Plot horizontal bar chart with "nice alignment" of label - python

I am trying to plot the following code. But in my Y axis I want labels as feature_1, feature_2 etc. But, when I am plotting the labels are not clear. It is congested. Can anyone help me out.
"""
Simple demo of a horizontal bar chart.
"""
import matplotlib.pyplot as plt; plt.rcdefaults()
import numpy as np
import matplotlib.pyplot as plt
# Example data
important_features = [(0.0457, 'feat_34'), (0.042, 'feat_11'), (0.0359, 'feat_25'), (0.0355, 'feat_60'), (0.0316, 'feat_40'), (0.0298, 'feat_14'), (0.0272, 'feat_80'), (0.0252, 'feat_42'), (0.0241, 'feat_86'), (0.0236, 'feat_67'), (0.0232, 'feat_15'), (0.0217, 'feat_62'), (0.02, 'feat_24'), (0.0196, 'feat_26'), (0.0191, 'feat_54'), (0.0189, 'feat_36'), (0.0183, 'feat_48'), (0.0177, 'feat_75'), (0.016, 'feat_88'), (0.0155, 'feat_64'), (0.0147, 'feat_90'), (0.014, 'feat_72'), (0.014, 'feat_69'), (0.0131, 'feat_9'), (0.0131, 'feat_8'), (0.0131, 'feat_57'), (0.0129, 'feat_43'), (0.0126, 'feat_32'), (0.0126, 'feat_16'), (0.012, 'feat_76'), (0.0117, 'feat_33'), (0.0109, 'feat_68'), (0.0109, 'feat_4'), (0.0107, 'feat_39'), (0.0106, 'feat_70'), (0.0104, 'feat_78'), (0.0103, 'feat_59'), (0.0101, 'feat_53'), (0.0096, 'feat_85'), (0.0087, 'feat_38'), (0.0086, 'feat_47'), (0.0083, 'feat_50'), (0.0083, 'feat_46'), (0.0079, 'feat_92'), (0.0078, 'feat_71'), (0.0078, 'feat_30'), (0.0076, 'feat_17'), (0.0073, 'feat_66'), (0.007, 'feat_41'), (0.0069, 'feat_13'), (0.0068, 'feat_83'), (0.0068, 'feat_73'), (0.0068, 'feat_56'), (0.0066, 'feat_20'), (0.0064, 'feat_1'), (0.0062, 'feat_37'), (0.0061, 'feat_27'), (0.006, 'feat_87'), (0.006, 'feat_2'), (0.0058, 'feat_58'), (0.0058, 'feat_35'), (0.0058, 'feat_22'), (0.0056, 'feat_18'), (0.0055, 'feat_55'), (0.0054, 'feat_74'), (0.0053, 'feat_91'), (0.0053, 'feat_79'), (0.005, 'feat_29'), (0.0049, 'feat_44'), (0.0046, 'feat_89'), (0.0045, 'feat_45'), (0.0041, 'feat_10'), (0.0039, 'feat_19'), (0.0037, 'feat_21'), (0.0035, 'feat_3'), (0.0033, 'feat_65'), (0.0031, 'feat_7'), (0.003, 'feat_23'), (0.0029, 'feat_63'), (0.0029, 'feat_52'), (0.0028, 'feat_77'), (0.0027, 'feat_49'), (0.0025, 'feat_12'), (0.0022, 'feat_93'), (0.0021, 'feat_28'), (0.002, 'feat_61'), (0.002, 'feat_5'), (0.0019, 'feat_81'), (0.0017, 'feat_31'), (0.0011, 'feat_84'), (0.0011, 'feat_51'), (0.0009, 'feat_82'), (0.0009, 'feat_6')]
x_value = []
y_feat = []
for (a, b) in important_features:
y_feat.append(b)
x_value.append(a)
features = y_feat
y_pos = range(1,2*len(features),2)
performance = x_value
plt.barh(y_pos, performance, align='center', alpha=0.4)
plt.yticks(y_pos, features)
plt.ylim(0,200)
plt.xlabel('Values')
plt.title('Feature Plot')
plt.show()

Here is what I would do. There are simply too many bars, so the text is on top of each other. My solution is to put half of them on the left of the bar the other half on the right of the bar (you can change that to wherever you want them to be but the idea is to put half of them somewhere and the other half somewhere else). Also, making the figure bigger helps.
"""
Simple demo of a horizontal bar chart.
"""
import matplotlib.pyplot as plt; plt.rcdefaults()
import numpy as np
import matplotlib.pyplot as plt
# Example data
important_features = [(0.0457, 'feat_34'), (0.042, 'feat_11'), (0.0359, 'feat_25'), (0.0355, 'feat_60'), (0.0316, 'feat_40'), (0.0298, 'feat_14'), (0.0272, 'feat_80'), (0.0252, 'feat_42'), (0.0241, 'feat_86'), (0.0236, 'feat_67'), (0.0232, 'feat_15'), (0.0217, 'feat_62'), (0.02, 'feat_24'), (0.0196, 'feat_26'), (0.0191, 'feat_54'), (0.0189, 'feat_36'), (0.0183, 'feat_48'), (0.0177, 'feat_75'), (0.016, 'feat_88'), (0.0155, 'feat_64'), (0.0147, 'feat_90'), (0.014, 'feat_72'), (0.014, 'feat_69'), (0.0131, 'feat_9'), (0.0131, 'feat_8'), (0.0131, 'feat_57'), (0.0129, 'feat_43'), (0.0126, 'feat_32'), (0.0126, 'feat_16'), (0.012, 'feat_76'), (0.0117, 'feat_33'), (0.0109, 'feat_68'), (0.0109, 'feat_4'), (0.0107, 'feat_39'), (0.0106, 'feat_70'), (0.0104, 'feat_78'), (0.0103, 'feat_59'), (0.0101, 'feat_53'), (0.0096, 'feat_85'), (0.0087, 'feat_38'), (0.0086, 'feat_47'), (0.0083, 'feat_50'), (0.0083, 'feat_46'), (0.0079, 'feat_92'), (0.0078, 'feat_71'), (0.0078, 'feat_30'), (0.0076, 'feat_17'), (0.0073, 'feat_66'), (0.007, 'feat_41'), (0.0069, 'feat_13'), (0.0068, 'feat_83'), (0.0068, 'feat_73'), (0.0068, 'feat_56'), (0.0066, 'feat_20'), (0.0064, 'feat_1'), (0.0062, 'feat_37'), (0.0061, 'feat_27'), (0.006, 'feat_87'), (0.006, 'feat_2'), (0.0058, 'feat_58'), (0.0058, 'feat_35'), (0.0058, 'feat_22'), (0.0056, 'feat_18'), (0.0055, 'feat_55'), (0.0054, 'feat_74'), (0.0053, 'feat_91'), (0.0053, 'feat_79'), (0.005, 'feat_29'), (0.0049, 'feat_44'), (0.0046, 'feat_89'), (0.0045, 'feat_45'), (0.0041, 'feat_10'), (0.0039, 'feat_19'), (0.0037, 'feat_21'), (0.0035, 'feat_3'), (0.0033, 'feat_65'), (0.0031, 'feat_7'), (0.003, 'feat_23'), (0.0029, 'feat_63'), (0.0029, 'feat_52'), (0.0028, 'feat_77'), (0.0027, 'feat_49'), (0.0025, 'feat_12'), (0.0022, 'feat_93'), (0.0021, 'feat_28'), (0.002, 'feat_61'), (0.002, 'feat_5'), (0.0019, 'feat_81'), (0.0017, 'feat_31'), (0.0011, 'feat_84'), (0.0011, 'feat_51'), (0.0009, 'feat_82'), (0.0009, 'feat_6')]
x_value = []
y_feat = []
for (a, b) in important_features:
y_feat.append(b)
x_value.append(a)
features = y_feat
