Google App Engine NDB post_create hook - python

I wanted to create a proper post_create (also post_get and post_put) hooks, similar to the ones I had on the DB version of my app.
Unfortunately I can't use has_complete_key.
The problem is quite known: lack of is_saved in a model.
Right now I have implemented it like this:
class NdbStuff(HooksInterface):
def __init__(self, *args, **kwds):
super(NdbStuff, self).__init__(*args, **kwds)
self._is_saved = False
def _put_async(self, post_hooks=True, **ctx_options):
""" Implementation of pre/post create hooks. """
if not self._is_saved:
self._pre_create_hook()
fut = super(NdbStuff, self)._put_async(**ctx_options)
if not self._is_saved:
fut._immediate_callbacks.insert(
0,
(
self._post_create_hook,
[fut],
{},
)
)
self._is_saved = True
if post_hooks is False:
fut._immediate_callbacks = []
return fut
put_async = _put_async
#classmethod
def _post_get_hook(cls, key, future):
obj = future.get_result()
if obj is not None:
obj._is_saved = True
cls._post_get(key, future)
def _post_put_hook(self, future):
if future.state == future.FINISHING:
self._is_saved = True
else:
self._is_saved = False
self._post_put(future)
Everything except the post_create hook seems to work.
The post_create is triggered every time the I use put_async without retrieving the object first.
I would really appreciate a clue on how to trigger the post_create_hook only once after the object was created.

I am not sure why you are creating the NDBStuff class.
Any way if you creating an instance of a class, and you want to track _is_saved or something similar , use a factory to control creation and setting of the property, in this case it makes more sense to track _is_new for example.
class MyModel(ndb.Model):
some_prop = ndb.StringProperty()
def _pre_put_hook(self):
if getattr(self,'_is_new',None):
self._pre_create_hook()
# do something
def _pre_create_hook(self):
# do something on first save
log.info("First put for this object")
def _post_create_hook(self, future):
# do something
def _post_put_hook(self, future);
if getattr(self,'_is_new', None):
self._post_create_hook(future)
# Get rid of the flag on successful put,
# in case you make some changes and save again.
delattr(self,'_is_new')
#classmethod
def factory(cls,*args,**kwargs):
new_obj = cls(*args,**kwargs)
settattr(new_obj,'_is_new',True)
return new_obj
Then
myobj = MyModel.factory(someargs)
myobj.put()
myobj.some_prop = 'test'
myobj.put()
Will call the _pre_create_hook on the first put, and not on the second.
Always create the entities through the factory then you will always have the to call to _pre_create_hook executed.
Does that make sense ?

Related

Python : Iterate a list which is shared by several method in a class

I'm using tornado.websocket, where class-methods are overrides of the WebSocketHandler methods. Anyway, my code look like that:
class SocketHandler(tornado.websocket.WebSocketHandler):
current_ninja_pool = enumerate(return_dependency_lvl_0())
current_ninja = next(current_ninja_pool)
file_to_upload = []
def check_origin(self, origin):
return True
def open(self):
logging.info("A client connected.")
self.run()
def run(self):
if condition:
do_this()
else:
do_that()
self.current_ninja = next(self.current_ninja_pool)
self.run()
def on_message(self, message):
do_a_lot_of_stuff()
if message == 'next one':
self.current_ninja = next(self.current_ninja_pool)
def on_close(self):
logging.info("A client disconnected")
So, what I want is to be able to iterate my enumerate, so that every element can be processed in the methods run or on_message depending on how my client-websocket will answer. The problem is that I want to iterate under particular conditions, and I don't have a clue on how to do this. Since I'm not very familiar with the way you manipulate class- and instance-variables, I'm probably missing a point here.
Thank you
You need an iterator. Luckily, enumerate already returns an iterator; you just need to access that, rather than storing the current item.
I also suspect that current_ninja_pool should be an instance variable, not a class one (which would be shared across all instances of the class).
class SocketHandler(tornado.websocket.WebSocketHandler):
def __init__(self, *args, **kwargs)
self.current_ninja_pool = enumerate(return_dependency_lvl_0())
file_to_upload = []
def run(self):
item = next(self.current_ninja_pool)
do_something_with(item)

How can I split a long function into separate steps while maintaining the relationship between said steps?

