sum(n):
if n < 2:
return 1, 0 # first item of the tuple is the factorial, second item is the sum
else:
f, s = factorial_with_sum(n - 1) # calc factorial and sum for n - 1
f = f * n # factorial = n * factorial (n - 1)
if n % 2 == 0:
s = s + f # if n is even, add the current factorial to the sum
return f, s
fact, sum = factorial_with_sum(6)
print(fact)
print(sum)
You can also do it iteratively with a simple for loop as follows
def factorial_with_sum_iterative(n):
s = 0 # initialize sum
f = 1 # and factorial
for i in range(2, n + 1): # iterate from 2 to n
f = f * i # calculate factorial for current i
if i % 2 == 0:
s = s + f # if current i is even, add it to sum
return f, s

Project Euler #23 efficiency

I am trying to write a program in python to answer the following problem:
A perfect number is a number for which the sum of its proper divisors is exactly equal to the number. For example, the sum of the proper divisors of 28 would be 1 + 2 + 4 + 7 + 14 = 28, which means that 28 is a perfect number.
A number n is called deficient if the sum of its proper divisors is less
than n and it is called abundant if this sum exceeds n.
As 12 is the smallest abundant number, 1 + 2 + 3 + 4 + 6 = 16, the smallest number that can be written as the sum of two abundant numbers is 24.
By mathematical analysis, it can be shown that all integers greater than 28123 can be written as the sum of two abundant numbers. However, this upper limit cannot be reduced any further by analysis, even though it is known that the greatest number that cannot be expressed as the sum of two abundant numbers is less than this limit.
Find the sum of all the positive integers which cannot be written as the sum of two abundant numbers.
So here is my code which should theoretically work but which is way too slow.
import math
import time
l = 28123
abondant = []
def listNumbers():
for i in range(1, l):
s = 0
for k in range(1, int(i / 2) + 1):
if i % k == 0:
s += k
if s > i:
abondant.append(i)
def check(nb):
for a in abondant:
for b in abondant:
if a + b == nb:
return False
return True
def main():
abondant_sum = 0
for i in range(12, l):
if check(i):
abondant_sum += i
return abondant_sum
start = time.time()
listNumbers()
print(main())
end = time.time()
print("le programme a mis ", end - start, " ms")
How can I make my program more efficient?
Checking until half and summing up all passing numbers is very inefficient.
Try to change
for k in range(1, int(i / 2) + 1):
if i % k == 0:
s += k
to
for k in range(1, int(i**0.5)+1):
if i % k == 0:
s += k
if k != i//k:
s += i//k
The thing is that you make a double iteration on "abondant" in the check function that you call 28111 times.
It would be much more efficient to only compute a set of all a+b once and then check if your number is inside.
Something like:
def get_combinations():
return set(a+b for a in abondant for b in abondant)
And then maybe for the main function:
def main():
combinations = get_combinations()
non_abondant = filter(lambda nb: nb not in combinations, range(12,l))
return sum(non_abondant)
Once you have the list of abundant number you can make a list result = [False] * 28123 and then
for a in abondant:
for b in abondant:
result[min(a+b, 28123)] = True
Then
l = []
for i in range(len(result)):
if not result[i]:
l.append(i)
print(l)

Sum of Even Fibonacci Numbers < X

I'm working on this one and I seem to have a working solution but I have difficulty understanding its behaviour.
Here is what I have.
#!/usr/bin/python
def even_fib_sums(limit):
number = 1
last = 0
before_last = 0
total = 0
for counter in range (0,limit):
before_last = last
last = number
number = before_last + last
if not number % 2:
total += number
yield total
print sum(even_fib_sums(4000000))
I'm new to programming but it makes sense to me that this is not very effective considering I need to cycle through all 4000000 numbers in the range.
If I use the same approach in generating the Fibonacci sequence up to 5 as follows, you will see the results below.
def generate_fib(limit):
number = 1
last = 0
before_last = 0
total = 0
for counter in range (0,limit):
before_last = last
last = number
number = before_last + last
print number
generate_fib(5)
Result: 1,2,3,5,8
Of these numbers in the result, only 2 and 8 % 2 == 0.
The sum should be 10 but I am returning 12 if I am to use the first snippet above. Why so?
By considering the terms in the Fibonacci sequence whose values do not exceed four million, find the sum of the even-valued terms.
You only need to loop until you hit a fib that is > 400000 not the 4 millionth fibonacci number which your code is trying to do, you can simplify to a using generator function with sum, only yielding even numbers and breaking the loop when you hit a fibonacci number > 4000000:
def fib(n):
a, b = 0, 1
while a <= n:
a, b = b, a + b
if not b & 1:
yield b
print(sum(fib(4000000)))
It takes a fraction of a second to compute:
In [5]: timeit sum(fib(4000000))
100000 loops, best of 3: 6 µs per loop
trying to timeit even_fib_sums(4000000) is still running after a few minutes.
by using for counter in range(0, limit) you are having 'limit' iteration in your function. for example, if your 'limit' variable is 10, you won't have the sum of even fibonachi numbers that are less than 10, but you will have the sum of the first 10 fibonachi numbers that are even.
To make your code works properly, you need to remplace for counter in range(0, limit) by while last < limit, and each time you find that last is even, you add it to total.
You can probably clean up that generating function a bit. Here is how I would write it.
def fib(x):
a = 1
b = 1
yield a
yield b
a,b = b,a+b
while b<=x:
yield b
a,b = b,a+b
This will give you a generating function which will give you all Fibonacci numbers less than or equal to x (we should be a little more careful here, as we will return the first two numbers no matter what).
Then we can just do
sum(x for x in fib(4000000) if x%2==0)
You should change your code to just yield the number, not the sum or just change yield to return, and remove the sum() keyworkd like this:
def even_fib_sums(limit):
number = 1
last = 0
before_last = 0
total = 0
for counter in range (0,limit):
before_last = last
last = number
number = before_last + last
if not number % 2:
total += number
return total
print even_fib_sums(5)
In the first code snippet, you sum the total of round numbers, instead of just yielding the number. If you expect to get 10 in your first snippet for an input of 5, you should amend the code in either of the following ways (not trying to be efficient here, just to fix the problem):
...
number = before_last + last
if not number % 2:
yield number
print sum(even_fib_sums(4000000))
or
...
number = before_last + last
if not number % 2:
total += number
return total
print even_fib_sums(4000000)