y_pos = range(1,2*len(features),2)
performance = x_value
fig = plt.figure(figsize=(16, 12))
plt.barh(y_pos, performance, align='center', alpha=0.4)
# no ticks
plt.yticks([])
j = 0
for x, y, label in zip(performance, y_pos, features):
if j % 2 == 0: # half of them on the left of the axes
plt.text(-0.0003, y, label, horizontalalignment='right', verticalalignment='center')
else: # half of them on the right of the bars
plt.text(x+0.0003, y, label, horizontalalignment='left', verticalalignment='center')
j +=1
plt.ylim(0,200)
plt.xlabel('Values')
plt.title('Feature Plot')
plt.show()

Related

Automatic Adjust of Y axis values using slider on matplotlib

I was working on making a graph that displays the full line by keping x axis constant and left axis adjusting. I am calculating the cost to produce egg tray with multiple variables.
Using jupyter notebook with ipywidgets as widgets i was able to get the answer.
jypyter auto adjusting y axis
import ipywidgets as widgets
from IPython.display import display
import matplotlib.pyplot as plt
import numpy as np
%matplotlib nbagg
x = np.linspace(50000, 80000, 30000)
fig, ax = plt.subplots(1, figsize=(10,4))
plt.suptitle('Cost To Produce')
def production_cost(carton_percent,assorted_percent,white_percent,dry_eggtray_weight,electric_cost,ebiogas_sold,skilled_labor,manual_labor):
ax.clear()
total_paper_weight = x*dry_eggtray_weight/1000
carton_price = total_paper_weight*carton_percent*1.9/100
assorted_price = total_paper_weight*assorted_percent*4.25/100
white_price = total_paper_weight*white_percent*10/100
burner_consumption = (x+8679)/17.3
electric_consumption = (x+11074)/19.1
skilledlabor_cost = skilled_labor*6*346/7+skilled_labor*6*3.5*54/7
manuallabor_cost = manual_labor*6*290/7+manual_labor*6*3.5*36/7
rawmats_price = carton_price + assorted_price + white_price
burner_price = burner_consumption*2.2*ebiogas_sold
electric_price = electric_consumption*electric_cost
labor_price = skilledlabor_cost + manuallabor_cost
cellophane_price = x*13/(140*2)
maintenance_price = 2000
admin_price = 4000
overall_price = rawmats_price + burner_price + electric_price + labor_price + cellophane_price + maintenance_price + admin_price
y = overall_price/x
ax.plot(x,y)
ax.set_xlabel('Egg Tray Production')
ax.set_ylabel('Cost per Tray')
plt.show()
carton_percent = widgets.FloatSlider(min=0, max=100, value=37.5, description='% Carton:')
assorted_percent = widgets.FloatSlider(min=0, max=100, value=37.5, description='% Assorted:')
white_percent = widgets.FloatSlider(min=0, max=100, value=25, description='% White:')
dry_eggtray_weight = widgets.IntSlider(min=0, max=90, value=80, description='Dry Try (g):')
electric_cost = widgets.FloatSlider(min=6, max=20, value=11.37, description='Elec Cost:')
ebiogas_sold = widgets.FloatSlider(min=6, max=20, value=6.7, description='EBio SellP:')
skilled_labor = widgets.IntSlider(min=0, max=12, value=6, description='Skilled C:')
manual_labor = widgets.IntSlider(min=0, max=16, value=12, description='Manual C:')
widgets.interactive(production_cost, carton_percent=carton_percent, assorted_percent=assorted_percent, white_percent=white_percent, dry_eggtray_weight=dry_eggtray_weight, electric_cost=electric_cost, ebiogas_sold=ebiogas_sold, skilled_labor=skilled_labor, manual_labor=manual_labor)
But using python idle, i wasnt able to copy the result
I tried narrowing variables so it wouldnt be hard to trace. So i tried this code with widgets from matplotlib directly. but only the drawing or graph is moving and both x and y axis is steady. I have tried autoscale but it does not work. Like ax.autoscale
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.widgets import Slider, Button
# The parametrized function to be plotted
def f(x,electric_cost,ebiogas_sold):
burner_consumption = (x+8679)/17.3
electric_consumption = (x+11074)/19.1
burner_price = burner_consumption*2.2*ebiogas_sold
electric_price = electric_consumption*electric_cost
overall_price = burner_price + electric_price
return overall_price/x
x = np.linspace(50000, 80000, 30001)
# Define initial parameters
init_electric_cost = 11.37
init_ebiogas_sold = 6.7
# Create the figure and the line that we will manipulate
fig, ax = plt.subplots()
line, = ax.plot(x, f(x, init_electric_cost, init_ebiogas_sold), lw=2)
ax.autoscale(enable=True, axis="y", tight=True)
ax.set_xlabel('Egg Tray Produced [pcs]')
# adjust the main plot to make room for the sliders
fig.subplots_adjust(left=0.25, bottom=0.25)
# Make a vertically oriented slider to control the cost of electricity
electric_cost = fig.add_axes([0.25, 0.1, 0.65, 0.03])
electric_cost_slider = Slider(
ax=electric_cost,
label="Electric Cost [pesos]",
valmin=0,
valmax=20,
valinit=init_electric_cost,
)
# Make a vertically oriented slider to control the cost of biogas converted to power and then sold
biogas_cost = fig.add_axes([0.1, 0.25, 0.0225, 0.63])
biogas_cost_slider = Slider(
ax=biogas_cost,
label="Biogas Power Sold [pesos]",
valmin=0,
valmax=20,
valinit=init_ebiogas_sold,
orientation="vertical"
)
# The function to be called anytime a slider's value changes
def update(val):
line.set_ydata(f(x, electric_cost_slider.val, biogas_cost_slider.val))
#fig.canvas.draw_idle()
# register the update function with each slider
electric_cost_slider.on_changed(update)
biogas_cost_slider.on_changed(update)