I have a very long function func which takes a browser handle and performs a bunch of requests and reads a bunch of responses in a specific order:
def func(browser):
# make sure we are logged in otherwise log in
# make request to /search and check that the page has loaded
# fill form in /search and submit it
# read table of response and return the result as list of objects
Each operation require a large amount of code due to the complexity of the DOM and they tend to grow really fast.
What would be the best way to refactor this function into smaller components so that the following properties still hold:
the execution flow of the operations and/or their preconditions is guaranteed just like in the current version
the preconditions are not checked with asserts against the state, as this is a very costly operation
func can be called multiple times on the browser
?
Just wrap the three helper methods in a class, and track which methods are allowed to run in an instance.
class Helper(object):
def __init__(self):
self.a = True
self.b = False
self.c = False
def funcA(self):
if not self.A:
raise Error("Cannot run funcA now")
# do stuff here
self.a = False
self.b = True
return whatever
def funcB(self):
if not self.B:
raise Error("Cannot run funcB now")
# do stuff here
self.b = False
self.c = True
return whatever
def funcC(self):
if not self.C:
raise Error("Cannot run funcC now")
# do stuff here
self.c = False
self.a = True
return whatever
def func(...):
h = Helper()
h.funcA()
h.funcB()
h.funcC()
# etc
The only way to call a method is if its flag is true, and each method clears its own flag and sets the next method's flag before exiting. As long as you don't touch h.a et al. directly, this ensures that each method can only be called in the proper order.
Alternately, you can use a single flag that is a reference to the function currently allowed to run.
class Helper(object):
def __init__(self):
self.allowed = self.funcA
def funcA(self):
if self.allowed is not self.funcA:
raise Error("Cannot run funcA now")
# do stuff
self.allowed = self.funcB
return whatever
# etc
Here's the solution I came up with. I used a decorator (closely related to the one in this blog post) which only allows for a function to be called once.
def call_only_once(func):
def new_func(*args, **kwargs):
if not new_func._called:
try:
return func(*args, **kwargs)
finally:
new_func._called = True
else:
raise Exception("Already called this once.")
new_func._called = False
return new_func
#call_only_once
def stateA():
print 'Calling stateA only this time'
#call_only_once
def stateB():
print 'Calling stateB only this time'
#call_only_once
def stateC():
print 'Calling stateC only this time'
def state():
stateA()
stateB()
stateC()
if __name__ == "__main__":
state()
You'll see that if you re-call any of the functions, the function will throw an Exception stating that the functions have already been called.
The problem with this is that if you ever need to call state() again, you're hosed. Unless you implement these functions as private functions, I don't think you can do exactly what you want due to the nature of Python's scoping rules.
Edit
You can also remove the else in the decorator and your function will always return None.
Here a snippet I used once for my state machine
class StateMachine(object):
def __init__(self):
self.handlers = {}
self.start_state = None
self.end_states = []
def add_state(self, name, handler, end_state=0):
name = name.upper()
self.handlers[name] = handler
if end_state:
self.end_states.append(name)
def set_start(self, name):
# startup state
self.start_state = name
def run(self, **kw):
"""
Run
:param kw:
:return:
"""
# the first .run call call the first handler with kw keywords
# each registered handler should returns the following handler and the needed kw
try:
handler = self.handlers[self.start_state]
except:
raise InitializationError("must call .set_start() before .run()")
while True:
(new_state, kw) = handler(**kw)
if isinstance(new_state, str):
if new_state in self.end_states:
print("reached ", new_state)
break
else:
handler = self.handlers[new_state]
elif hasattr(new_state, "__call__"):
handler = new_state
else:
return
The use
class MyParser(StateMachine):
def __init__(self):
super().__init__()
# define handlers
# we can define many handler as we want
self.handlers["begin_parse"] = self.begin_parse
# define the startup handler
self.set_start("begin_parse")
def end(self, **kw):
logging.info("End of parsing ")
# no callable handler => end
return None, None
def second(self, **kw):
logging.info("second ")
# do something
# if condition is reach the call `self.end` handler
if ...:
return self.end, {}
def begin_parse(self, **kw):
logging.info("start of parsing ")
# long process until the condition is reach then call the `self.second` handler with kw new keywords
while True:
kw = {}
if ...:
return self.second, kw
# elif other cond:
# return self.other_handler, kw
# elif other cond 2:
# return self.other_handler 2, kw
else:
return self.end, kw
# start the state machine
MyParser().run()
will print
INFO:root:start of parsing
INFO:root:second
INFO:root:End of parsing
You could use local functions in your func function. Ok, they are still declared inside one single global function, but Python is nice enough to still give you access to them for tests.
Here is one example of one function declaring and executing 3 (supposedly heavy) subfunctions. It takes one optional parameter test that when set to TEST prevent actual execution but instead gives external access to individual sub-functions and to a local variable:
def func(test=None):
glob = []
def partA():
glob.append('A')
def partB():
glob.append('B')
def partC():
glob.append('C')
if (test == 'TEST'):
global testA, testB, testC, testCR
testA, testB, testC, testCR = partA, partB, partC, glob
return None
partA()
partB()
partC()
return glob
When you call func, the 3 parts are executed in sequence. But if you first call func('TEST'), you can then access the local glob variable as testCR, and the 3 subfunctions as testA, testB and testC. This way you can still test individually the 3 parts with well defined input and control their output.
I would insist on the suggestion given by #user3159253 in his comment on the original question:
If the sole purpose is readability I would split the func into three "private" > or "protected" ones (i.e. _func1 or __func1) and a private or protected property > which keeps the state shared between the functions.
This makes a lot of sense to me and seems more usual amongst object oriented programming than the other options. Consider this example as an alternative:
Your class (teste.py):
class Test:
def __init__(self):
self.__environment = {} # Protected information to be shared
self.public_stuff = 'public info' # Accessible to outside callers
def func(self):
print "Main function"
self.__func_a()
self.__func_b()
self.__func_c()
print self.__environment
def __func_a(self):
self.__environment['function a says'] = 'hi'
def __func_b(self):
self.__environment['function b says'] = 'hello'
def __func_c(self):
self.__environment['function c says'] = 'hey'
Other file:
from teste import Test
t = Test()
t.func()
This will output:
Main function says hey guys
{'function a says': 'hi', 'function b says': 'hello', 'function c says': 'hey'}
If you try to call one of the protected functions, an error occurs:
Traceback (most recent call last):
File "C:/Users/Lucas/PycharmProjects/testes/other.py", line 6, in <module>
t.__func_a()
AttributeError: Test instance has no attribute '__func_a'
Same thing if you try to access the protected environment variable:
Traceback (most recent call last):
File "C:/Users/Lucas/PycharmProjects/testes/other.py", line 5, in <module>
print t.__environment
AttributeError: Test instance has no attribute '__environment'
In my view this is the most elegant, simple and readable way to solve your problem, let me know if it fits your needs :)