Solving Project Euler #2 in Python

I am attempting to do Project Euler problem #2. Which is:
Each new term in the Fibonacci sequence is generated by adding the previous two
terms. By starting with 1 and 2, the first 10 terms will be:
1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...
By considering the terms in the Fibonacci sequence whose values do not exceed
four million, find the sum of the even-valued terms.
However the terminal window hangs when I use the following code with 4000000. Smaller numbers run ok. Is there something about this code that is really inefficient, hence the lagginess?
n = int(raw_input("Enter the start number: "))
def fib_generator():
a, b = 0, 1
yield 0
while True:
a, b = b, a + b
yield a
def even_sum(fib_seq):
seq = []
seq = [next(fib_seq) for number in range(n)]
seq = [number for number in seq if number % 2 == 0]
return sum(seq)
def start():
fib = fib_generator()
even_sum = even_sum(fib)
print even_sum
start()
You have a bug. You're generating the first 4,000,000 Fibonacci numbers, but the problem statement only asks for those Fibonacci numbers whose values are not more than 4,000,000.
Since the Fibonacci numbers grow exponentially (Fn ~ 1.618n), you're generating some numbers with a very large number of digits (log10 Fn ~ n / 5) and that will take an immense amount of time.
Fix the bug, and you'll be okay.
You just need to add logic to stop when the next fibonacci number exceeds 4000000.
Also, I spy a potential problem with this line:
def start():
fib = fib_generator()
even_sum = even_sum(fib) #<--- right here
print even_sum
It isn't good to have a variable name the same as the function name.
Yes, there is something inefficient in your code, you load a very long list into memory twice, with your two seq = ... statements. Why not try one generator expression rather than two list comprehensions? Also, you could alter your Fibonacci generator to stop at a certain number:
def fib_generator(n):
a, b = 0, 1
while a < n:
yield a
a, b = b, a + b
def even_sum(fib_seq):
seq = (number for number in fib_seq if not number % 2)
return sum(seq)
def start():
n = int(raw_input('Enter max constraint: '))
fib_seq = fib_generator(n)
even_sum1 = even_sum(fib_seq)
print even_sum1
start()
This ran pretty fast for me
lst = []
num1 = 1
num2 = 2
sum = 0
jump = 0
next = 0
while next<4000000:
next = num1 + num2
if next<4000000:
if jump ==0:
num1 = next
jump = 1
else:
num2 = next
jump = 0
if next%2 == 0:
lst.append(next)
for item in lst:
sum+=item
print ''
print "Sum: ",
print sum

How do you implement the divisor function in code?