# Create a `matplotlib.widgets.Button` to reset the sliders to initial values.
resetax = fig.add_axes([0.8, 0.025, 0.1, 0.04])
button = Button(resetax, 'Reset', hovercolor='0.975')
def reset(event):
biogas_cost_slider.reset()
electric_cost_slider.reset()
button.on_clicked(reset)
plt.show()
I finally got the answer.
I just have to change the limits of my Y
My changes are highlighted as BOLD
I dont know how to properly construct yet. so ill just paste the screenshot of changes
enter image description here
enter image description here

Interactive annotations only show up for one data set in matplotlib

I wrote a script with annotations that get displayed upon hovering over data points based on some of the answers to similar questions by the user ImportanceOfBeingErnest. One of the changes I've made is that I only change the text and position of a single annotation and use it for more than one data set. This seems to cause the problem that the annotation only gets displayed for the last data set (or plotter, as I called them in my script) in the list of all data sets/ plotters.
How can I get the annotation to display for all data points of both scatter plots in my script? Do I have to make a new annotation for each data set and update them separately?
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from matplotlib.ticker import AutoMinorLocator, MultipleLocator
from scipy.stats import linregress
# All data in pA*s
gc_data = {
'KAL1':{'Toluol':400754.594,'1-Octen':53695.014,'Decan':6443.483,'1-Nonannitril':48984.504},
'KAL2':{'Toluol':417583.343,'1-Octen':29755.3,'Decan':16264.896,'1-Nonannitril':16264.896},
'KAL3':{'Toluol':442378.88,'1-Octen':18501.12,'Decan':19226.245,'1-Nonannitril':16200.611},
'KAL4':{'Toluol':389679.589,'1-Octen':13381.415,'Decan':68549.002,'1-Nonannitril':11642.123},
'KAL5':{'Toluol':423982.487,'1-Octen':6263.286,'Decan':53580.809,'1-Nonannitril':4946.271},
'KAL6':{'Toluol':351754.329,'1-Octen':8153.602,'Decan':105408.823,'1-Nonannitril':7066.718}
}
# All data in mg
mass_data = {
'KAL1':{'1-Octen':149.3,'Decan':17.8,'1-Nonannitril':154.7},
'KAL2':{'1-Octen':80.6,'Decan':43.7,'1-Nonannitril':82.8},
'KAL3':{'1-Octen':50.4,'Decan':51.8,'1-Nonannitril':51.5},
'KAL4':{'1-Octen':40.9,'Decan':206.9,'1-Nonannitril':40.8},
'KAL5':{'1-Octen':18.0,'Decan':155.2,'1-Nonannitril':16.4},
'KAL6':{'1-Octen':23.4,'Decan':301.4,'1-Nonannitril':23.6},
}
def update_annot(line, annot, ind):
if isinstance(line, matplotlib.collections.PathCollection):
x,y = line.get_offsets().transpose()
elif isinstance(line, matplotlib.lines.Line2D):
x,y = line.get_data()
else:
quit('No getter of x,y Data for this type of plotter.')
annot.xy = (x[ind["ind"][0]], y[ind["ind"][0]])
text = "x = {}\ny= {}".format(x[ind["ind"][0]], y[ind["ind"][0]])
annot.set_text(text)
def hover(event,fig,annot):
if event.inaxes in fig.axes:
plotters = fig.axes[0].collections
for plotter in plotters:
cont, ind = plotter.contains(event)
if cont:
update_annot(plotter, annot, ind)
annot.set_visible(True)
fig.canvas.draw_idle()
else:
if annot.get_visible():
annot.set_visible(False)
fig.canvas.draw_idle()
def get_data(substance,standard):
m = [mass_data[i][substance]/mass_data[i][standard] for i in mass_data]
A = [gc_data[i][substance]/gc_data[i][standard] for i in mass_data]
return A,m
def plot(substance,standard,save=None):
A,m = get_data(substance,standard)
A_baddata = A.pop(1)
m_baddata = m.pop(1)
# Linear regression
a,b,rval,pval,stdev = linregress(A,m)
# Plotting
fig, ax = plt.subplots(figsize=(6,6))
# Data inputs
ax.scatter(A,m,marker='o') # Measured data
ax.scatter(A_baddata,m_baddata,marker='o',c='r')
xmin,xmax = ax.get_xlim()
ymin,ymax = ax.get_ylim()
ax.plot(np.array([-2*max(A),2*max(A)]),np.array([-2*max(A),2*max(A)])*a + b) # graph from regression parameters
ax.set_ylim(ymin,ymax)
ax.set_xlim(xmin,xmax)
# General formatting
ax.tick_params(axis='both',which='both',labelsize=12,direction='in')
ax.xaxis.set_major_locator(MultipleLocator(1))
ax.yaxis.set_major_locator(MultipleLocator(1))
ax.xaxis.set_minor_locator(AutoMinorLocator())
ax.yaxis.set_minor_locator(AutoMinorLocator())
ax.set_ylabel(r'$m_{\mathrm{Substanz}}\quad/\quadm_{\mathrm{Standard}}$')
ax.set_xlabel(r'$A_{\mathrm{Substanz}}\quad/\quadA_{\mathrm{Standard}}$')
# Description Box
textstr='{}{}\n'.format('Substanz: ',substance)
textstr+='{}{}\n'.format('Standard: ',standard)
textstr+='{}{:.5f}\n'.format('a = ',a)
textstr+='{}{:.5f}\n'.format('b = ',b)
textstr+='{}{:.5f}\n'.format(r'$R^{2}$ = ',rval)
textstr+='{}{:.5f}\n'.format(r'$p$ = ',pval)
textstr+='{}{:.5f}'.format(r'$\bar X = $',stdev)
props = dict(boxstyle='round', fc='#96FBFF', ec='#3CF8FF', alpha=0.5)
ax.text(0.05, 0.95, textstr, transform=ax.transAxes, fontsize=10,
verticalalignment='top', bbox=props)
if save:
plt.savefig(substance+'.svg' ,bbox_inches='tight', transparent=True)
else:
# Hovering annotation
################################################################################################
# for i in range(len())
annot = ax.annotate("", xy=(0,0), xytext=(1,1),textcoords="offset points",
bbox=dict(boxstyle="round", fc="w", alpha=0.4),
arrowprops=dict(arrowstyle="->"))
annot.set_visible(False)
################################################################################################
fig.canvas.mpl_connect("motion_notify_event", lambda event: hover(event, fig, annot))
plt.show()
plot('1-Nonannitril','Decan',0)
The main problem is that the hover event gets triggered by the line instead of by the nearby scatter dots. So, this line should be excluded when connecting the motion_notify_event.