Python Running Multiple Locks across Multiple Threads

So the situation is that I have multiple methods, which might be threaded simaltenously, but all need their own lock
against being re-threaded until they have run. They are established by initialising a class with some dataprocessing options:
class InfrequentDataDaemon(object): pass
class FrequentDataDaemon(object): pass
def addMethod(name):
def wrapper(f):
setattr(processor, f.__name__, staticmethod(f))
return f
return wrapper
class DataProcessors(object):
lock = threading.Lock()
def __init__(self, options):
self.common_settings = options['common_settings']
self.data_processing_configurations = options['data_processing_configurations'] #Configs for each processing method
self.data_processing_types = options['data_processing_types']
self.Data_Processsing_Functions ={}
#I __init__ each processing method as a seperate function so that it can be locked
for type in options['data_processing_types']:
def bindFunction1(name):
def func1(self, data=None, lock=None):
config = self.data_processing_configurations[data['type']] #I get the right config for the datatype
with lock:
FetchDataBaseStuff(data['type'])
#I don't want this to be run more than once at a time per DataProcessing Type
# But it's fine if multiple DoSomethings run at once, as long as each DataType is different!
DoSomething(data, config)
WriteToDataBase(data['type'])
func1.__name__ = "Processing_for_{}".format(type)
self.Data_Processing_Functions[func1.__name__] = func1 #Add this function to the Dictinary object
bindFunction1(type)
#Then I add some methods to a daemon that are going to check if our Dataprocessors need to be called
def fast_process_types(data):
if not example_condition is True: return
if not data['type'] in self.data_processing_types: return #Check that we are doing something with this type of data
threading.Thread(target=self.Data_Processing_Functions["Processing_for_{}".format(data['type'])], args=(self,data, lock)).start()
def slow_process_types(data):
if not some_other_condition is True: return
if not data['type'] in self.data_processing_types: return #Check that we are doing something with this type of data
threading.Thread(target=self.Data_Processing_Functions["Processing_for_{}".format(data['type'])], args=(self,data, lock)).start()
addMethod(InfrequentDataDaemon)(slow_process_types)
addMethod(FrequentDataDaemon)(fast_process_types)
The idea is to lock each method in
DataProcessors.Data_Processing_Functions - so that each method is only accessed by one thread at a time (and the rest of the threads for the same method are queued). How does Locking need to be set up to achieve this effect?
I'm not sure I completely follow what you're trying to do here, but could you just create a separate threading.Lock object for each type?
class DataProcessors(object):
def __init__(self, options):
self.common_settings = options['common_settings']
self.data_processing_configurations = options['data_processing_configurations'] #Configs for each processing method
self.data_processing_types = options['data_processing_types']
self.Data_Processsing_Functions ={}
self.locks = {}
#I __init__ each processing method as a seperate function so that it can be locked
for type in options['data_processing_types']:
self.locks[type] = threading.Lock()
def bindFunction1(name):
def func1(self, data=None):
config = self.data_processing_configurations[data['type']] #I get the right config for the datatype
with self.locks[data['type']]:
FetchDataBaseStuff(data['type'])
DoSomething(data, config)
WriteToDataBase(data['type'])
func1.__name__ = "Processing_for_{}".format(type)
self.Data_Processing_Functions[func1.__name__] = func1 #Add this function to the Dictinary object
bindFunction1(type)
#Then I add some methods to a daemon that are going to check if our Dataprocessors need to be called
def fast_process_types(data):
if not example_condition is True: return
if not data['type'] in self.data_processing_types: return #Check that we are doing something with this type of data
threading.Thread(target=self.Data_Processing_Functions["Processing_for_{}".format(data['type'])], args=(self,data)).start()
def slow_process_types(data):
if not some_other_condition is True: return
if not data['type'] in self.data_processing_types: return #Check that we are doing something with this type of data
threading.Thread(target=self.Data_Processing_Functions["Processing_for_{}".format(data['type'])], args=(self,data)).start()
addMethod(InfrequentDataDaemon)(slow_process_types)
addMethod(FrequentDataDaemon)(fast_process_types)