Overall Problem: Project Euler 12 - What is the value of the first triangle number to have over five hundred divisors?
Focus of problem: The divisor function
Language: Python
Description: The function I used is brute and the time it take for the program to find a number with more divisors than x increases almost exponentially with each 10 or 20 numbers highers. I need to get to 500 or more divisors. I've identified that the divisor function is what is hogging down the program. The research I did lead me to divisor functions and specifically the divisor function which is supposed to be a function that will count all the divisors of any integer. Every page I've looked at seems to be directed toward mathematics majors and I only have high-school maths. Although I did come across some page that mentioned allot about primes and the Sieve of Atkins but I could not make the connection between primes and finding all the divisors of any integer nor find anything on the net about it.
Main Question: Could someone explain how to code the divisor function or even provide a sample? Maths concepts make more sense to me when I look at them with code. So much appreciated.
brute force divisor function:
def countdiv(a):
count = 0
for i in range(1,(a/2)+1):
if a % i == 0:
count += 1
return count + 1 # +1 to account for number itself as a divisor
If you need a bruteforce function to calculate Number of Divisors (also known as tau(n))
Here's what it looks like
def tau(n):
sqroot,t = int(n**0.5),0
for factor in range(1,sqroot+1):
if n % factor == 0:
t += 2 # both factor and N/factor
if sqroot*sqroot == n: t = t - 1 # if sqroot is a factor then we counted it twice, so subtract 1
return t
The second method involves a decomposing n into its prime factors (and its exponents).
tau(n) = (e1+1)(e2+1)....(em+1) where n = p1^e1 * p2^e2 .... pm^em and p1,p2..pm are primes
More info here
The third method and much more simpler to understand is simply using a Sieve to calculate tau.
def sieve(N):
t = [0]*(N+1)
for factor in range(1,N+1):
for multiple in range(factor,N+1,factor):
t[multiple]+=1
return t[1:]
Here's it in action at ideone
I agree with the two other answers submitted here in that you will only need to search up to the square root of the number. I have one thing to add to this however. The solutions offered will get you the correct answer in a reasonable amount of time. But when the problems start getting tougher, you will need an even more powerful function.
Take a look at Euler's Totient function. Though it only indirectly applies here, it is incredibly useful in later problems. Another related concept is that of Prime Factorization.
A quick way to improve your algorithm is to find the prime factorization of the number. In the Wikipedia article, they use 36 as an example, whose prime factorization is 2^2 * 3^2. Therefore, knowing this, you can use combinatorics to find the number of factors of 36. With this, you will not actually be computing each factor, plus you'd only have to check divisors 2 and 3 before you're complete.
When searching for divisors of n you never have to search beyond the square root of the number n. Whenever you find a divisor that's less than sqrt(n) there is exactly one matching divisor which is greater than the root, so you can increment your count by 2 (if you find divisor d of n then n/d will be the counterpart).
Watch out for square numbers, though. :) The root will be a divisor that doesn't count twice, of course.
If you're going to solve the Project Euler problems you need some functions that deal with prime numbers and integer factorization. Here is my modest library, which provides primes(n), is_prime(n) and factors(n); the focus is on simplicity, clarity and brevity at the expense of speed, though these functions should be sufficient for Project Euler:
def primes(n):
"""
list of primes not exceeding n in ascending
order; assumes n is an integer greater than
1; uses Sieve of Eratosthenes
"""
m = (n-1) // 2
b = [True] * m
i, p, ps = 0, 3, [2]
while p*p < n:
if b[i]:
ps.append(p)
j = 2*i*i + 6*i + 3
while j < m:
b[j] = False
j = j + 2*i + 3
i += 1; p += 2
while i < m:
if b[i]:
ps.append(p)
i += 1; p += 2
return ps
def is_prime(n):
"""
False if n is provably composite, else
True if n is probably prime; assumes n
is an integer greater than 1; uses
Miller-Rabin test on prime bases < 100
"""
ps = [2,3,5,7,11,13,17,19,23,29,31,37,41,
43,47,53,59,61,67,71,73,79,83,89,97]
def is_spsp(n, a):
d, s = n-1, 0
while d%2 == 0:
d /= 2; s += 1
if pow(a,d,n) == 1:
return True
for r in xrange(s):
if pow(a, d*pow(2,r), n) == n-1:
return True
return False
if n in ps: return True
for p in ps:
if not is_spsp(n,p):
return False
return True
def factors(n):
"""
list of prime factors of n in ascending
order; assumes n is an integer, may be
positive, zero or negative; uses Pollard's
rho algorithm with Floyd's cycle finder
"""
def gcd(a,b):
while b: a, b = b, a%b
return abs(a)
def facts(n,c,fs):
f = lambda(x): (x*x+c) % n
if is_prime(n): return fs+[n]
t, h, d = 2, 2, 1
while d == 1:
t = f(t); h = f(f(h))
d = gcd(t-h, n)
if d == n:
return facts(n, c+1, fs)
if is_prime(d):
return facts(n//d, c+1, fs+[d])
return facts(n, c+1, fs)
if -1 <= n <= 1: return [n]
if n < -1: return [-1] + factors(-n)
fs = []
while n%2 == 0:
n = n//2; fs = fs+[2]
if n == 1: return fs
return sorted(facts(n,1,fs))
Once you know how to factor a number, it is easy to count the number of divisors. Consider 76576500 = 2^2 * 3^2 * 5^3 * 7^1 * 11^1 * 13^1 * 17^1. Ignore the bases and look at the exponents, which are 2, 2, 3, 1, 1, 1, and 1. Add 1 to each exponent, giving 3, 3, 4, 2, 2, 2, and 2. Now multiply that list to get the number of divisors of the original number 76576500: 3 * 3 * 4 * 2 * 2 * 2 * 2 = 576. Here's the function:
def numdiv(n):
fs = factors(n)
f = fs.pop(0); d = 1; x = 2
while fs:
if f == fs[0]:
x += 1
else:
d *= x; x = 2
f = fs.pop(0)
return d * x
You can see these functions at work at http://codepad.org/4j8qp60u, and learn more about how they work at my blog. I'll leave it to you to work out the solution to Problem 12.

Categories

Resources