Since ImportanceOfBeingErnest's and others posts about how to create annotations, they developed the mplcursors library to strongly simplify the creation of this kind of annotations.
With mplcursors you can simply call mplcursors.cursor(ax.collections, hover=True) and automatically an annotation with x and y positions would be created. But easily can go much further. The example below also shows how to display the artist's label (here the 'artist' is one collection of scatter dots). Also, how to use the artist's color for the background of the annotation. Further, an extra attribute is added to the artist with a list of names. These names are then added to the annotation.
The code leaves out some of the elements that aren't relevant for the annotations, such as the large text.
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from matplotlib.ticker import AutoMinorLocator, MultipleLocator
from scipy.stats import linregress
import mplcursors
from matplotlib.colors import to_rgb
# All data in pA*s
gc_data = {
'KAL1': {'Toluol': 400754.594, '1-Octen': 53695.014, 'Decan': 6443.483, '1-Nonannitril': 48984.504},
'KAL2': {'Toluol': 417583.343, '1-Octen': 29755.3, 'Decan': 16264.896, '1-Nonannitril': 16264.896},
'KAL3': {'Toluol': 442378.88, '1-Octen': 18501.12, 'Decan': 19226.245, '1-Nonannitril': 16200.611},
'KAL4': {'Toluol': 389679.589, '1-Octen': 13381.415, 'Decan': 68549.002, '1-Nonannitril': 11642.123},
'KAL5': {'Toluol': 423982.487, '1-Octen': 6263.286, 'Decan': 53580.809, '1-Nonannitril': 4946.271},
'KAL6': {'Toluol': 351754.329, '1-Octen': 8153.602, 'Decan': 105408.823, '1-Nonannitril': 7066.718}
}
# All data in mg
mass_data = {
'KAL1': {'1-Octen': 149.3, 'Decan': 17.8, '1-Nonannitril': 154.7},
'KAL2': {'1-Octen': 80.6, 'Decan': 43.7, '1-Nonannitril': 82.8},
'KAL3': {'1-Octen': 50.4, 'Decan': 51.8, '1-Nonannitril': 51.5},
'KAL4': {'1-Octen': 40.9, 'Decan': 206.9, '1-Nonannitril': 40.8},
'KAL5': {'1-Octen': 18.0, 'Decan': 155.2, '1-Nonannitril': 16.4},
'KAL6': {'1-Octen': 23.4, 'Decan': 301.4, '1-Nonannitril': 23.6},
}
def update_annot(sel):
x, y = sel.target
label = sel.artist.get_label()
new_text = f'{label}\nx: {x:.2f}\ny: {y:.2f}'
# append the name
new_text += '\n' + sel.artist.data_names[sel.target.index]
sel.annotation.set_text(new_text)
# get the color of the scatter dots, make them whiter and use that as background color for the annotation
r, g, b = to_rgb(sel.artist.get_facecolor())
sel.annotation.get_bbox_patch().set(fc=((r + 2) / 3, (g + 2) / 3, (b + 2) / 3), alpha=0.7)
def get_data(substance, standard):
m = [mass_data[i][substance] / mass_data[i][standard] for i in mass_data]
A = [gc_data[i][substance] / gc_data[i][standard] for i in mass_data]
return A, m
def plot(substance, standard, save=None):
global measured_names, baddata_names
A, m = get_data(substance, standard)
measured_names = list(mass_data.keys())
A_baddata = A.pop(1)
m_baddata = m.pop(1)
baddata_names = [measured_names.pop(1)]
# Linear regression
a, b, rval, pval, stdev = linregress(A, m)
# Plotting
fig, ax = plt.subplots(figsize=(6, 6))
# Data inputs
scat1 = ax.scatter(A, m, marker='o', label='Measured data') # Measured data
scat1.data_names = measured_names
scat2 = ax.scatter(A_baddata, m_baddata, marker='o', c='r', label='Bad data')
scat2.data_names = baddata_names
xmin, xmax = ax.get_xlim()
ymin, ymax = ax.get_ylim()
ax.plot(np.array([-2 * max(A), 2 * max(A)]),
np.array([-2 * max(A), 2 * max(A)]) * a + b) # graph from regression parameters
ax.set_ylim(ymin, ymax)
ax.set_xlim(xmin, xmax)
ax.set_ylabel(r'$m_{\mathrm{Substanz}}\quad/\quadm_{\mathrm{Standard}}$')
ax.set_xlabel(r'$A_{\mathrm{Substanz}}\quad/\quadA_{\mathrm{Standard}}$')
# Hovering annotation
# cursor = mplcursors.cursor(ax.collections, hover=True)
cursor = mplcursors.cursor([scat1, scat2], hover=True)
cursor.connect("add", update_annot)
plt.show()
plot('1-Nonannitril', 'Decan', 0)

Python matlibplot unable to build candlestick & ichimoku chart together

I have been trying to build a chart which has both candlestick and ichimoku (additionally I also want to draw support and resistance line, channels, harmonic patterns etc on the chart). I took help from various resources already...
I have built two scripts one which can build candlestick charts with RSI and MACD. Second one which can build ichimoku (Python/Pandas calculate Ichimoku chart components).