Python observer/observable library [duplicate]

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 4 years ago.
Improve this question
Are there any exemplary examples of the GoF Observer implemented in Python? I have a bit code which currently has bits of debugging code laced through the key class (currently generating messages to stderr if a magic env is set). Additionally, the class has an interface for incrementally return results as well as storing them (in memory) for post processing. (The class itself is a job manager for concurrently executing commands on remote machines over ssh).
Currently the usage of the class looks something like:
job = SSHJobMan(hostlist, cmd)
job.start()
while not job.done():
for each in job.poll():
incrementally_process(job.results[each])
time.sleep(0.2) # or other more useful work
post_process(job.results)
An alernative usage model is:
job = SSHJobMan(hostlist, cmd)
job.wait() # implicitly performs a start()
process(job.results)
This all works fine for the current utility. However it does lack flexibility. For example I currently support a brief output format or a progress bar as incremental results, I also support
brief, complete and "merged message" outputs for the post_process() function.
However, I'd like to support multiple results/output streams (progress bar to the terminal, debugging and warnings to a log file, outputs from successful jobs to one file/directory, error messages and other results from non-successful jobs to another, etc).
This sounds like a situation that calls for Observer ... have instances of my class accept registration from other objects and call them back with specific types of events as they occur.
I'm looking at PyPubSub since I saw several references to that in SO related questions. I'm not sure I'm ready to add the external dependency to my utility but I could see value in using their interface as a model for mine if that's going to make it easier for others to use. (The project is intended as both a standalone command line utility and a class for writing other scripts/utilities).
In short I know how to do what I want ... but there are numerous ways to accomplish it. I want suggestions on what's most likely to work for other users of the code in the long run.
The code itself is at: classh.
However it does lack flexibility.
Well... actually, this looks like a good design to me if an asynchronous API is what you want. It usually is. Maybe all you need is to switch from stderr to Python's logging module, which has a sort of publish/subscribe model of its own, what with Logger.addHandler() and so on.
If you do want to support observers, my advice is to keep it simple. You really only need a few lines of code.
class Event(object):
pass
class Observable(object):
def __init__(self):
self.callbacks = []
def subscribe(self, callback):
self.callbacks.append(callback)
def fire(self, **attrs):
e = Event()
e.source = self
for k, v in attrs.items():
setattr(e, k, v)
for fn in self.callbacks:
fn(e)
Your Job class can subclass Observable. When something of interest happens, call self.fire(type="progress", percent=50) or the like.
I think people in the other answers overdo it. You can easily achieve events in Python with less than 15 lines of code.
You simple have two classes: Event and Observer. Any class that wants to listen for an event, needs to inherit Observer and set to listen (observe) for a specific event. When an Event is instantiated and fired, all observers listening to that event will run the specified callback functions.
class Observer():
_observers = []
def __init__(self):
self._observers.append(self)
self._observables = {}
def observe(self, event_name, callback):
self._observables[event_name] = callback
class Event():
def __init__(self, name, data, autofire = True):
self.name = name
self.data = data
if autofire:
self.fire()
def fire(self):
for observer in Observer._observers:
if self.name in observer._observables:
observer._observables[self.name](self.data)
Example:
class Room(Observer):
def __init__(self):
print("Room is ready.")
Observer.__init__(self) # Observer's init needs to be called
def someone_arrived(self, who):
print(who + " has arrived!")
room = Room()
room.observe('someone arrived', room.someone_arrived)
Event('someone arrived', 'Lenard')
Output:
Room is ready.
Lenard has arrived!
A few more approaches...
Example: the logging module
Maybe all you need is to switch from stderr to Python's logging module, which has a powerful publish/subscribe model.
It's easy to get started producing log records.
# producer
import logging
log = logging.getLogger("myjobs") # that's all the setup you need
class MyJob(object):