First script
# THIS VERSION IS FOR PYTHON 3 #
import urllib.request, urllib.error, urllib.parse
import time
import datetime
import numpy as np
from datetime import timedelta
import pandas as pd
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
import matplotlib.ticker as mticker
import matplotlib.dates as mdates
#from matplotlib.finance import candlestick_ohlc
from mpl_finance import candlestick_ohlc
import matplotlib
import pylab
matplotlib.rcParams.update({'font.size': 9})
def rsiFunc(prices, n=14):
deltas = np.diff(prices)
seed = deltas[:n+1]
up = seed[seed>=0].sum()/n
down = -seed[seed<0].sum()/n
rs = up/down
rsi = np.zeros_like(prices)
rsi[:n] = 100. - 100./(1.+rs)
for i in range(n, len(prices)):
delta = deltas[i-1] # cause the diff is 1 shorter
if delta>0:
upval = delta
downval = 0.
else:
upval = 0.
downval = -delta
up = (up*(n-1) + upval)/n
down = (down*(n-1) + downval)/n
rs = up/down
rsi[i] = 100. - 100./(1.+rs)
return rsi
def movingaverage(values,window):
weigths = np.repeat(1.0, window)/window
smas = np.convolve(values, weigths, 'valid')
return smas # as a numpy array
def ExpMovingAverage(values, window):
weights = np.exp(np.linspace(-1., 0., window))
weights /= weights.sum()
a = np.convolve(values, weights, mode='full')[:len(values)]
a[:window] = a[window]
return a
def computeMACD(x, slow=26, fast=12):
"""
compute the MACD (Moving Average Convergence/Divergence) using a fast and slow exponential moving avg'
return value is emaslow, emafast, macd which are len(x) arrays
"""
emaslow = ExpMovingAverage(x, slow)
emafast = ExpMovingAverage(x, fast)
return emaslow, emafast, emafast - emaslow
def bytespdate2num(fmt, encoding='utf-8'):
strconverter = mdates.strpdate2num(fmt)
def bytesconverter(b):
s = b.decode(encoding)
return strconverter(s)
return bytesconverter
def graphData(stock,MA1,MA2):
filepath = 'S:/Perl64/lambda/Litmus/data/daily/' + stock + '.csv'
print ('filepath = ' + filepath)
try:
with open(filepath) as f:
lines = (line for line in f if not line.startswith('D'))
date, openp, highp, lowp, closep, volume = np.loadtxt(lines,delimiter=',', unpack=True,
converters={ 0: bytespdate2num('%Y-%m-%d')})
x = 0
y = len(date)
newAr = []
while x < y:
appendLine = date[x],openp[x],highp[x],lowp[x],closep[x],volume[x]
print (appendLine)
newAr.append(appendLine)
x+=1
#Av1 = movingaverage(closep, MA1)
#Av2 = movingaverage(closep, MA2)
SP = len(date[MA2-1:])
fig = plt.figure(figsize=(14,8))
ax1 = plt.subplot2grid((6,4), (1,0), rowspan=4, colspan=4)
candlestick_ohlc(ax1, newAr[-SP:], width=.5, colorup='#ff1717', colordown='#53c156')
#Label1 = str(MA1)+' SMA'
#Label2 = str(MA2)+' SMA'
#ax1.plot(date[-SP:],Av1[-SP:],'blue',label=Label1, linewidth=1.5)
#ax1.plot(date[-SP:],Av2[-SP:],'orange',label=Label2, linewidth=1.5)
ax1.grid(True, color='#E8E8E8')
ax1.xaxis.set_major_locator(mticker.MaxNLocator(10))
ax1.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d'))
ax1.yaxis.label.set_color("w")
ax1.spines['bottom'].set_color("#E8E8E8")
ax1.spines['top'].set_color("#E8E8E8")
ax1.spines['left'].set_color("#E8E8E8")
ax1.spines['right'].set_color("#E8E8E8")
ax1.tick_params(axis='y', colors='black')
plt.gca().yaxis.set_major_locator(mticker.MaxNLocator(prune='upper'))
ax1.tick_params(axis='x', colors='black')
plt.ylabel('Stock price and Volume',color='black')
# --- legends
#maLeg = plt.legend(loc=9, ncol=2, prop={'size':7},
# fancybox=True, borderaxespad=0.)
#maLeg.get_frame().set_alpha(0.4)
#textEd = pylab.gca().get_legend().get_texts()
#pylab.setp(textEd[0:5], color = 'b')
volumeMin = 0
ax0 = plt.subplot2grid((6,4), (0,0), sharex=ax1, rowspan=1, colspan=4) #axisbg='#07000d'
rsi = rsiFunc(closep)
rsiCol = 'black'
posCol = '#386d13'
negCol = '#8f2020'
ax0.plot(date[-SP:], rsi[-SP:], rsiCol, linewidth=1.5)
ax0.axhline(70, color=negCol)
ax0.axhline(30, color=posCol)
ax0.fill_between(date[-SP:], rsi[-SP:], 70, where=(rsi[-SP:]>=70), facecolor=negCol, edgecolor=negCol, alpha=0.5)
ax0.fill_between(date[-SP:], rsi[-SP:], 30, where=(rsi[-SP:]<=30), facecolor=posCol, edgecolor=posCol, alpha=0.5)
ax0.set_yticks([30,70])
ax0.yaxis.label.set_color("w")
ax0.spines['bottom'].set_color("#7F7F7F")
ax0.spines['top'].set_color("#7F7F7F")
ax0.spines['left'].set_color("#7F7F7F")
ax0.spines['right'].set_color("#7F7F7F")
ax0.tick_params(axis='y', colors='black')
ax0.tick_params(axis='x', colors='black')
plt.ylabel('RSI', color='b')
ax1v = ax1.twinx()
ax1v.fill_between(date[-SP:],volumeMin, volume[-SP:], facecolor='#7F7F7F', alpha=.4)
ax1v.axes.yaxis.set_ticklabels([])
ax1v.grid(False)
###Edit this to 3, so it's a bit larger
ax1v.set_ylim(0, 3*volume.max())
ax1v.spines['bottom'].set_color("#7F7F7F")
ax1v.spines['top'].set_color("#7F7F7F")
ax1v.spines['left'].set_color("#7F7F7F")
ax1v.spines['right'].set_color("#7F7F7F")
ax1v.tick_params(axis='x', colors='black')
ax1v.tick_params(axis='y', colors='black')
ax2 = plt.subplot2grid((6,4), (5,0), sharex=ax1, rowspan=1, colspan=4) #axisbg='#07000d'
fillcolor = '#7F7F7F'
nslow = 26
nfast = 12
nema = 9
emaslow, emafast, macd = computeMACD(closep)
ema9 = ExpMovingAverage(macd, nema)
ax2.plot(date[-SP:], macd[-SP:], color='blue', lw=1)
ax2.plot(date[-SP:], ema9[-SP:], color='red', lw=1)
ax2.fill_between(date[-SP:], macd[-SP:]-ema9[-SP:], 0, alpha=0.5, facecolor=fillcolor, edgecolor=fillcolor)
plt.gca().yaxis.set_major_locator(mticker.MaxNLocator(prune='upper'))
ax2.spines['bottom'].set_color("#7F7F7F")
ax2.spines['top'].set_color("#7F7F7F")
ax2.spines['left'].set_color("#7F7F7F")
ax2.spines['right'].set_color("#7F7F7F")
ax2.tick_params(axis='x', colors='black')
ax2.tick_params(axis='y', colors='black')
plt.ylabel('MACD', color='black')
ax2.yaxis.set_major_locator(mticker.MaxNLocator(nbins=5, prune='upper'))
for label in ax2.xaxis.get_ticklabels():
label.set_rotation(30)
plt.suptitle(stock.upper(),color='black')
plt.setp(ax0.get_xticklabels(), visible=False)
plt.setp(ax1.get_xticklabels(), visible=False)
plt.subplots_adjust(left=.09, bottom=.14, right=.94, top=.95, wspace=.20, hspace=0)
#plt.show()
print ("File saved")
fig.savefig('example.png',facecolor=fig.get_facecolor())
except Exception as e:
print('main loop',str(e))
graphData('RELIANCE',20,50)
Second script
import re
import time
import datetime
from datetime import datetime, timedelta
import pandas as pd
import numpy as np
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
from mpl_finance import candlestick_ohlc
import pylab
def bytespdate2num(fmt, encoding='utf-8'):
strconverter = mdates.strpdate2num(fmt)
def bytesconverter(b):
s = b.decode(encoding)
return strconverter(s)
return bytesconverter
filepath = 'S:/Perl64/lambda/Litmus/data/daily/TATASTEEL.csv'
df = pd.read_csv(filepath, header=0)
df.columns = ["Date", "Open", "High", "Low", "Close", "Volume"]
df = df.reset_index(drop=True)
df = df.set_index("Date", inplace = False)
df.sort_index(inplace=True) ## Sort in chronological order or as earlier dates first
df = df.tail(250)
CL_period = 9 # length of Tenkan Sen or Conversion Line
BL_period = 26 # length of Kijun Sen or Base Line
Lead_span_B_period = 52 # length of Senkou Sen B or Leading Span B
Lag_span_period = 52 # length of Chikou Span or Lagging Span
# add to the dataframe, different components of the Ichimoku
# use shift function to shift a time series forward by the given value
high_9 = df['High'].rolling(window=CL_period).max()
low_9 = df['Low'].rolling(window=CL_period).min()
df['Conv_line'] = (high_9 + low_9) /2
high_26 = df['High'].rolling(window=BL_period).max()
low_26 = df['Low'].rolling(window=BL_period).min()
df['Base_line'] = (high_26 + low_26) /2
df['SpanA'] = ((df['Conv_line'] + df['Base_line'])/2)
#df['SpanA'] = df['SpanA'].shift(26)
high_52 = df['High'].rolling(window=Lead_span_B_period).max()
low_52 = df['Low'].rolling(window=Lead_span_B_period).min()
df['SpanB'] = (high_52 + low_52)/2
#df['SpanB'] = df['SpanB'].shift(26)
df['Lagging_span'] = df['Close']
#df.dropna(inplace=True) # drop NA values from Dataframe
# plot the data using matplotlib's functionality
#add figure and axis objects
fig,ax = plt.subplots(1,1,sharex=True,figsize = (14,8)) #share x axis and set a figure size
fn='S:/Perl64/lambda/scripts/reliance_coi.csv'
df.to_csv(fn, index=1, sep=',', mode='a')
df['Close'] = df['Close'].shift(-26)
ax.plot(df.index, df.Close,linewidth=2) # plot Close with index on x-axis with a line thickness of 4
try:
#candlestick_ohlc(ax, data.values, width=0.6, colorup='g', colordown='r')
candlestick_ohlc(ax=ax, opens=df['Open'], highs=df['High'],lows=df['Low'],closes=df['Close'],width=0.4, colorup='#ff1717', colordown='#53c156')
#candlestick_ohlc(ax, newAr[-SP:], width=.5, colorup='#ff1717', colordown='#53c156')
except Exception as e:
print('main loop',str(e))
df['Conv_line'] = df['Conv_line'].shift(-26)
ax.plot(df.index, df.Conv_line, color="blue") # Tenken
df['Base_line'] = df['Base_line'].shift(-26)
ax.plot(df.index, df.Base_line, color="red") # Kijun
df['Lagging_span'] = df['Lagging_span'].shift(-52)
ax.plot(df.index, df.Lagging_span, color="grey") # Tenken
ax.plot(df.index, df.SpanA) # plot Lead Span A with index on the shared x-axis
ax.plot(df.index, df.SpanB) # plot Lead Span B with index on the sahred x-axis