def run(self):
log.info("starting job")
n = 10
for i in range(n):
log.info("%.1f%% done" % (100.0 * i / n))
log.info("work complete")
On the consumer side there's a bit more work. Unfortunately configuring logger output takes, like, 7 whole lines of code to do. ;)
# consumer
import myjobs, sys, logging
if user_wants_log_output:
ch = logging.StreamHandler(sys.stderr)
ch.setLevel(logging.INFO)
formatter = logging.Formatter(
"%(asctime)s - %(name)s - %(levelname)s - %(message)s")
ch.setFormatter(formatter)
myjobs.log.addHandler(ch)
myjobs.log.setLevel(logging.INFO)
myjobs.MyJob().run()
On the other hand there's an amazing amount of stuff in the logging package. If you ever need to send log data to a rotating set of files, an email address, and the Windows Event Log, you're covered.
Example: simplest possible observer
But you don't need to use any library at all. An extremely simple way to support observers is to call a method that does nothing.
# producer
class MyJob(object):
def on_progress(self, pct):
"""Called when progress is made. pct is the percent complete.
By default this does nothing. The user may override this method
or even just assign to it."""
pass
def run(self):
n = 10
for i in range(n):
self.on_progress(100.0 * i / n)
self.on_progress(100.0)
# consumer
import sys, myjobs
job = myjobs.MyJob()
job.on_progress = lambda pct: sys.stdout.write("%.1f%% done\n" % pct)
job.run()
Sometimes instead of writing a lambda, you can just say job.on_progress = progressBar.update, which is nice.
This is about as simple as it gets. One drawback is that it doesn't naturally support multiple listeners subscribing to the same events.
Example: C#-like events
With a bit of support code, you can get C#-like events in Python. Here's the code:
# glue code
class event(object):
def __init__(self, func):
self.__doc__ = func.__doc__
self._key = ' ' + func.__name__
def __get__(self, obj, cls):
try:
return obj.__dict__[self._key]
except KeyError, exc:
be = obj.__dict__[self._key] = boundevent()
return be
class boundevent(object):
def __init__(self):
self._fns = []
def __iadd__(self, fn):
self._fns.append(fn)
return self
def __isub__(self, fn):
self._fns.remove(fn)
return self
def __call__(self, *args, **kwargs):
for f in self._fns[:]:
f(*args, **kwargs)
The producer declares the event using a decorator:
# producer
class MyJob(object):
#event
def progress(pct):
"""Called when progress is made. pct is the percent complete."""
def run(self):
n = 10
for i in range(n+1):
self.progress(100.0 * i / n)
#consumer
import sys, myjobs
job = myjobs.MyJob()
job.progress += lambda pct: sys.stdout.write("%.1f%% done\n" % pct)
job.run()
This works exactly like the "simple observer" code above, but you can add as many listeners as you like using +=. (Unlike C#, there are no event handler types, you don't have to new EventHandler(foo.bar) when subscribing to an event, and you don't have to check for null before firing the event. Like C#, events do not squelch exceptions.)
How to choose
If logging does everything you need, use that. Otherwise do the simplest thing that works for you. The key thing to note is that you don't need to take on a big external dependency.
How about an implementation where objects aren't kept alive just because they're observing something? Below please find an implementation of the observer pattern with the following features:
Usage is pythonic. To add an observer to a bound method .bar of instance foo, just do foo.bar.addObserver(observer).
Observers are not kept alive by virtue of being observers. In other words, the observer code uses no strong references.
No sub-classing necessary (descriptors ftw).
Can be used with unhashable types.
Can be used as many times you want in a single class.
(bonus) As of today the code exists in a proper downloadable, installable package on github.
Here's the code (the github package or PyPI package have the most up to date implementation):
import weakref
import functools
class ObservableMethod(object):
"""
A proxy for a bound method which can be observed.
I behave like a bound method, but other bound methods can subscribe to be
called whenever I am called.
"""
def __init__(self, obj, func):
self.func = func
functools.update_wrapper(self, func)
self.objectWeakRef = weakref.ref(obj)
self.callbacks = {} #observing object ID -> weak ref, methodNames
def addObserver(self, boundMethod):
"""
Register a bound method to observe this ObservableMethod.
The observing method will be called whenever this ObservableMethod is
called, and with the same arguments and keyword arguments. If a
boundMethod has already been registered to as a callback, trying to add