# use the fill_between call of ax object to specify where to fill the chosen color
# pay attention to the conditions specified in the fill_between call
ax.fill_between(df.index,df.SpanA,df.SpanB,where = df.SpanA >= df.SpanB, color = 'lightgreen')
ax.fill_between(df.index,df.SpanA,df.SpanB,where = df.SpanA < df.SpanB, color = 'lightcoral')
plt.legend(loc=0) #Let matplotlib choose best location for legend
plt.tight_layout()
#plt.grid() # display the major grid
fig.savefig('ichimoku.png')```
The stock prices csv file that I use is here
2019-01-01,1125.25,1127.30,1110.10,1121.00,4455850
2019-01-02,1114.50,1127.00,1101.00,1106.40,7144970
2019-01-03,1107.50,1114.60,1090.10,1092.75,7446457
2019-01-04,1097.40,1104.45,1081.10,1098.65,8465141
2019-01-07,1107.00,1118.45,1101.00,1104.75,5513559
2019-01-08,1105.10,1109.95,1096.00,1104.65,5625153
2019-01-09,1112.00,1117.00,1098.70,1110.75,5766805
2019-01-10,1107.75,1111.00,1103.00,1107.50,4080283
2019-01-11,1107.60,1113.80,1088.60,1098.05,6463903
2019-01-14,1095.00,1100.50,1086.40,1096.80,4111782
2019-01-15,1105.00,1132.00,1105.00,1129.65,10062875
2019-01-16,1135.00,1145.00,1130.35,1135.90,6382777
2019-01-17,1144.45,1147.90,1130.00,1134.45,7487963
2019-01-18,1148.80,1189.90,1135.25,1184.35,25684142
2019-01-21,1194.00,1239.95,1188.65,1237.70,22038534
2019-01-22,1232.85,1246.95,1219.60,1235.15,16552819
2019-01-23,1233.30,1244.20,1222.00,1226.30,8829502
2019-01-24,1225.00,1253.20,1220.10,1247.45,13155185
2019-01-25,1250.45,1264.70,1235.40,1246.00,8550836
2019-01-28,1250.50,1255.95,1222.40,1229.55,8569265
2019-01-29,1231.00,1231.65,1201.35,1210.65,9328866
2019-01-30,1215.00,1225.00,1191.10,1195.70,7846940
2019-01-31,1202.00,1229.70,1201.00,1227.15,10185347
2019-02-01,1234.00,1255.00,1227.05,1249.95,9228965
2019-02-04,1247.00,1296.95,1242.05,1290.90,11670570
2019-02-05,1292.00,1304.40,1278.60,1291.55,9362406
2019-02-06,1296.25,1317.65,1294.25,1310.25,9411585
2019-02-07,1310.25,1321.20,1286.10,1290.40,9212227
2019-02-08,1284.80,1300.50,1272.25,1277.70,6505502
2019-02-11,1275.90,1276.00,1251.00,1253.25,7523999
2019-02-12,1251.50,1272.35,1251.50,1256.40,6399485
2019-02-14,1241.00,1241.00,1218.00,1224.20,6627360
2019-02-15,1229.75,1249.90,1214.00,1244.45,9597961
2019-02-18,1250.00,1252.50,1215.00,1220.10,9649017
2019-02-19,1218.00,1239.70,1211.20,1216.10,6244189
2019-02-20,1223.85,1240.00,1219.00,1234.35,6298179
2019-02-21,1236.00,1257.80,1229.35,1246.90,10580178
2019-02-22,1244.60,1245.30,1226.00,1232.35,8755865
2019-02-25,1236.00,1243.00,1220.65,1232.30,7852528
2019-02-26,1209.50,1234.80,1206.00,1220.25,10131050
2019-02-27,1228.05,1244.90,1209.00,1223.50,11113182
2019-02-28,1233.75,1239.85,1226.55,1231.05,11286916
2019-03-01,1237.00,1242.35,1222.25,1226.05,7922513
2019-03-05,1223.40,1239.80,1218.60,1237.65,7121509
2019-03-06,1239.80,1273.10,1235.10,1264.80,12038231
2019-03-07,1264.00,1279.80,1258.15,1270.25,8109259
2019-03-08,1266.05,1274.45,1262.00,1267.10,6040052
2019-03-11,1270.05,1312.00,1268.00,1304.10,9718840
2019-03-12,1316.90,1334.00,1314.25,1331.35,11228736
2019-03-13,1337.00,1360.00,1328.10,1347.30,11236048
2019-03-14,1349.75,1362.00,1336.10,1341.55,10402048
2019-03-15,1345.00,1358.80,1311.20,1321.65,15893093
2019-03-18,1331.00,1357.95,1329.00,1350.05,10105234
2019-03-19,1360.00,1380.00,1343.10,1376.55,9805318
2019-03-20,1377.80,1388.00,1364.00,1375.45,9892823
2019-03-22,1372.50,1380.90,1336.70,1341.75,11465112
2019-03-25,1330.60,1336.85,1316.70,1324.45,7951992
2019-03-26,1330.30,1371.60,1330.00,1367.25,9479288
2019-03-27,1377.95,1377.95,1344.25,1349.25,10094174
2019-03-28,1350.25,1369.80,1342.80,1360.00,10482938
2019-04-01,1370.00,1406.80,1362.55,1391.85,10098281
2019-04-02,1398.00,1403.10,1380.10,1389.70,8012636
2019-04-03,1392.75,1403.00,1372.00,1375.20,7849461
2019-04-04,1379.00,1383.70,1347.25,1353.05,8375674
2019-04-05,1360.95,1363.90,1343.00,1353.90,6728239
2019-04-08,1356.00,1357.50,1323.70,1329.25,8723577
2019-04-09,1328.90,1340.70,1321.00,1334.45,9497621
2019-04-10,1337.95,1348.00,1326.50,1331.40,7612711
2019-04-11,1332.95,1353.00,1329.00,1346.80,5741333
2019-04-12,1350.00,1356.90,1336.65,1343.10,5919742
2019-04-15,1345.00,1348.95,1335.00,1340.15,4245127
2019-04-16,1345.00,1360.00,1340.00,1343.75,7936553
2019-04-18,1375.00,1389.75,1365.00,1385.95,17960482
2019-04-22,1360.00,1367.00,1341.30,1345.35,10792748
2019-04-23,1348.00,1373.00,1346.00,1363.85,9055300
2019-04-24,1370.30,1394.80,1366.25,1389.50,7360887
2019-04-25,1389.10,1412.40,1362.60,1372.40,13929820
2019-04-26,1375.00,1395.95,1370.70,1392.80,6889444
2019-04-30,1396.40,1396.40,1366.80,1392.80,10217019
2019-05-02,1392.00,1413.90,1382.10,1405.05,8682505
2019-05-03,1407.95,1417.50,1402.65,1408.85,6510169
2019-05-06,1398.00,1402.80,1378.10,1384.90,7237910
2019-05-07,1394.80,1395.00,1340.20,1343.50,8876945