it again does nothing. In other words, there is no way to sign up an
observer to be called back multiple times.
"""
obj = boundMethod.__self__
ID = id(obj)
if ID in self.callbacks:
s = self.callbacks[ID][1]
else:
wr = weakref.ref(obj, Cleanup(ID, self.callbacks))
s = set()
self.callbacks[ID] = (wr, s)
s.add(boundMethod.__name__)
def discardObserver(self, boundMethod):
"""
Un-register a bound method.
"""
obj = boundMethod.__self__
if id(obj) in self.callbacks:
self.callbacks[id(obj)][1].discard(boundMethod.__name__)
def __call__(self, *arg, **kw):
"""
Invoke the method which I proxy, and all of it's callbacks.
The callbacks are called with the same *args and **kw as the main
method.
"""
result = self.func(self.objectWeakRef(), *arg, **kw)
for ID in self.callbacks:
wr, methodNames = self.callbacks[ID]
obj = wr()
for methodName in methodNames:
getattr(obj, methodName)(*arg, **kw)
return result
#property
def __self__(self):
"""
Get a strong reference to the object owning this ObservableMethod
This is needed so that ObservableMethod instances can observe other
ObservableMethod instances.
"""
return self.objectWeakRef()
class ObservableMethodDescriptor(object):
def __init__(self, func):
"""
To each instance of the class using this descriptor, I associate an
ObservableMethod.
"""
self.instances = {} # Instance id -> (weak ref, Observablemethod)
self._func = func
def __get__(self, inst, cls):
if inst is None:
return self
ID = id(inst)
if ID in self.instances:
wr, om = self.instances[ID]
if not wr():
msg = "Object id %d should have been cleaned up"%(ID,)
raise RuntimeError(msg)
else:
wr = weakref.ref(inst, Cleanup(ID, self.instances))
om = ObservableMethod(inst, self._func)
self.instances[ID] = (wr, om)
return om
def __set__(self, inst, val):
raise RuntimeError("Assigning to ObservableMethod not supported")
def event(func):
return ObservableMethodDescriptor(func)
class Cleanup(object):
"""
I manage remove elements from a dict whenever I'm called.
Use me as a weakref.ref callback to remove an object's id from a dict
when that object is garbage collected.
"""
def __init__(self, key, d):
self.key = key
self.d = d
def __call__(self, wr):
del self.d[self.key]
To use this we just decorate methods we want to make observable with #event. Here's an example
class Foo(object):
def __init__(self, name):
self.name = name
#event
def bar(self):
print("%s called bar"%(self.name,))
def baz(self):
print("%s called baz"%(self.name,))
a = Foo('a')
b = Foo('b')
a.bar.addObserver(b.bar)
a.bar()
From wikipedia:
from collections import defaultdict
class Observable (defaultdict):
def __init__ (self):
defaultdict.__init__(self, object)
def emit (self, *args):
'''Pass parameters to all observers and update states.'''
for subscriber in self:
response = subscriber(*args)
self[subscriber] = response
def subscribe (self, subscriber):
'''Add a new subscriber to self.'''
self[subscriber]
def stat (self):
'''Return a tuple containing the state of each observer.'''
return tuple(self.values())
The Observable is used like this.
myObservable = Observable ()
# subscribe some inlined functions.
# myObservable[lambda x, y: x * y] would also work here.
myObservable.subscribe(lambda x, y: x * y)
myObservable.subscribe(lambda x, y: float(x) / y)
myObservable.subscribe(lambda x, y: x + y)
myObservable.subscribe(lambda x, y: x - y)
# emit parameters to each observer
myObservable.emit(6, 2)
# get updated values
myObservable.stat() # returns: (8, 3.0, 4, 12)
Based on Jason's answer, I implemented the C#-like events example as a fully-fledged python module including documentation and tests. I love fancy pythonic stuff :)
So, if you want some ready-to-use solution, you can just use the code on github.
Example: twisted log observers
To register an observer yourCallable() (a callable that accepts a dictionary) to receive all log events (in addition to any other observers):
twisted.python.log.addObserver(yourCallable)
Example: complete producer/consumer example
From Twisted-Python mailing list:
#!/usr/bin/env python
"""Serve as a sample implementation of a twisted producer/consumer
system, with a simple TCP server which asks the user how many random
integers they want, and it sends the result set back to the user, one
result per line."""
import random
from zope.interface import implements
from twisted.internet import interfaces, reactor
from twisted.internet.protocol import Factory
from twisted.protocols.basic import LineReceiver
class Producer:
"""Send back the requested number of random integers to the client."""
implements(interfaces.IPushProducer)
def __init__(self, proto, cnt):
self._proto = proto
self._goal = cnt
self._produced = 0
self._paused = False
def pauseProducing(self):
"""When we've produced data too fast, pauseProducing() will be
called (reentrantly from within resumeProducing's transport.write
method, most likely), so set a flag that causes production to pause
temporarily."""
self._paused = True
print('pausing connection from %s' % (self._proto.transport.getPeer()))
def resumeProducing(self):
self._paused = False
while not self._paused and self._produced < self._goal:
next_int = random.randint(0, 10000)
self._proto.transport.write('%d\r\n' % (next_int))
self._produced += 1
if self._produced == self._goal:
self._proto.transport.unregisterProducer()
self._proto.transport.loseConnection()
def stopProducing(self):
pass
class ServeRandom(LineReceiver):
"""Serve up random data."""
def connectionMade(self):
print('connection made from %s' % (self.transport.getPeer()))
self.transport.write('how many random integers do you want?\r\n')
def lineReceived(self, line):
cnt = int(line.strip())
producer = Producer(self, cnt)
self.transport.registerProducer(producer, True)
producer.resumeProducing()
def connectionLost(self, reason):
print('connection lost from %s' % (self.transport.getPeer()))
factory = Factory()
factory.protocol = ServeRandom
reactor.listenTCP(1234, factory)
print('listening on 1234...')
reactor.run()
OP asks "Are there any exemplary examples of the GoF Observer implemented in Python?"
This is an example in Python 3.7. This Observable class meets the requirement of creating a relationship between one observable and many observers while remaining independent of their structure.
from functools import partial
from dataclasses import dataclass, field
import sys
from typing import List, Callable
#dataclass
class Observable:
observers: List[Callable] = field(default_factory=list)
def register(self, observer: Callable):
self.observers.append(observer)
def deregister(self, observer: Callable):
self.observers.remove(observer)
def notify(self, *args, **kwargs):
for observer in self.observers:
observer(*args, **kwargs)
def usage_demo():
observable = Observable()
# Register two anonymous observers using lambda.
observable.register(
lambda *args, **kwargs: print(f'Observer 1 called with args={args}, kwargs={kwargs}'))
observable.register(
lambda *args, **kwargs: print(f'Observer 2 called with args={args}, kwargs={kwargs}'))
# Create an observer function, register it, then deregister it.
def callable_3():
print('Observer 3 NOT called.')
observable.register(callable_3)
observable.deregister(callable_3)
# Create a general purpose observer function and register four observers.
def callable_x(*args, **kwargs):
print(f'{args[0]} observer called with args={args}, kwargs={kwargs}')
for gui_field in ['Form field 4', 'Form field 5', 'Form field 6', 'Form field 7']:
observable.register(partial(callable_x, gui_field))
observable.notify('test')
if __name__ == '__main__':
sys.exit(usage_demo())
A functional approach to observer design:
def add_listener(obj, method_name, listener):
# Get any existing listeners
listener_attr = method_name + '_listeners'
listeners = getattr(obj, listener_attr, None)
# If this is the first listener, then set up the method wrapper
if not listeners:
listeners = [listener]
setattr(obj, listener_attr, listeners)
# Get the object's method
method = getattr(obj, method_name)
#wraps(method)
def method_wrapper(*args, **kwags):
method(*args, **kwags)
for l in listeners:
l(obj, *args, **kwags) # Listener also has object argument
# Replace the original method with the wrapper
setattr(obj, method_name, method_wrapper)
else:
# Event is already set up, so just add another listener
listeners.append(listener)
def remove_listener(obj, method_name, listener):
# Get any existing listeners
listener_attr = method_name + '_listeners'
listeners = getattr(obj, listener_attr, None)
if listeners:
# Remove the listener
next((listeners.pop(i)
for i, l in enumerate(listeners)
if l == listener),
None)
# If this was the last listener, then remove the method wrapper
if not listeners:
method = getattr(obj, method_name)
delattr(obj, listener_attr)
setattr(obj, method_name, method.__wrapped__)
These methods can then be used to add a listener to any class method. For example:
class MyClass(object):
def __init__(self, prop):
self.prop = prop
def some_method(self, num, string):
print('method:', num, string)
def listener_method(obj, num, string):
print('listener:', num, string, obj.prop)
my = MyClass('my_prop')
add_listener(my, 'some_method', listener_method)
my.some_method(42, 'with listener')
remove_listener(my, 'some_method', listener_method)
my.some_method(42, 'without listener')
And the output is:
method: 42 with listener
listener: 42 with listener my_prop
method: 42 without listener

Factoring out asynchronous code involving tornado.gen.Task

I have numerous tornado.web.RequestHandler classes that test for authorized access using id and access key secure cookies. I access mongodb asynchronously with inline callbacks using gen.Task. I am having trouble figuring out a way to factor out the repetitive code because of its asynchronicity. How can I do this?
class MyHandler(RequestHandler):
#tornado.web.asynchronous
#gen.engine
def get(self):
id = self.get_secure_cookie('id', None)
accesskey = self.get_secure_cookie('accesskey', None)
if not id or not accesskey:
self.redirect('/a_public_area')
return
try:
# convert to bson id format to access mongodb
bson.objectid.ObjectId(id)
except:
# if not valid object id
self.redirect('/a_public_area')
return
found_id, error = yield gen.Task(asyncmong_client_inst.collection.find_one,
{'_id': id, 'accesskey': accesskey}, fields={'_id': 1})
if error['error']:
raise HTTPError(500)
return
if not found_id[0]:
self.redirect('/a_public_area')
return
# real business code follows
I would like to factor the above into a function that yields perhaps an HTTP status code.
Tornado has decorator #tornado.web.authenticated. Let's use it.
class BaseHandler(RequestHandler):
def get_login_url(self):
return u"/a_public_area"
#gen.engine #Not sure about this step
def get_current_user(self):
id = self.get_secure_cookie('id', None)
accesskey = self.get_secure_cookie('accesskey', None)
if not id or not accesskey:
return False
#Are you sure need this?
try:
# convert to bson id format to access mongodb
bson.objectid.ObjectId(id)
except:
# if not valid object id
return False
#I believe that you don't need asynchronous mongo on auth query, so if it's not working - replace it with sync call
found_id, error = yield gen.Task(asyncmong_client_inst.collection.find_one,
{'_id': id, 'accesskey': accesskey}, fields={'_id': 1})
if error['error']:
raise HTTPError(500)
if not found_id[0]:
return False
return found_id
class MyHandler(BaseHandler):
#tornado.web.asynchronous
#tornado.web.authenticated
#gen.engine
def get(self):
# real business code follows
Using gen everywhere - not good practice. It can turn this world in big spaghetti. Think about it.
perhaps a decorator (not tested or anything, just some ideas)
def sanitize(fn):
def _sanitize(self, *args, **kwargs):
id = self.get_secure_cookie('id', None)
accesskey = self.get_secure_cookie('accesskey', None)
if not id or not accesskey:
self.redirect('/a_public_area')
return
try:
# convert to bson id format to access mongodb
bson.objectid.ObjectId(id)
except:
# if not valid object id
self.redirect('/a_public_area')
return
return fn(self, *args, **kwargs)
return _sanitize
dunno if you can make the check_errors work with the business logic..but maybe..
def check_errors(fn):
def _check_errors(*args, **kwargs)
found_id, error = fn(*args, **kwargs)
if error['error']:
raise HTTPError(500)
return
if not found_id[0]:
self.redirect('/a_public_area')
return
return _check_errors
then
class MyHandler(RequestHandler):
#tornado.web.asynchronous
#gen.engine
#sanitize
#check_errors #..O.o decorators
def get(self):
found_id, error = yield gen.Task(asyncmong_client_inst.collection.find_one,
{'_id': id, 'accesskey': accesskey}, fields={'_id': 1})
return found_id, error
I'd like to address this general problem with gen.Task, which is that factoring out code is either impossible or extremely clumsy.
You can only do "yield gen.Task(...)" within the get() or post() method. If you want to have get() call another function foo(), and do the work in foo(), well: You can't, unless you want to write everything as a generator and chain them together in some unwieldy way. As your project gets bigger, this is going to be a huge problem.
This is a much better alternative: https://github.com/mopub/greenlet-tornado
We used this to convert a large synchronous codebase to Tornado, with almost no changes.

Categories

Resources