2019-05-08,1340.00,1340.00,1292.20,1299.45,14610543
2019-05-09,1288.80,1288.80,1251.75,1256.45,19507368
2019-05-10,1265.00,1277.70,1245.00,1251.15,11226831
2019-05-13,1247.90,1260.80,1227.50,1232.05,8047801
2019-05-14,1236.50,1269.35,1231.50,1260.45,13001004
2019-05-15,1273.00,1278.00,1250.60,1256.90,11163801
2019-05-16,1259.95,1271.90,1258.10,1265.35,6606652
2019-05-17,1267.00,1276.95,1252.00,1267.40,7898440
2019-05-20,1313.60,1337.70,1303.50,1325.90,12333937
2019-05-21,1332.20,1367.00,1330.05,1339.80,13872055
2019-05-22,1345.65,1359.70,1335.10,1340.40,11287400
2019-05-23,1372.00,1392.00,1325.00,1333.90,17722514
2019-05-24,1348.00,1353.80,1316.50,1336.85,10180759
2019-05-27,1337.10,1337.50,1307.00,1310.65,7349720
2019-05-28,1319.80,1334.80,1313.35,1323.75,19472659
2019-05-29,1321.00,1333.30,1304.15,1313.05,7112830
2019-05-30,1316.25,1342.00,1316.25,1329.75,10740841
2019-05-31,1337.90,1341.90,1320.20,1330.15,11760178
2019-06-03,1335.00,1367.25,1321.20,1360.20,8483610
2019-06-04,1357.45,1374.25,1348.10,1351.65,7059911
2019-06-06,1361.90,1361.90,1321.10,1327.35,7664319
2019-06-07,1325.95,1327.25,1305.60,1314.90,6730595
2019-06-10,1320.90,1327.00,1310.10,1319.15,5380148
2019-06-11,1321.85,1334.50,1318.00,1329.15,5253790
2019-06-12,1334.70,1338.40,1325.00,1332.15,4707716
2019-06-13,1330.00,1334.70,1308.65,1327.25,7171189
2019-06-14,1321.90,1325.00,1309.40,1317.55,6831331
2019-06-17,1320.00,1320.00,1278.50,1282.30,6815554
2019-06-18,1278.90,1287.95,1269.10,1281.00,7679193
2019-06-19,1286.90,1302.00,1262.60,1277.35,6625604
2019-06-20,1280.00,1300.00,1278.00,1296.75,4914012
2019-06-21,1295.95,1296.00,1275.55,1279.50,10623098
2019-06-24,1272.15,1276.45,1257.10,1262.40,5150998
2019-06-25,1258.90,1298.00,1254.25,1295.85,6842363
2019-06-26,1291.00,1304.60,1286.35,1294.15,5299942
2019-06-27,1293.15,1296.90,1271.00,1274.15,11385972
2019-06-28,1277.10,1282.85,1248.65,1253.10,8659721
2019-07-01,1258.05,1272.65,1246.45,1268.85,6162080
2019-07-02,1273.95,1281.00,1263.30,1278.50,4638751
2019-07-03,1282.90,1286.50,1275.05,1282.55,4026032
2019-07-04,1281.40,1291.00,1280.00,1284.00,4275148
2019-07-05,1285.10,1290.50,1260.00,1263.35,4995344
2019-07-08,1258.00,1268.10,1248.20,1252.05,6404544
2019-07-09,1248.95,1283.50,1245.50,1280.10,8016757
2019-07-10,1280.05,1289.35,1268.70,1278.85,5494315
2019-07-11,1287.00,1289.80,1279.30,1281.55,3935460
2019-07-12,1283.00,1300.00,1278.05,1280.50,7174054
2019-07-15,1285.00,1289.50,1270.35,1276.10,4873164
2019-07-16,1279.95,1294.90,1277.05,1293.00,4604019
2019-07-17,1294.30,1297.00,1280.00,1281.85,4334958
2019-07-18,1282.00,1286.40,1258.00,1261.85,5459896
2019-07-19,1268.20,1272.95,1242.70,1249.00,7468515
2019-07-22,1251.00,1284.50,1227.30,1280.50,13300153
2019-07-23,1285.00,1293.90,1260.40,1273.55,9287951
2019-07-24,1273.50,1278.80,1253.55,1259.10,6943982
2019-07-25,1264.00,1269.05,1227.00,1231.50,9968545
2019-07-26,1231.50,1242.50,1210.00,1213.80,9320481
2019-07-29,1216.90,1222.00,1205.10,1210.95,8058035
2019-07-30,1213.95,1220.00,1175.95,1180.90,9533344
2019-07-31,1175.75,1185.00,1162.40,1166.25,9705619
2019-08-01,1163.40,1188.20,1150.35,1180.25,10344862
2019-08-02,1175.70,1198.25,1162.10,1184.35,10865385
2019-08-05,1167.00,1167.00,1128.00,1143.35,13897461
2019-08-06,1134.75,1149.60,1122.00,1128.30,13288909
2019-08-07,1126.50,1138.55,1103.10,1109.40,11588879
2019-08-08,1108.35,1158.00,1095.30,1152.35,14262936
2019-08-09,1161.85,1175.50,1152.30,1162.10,10043949
2019-08-13,1233.15,1302.80,1226.00,1274.75,47923444
2019-08-14,1304.00,1304.45,1280.35,1288.25,14487137
2019-08-16,1291.20,1291.80,1273.00,1278.00,10047496
2019-08-19,1281.05,1296.80,1280.00,1292.60,7459859
2019-08-20,1289.80,1292.60,1272.60,1275.95,6843460
2019-08-21,1275.65,1278.65,1266.50,1270.95,4881553
2019-08-22,1270.95,1271.00,1238.90,1246.75,6414937
2019-08-23,1239.00,1284.00,1226.50,1275.85,9741262
2019-08-26,1294.00,1294.00,1259.00,1266.80,8778739
2019-08-27,1285.00,1285.00,1261.20,1274.85,12984396
2019-08-28,1273.75,1281.00,1256.05,1263.30,5305639
2019-08-29,1256.45,1260.25,1235.30,1241.75,8635974
2019-08-30,1245.50,1254.40,1221.00,1248.55,11308120
2019-09-03,1242.25,1243.00,1200.00,1206.40,8563009
2019-09-04,1200.55,1205.25,1186.05,1201.15,15063355
2019-09-05,1206.80,1213.20,1193.30,1198.60,10512763
2019-09-06,1203.00,1229.00,1195.25,1222.50,10600234
2019-09-09,1220.65,1233.00,1213.15,1222.20,5370758
2019-09-11,1222.50,1240.00,1222.50,1234.40,5544468
2019-09-12,1235.00,1240.45,1205.70,1210.35,5431139
2019-09-13,1212.00,1228.50,1206.90,1225.60,5919260
2019-09-16,1189.00,1219.10,1186.10,1210.75,9393731
2019-09-17,1211.00,1211.00,1193.50,1197.45,7150435
2019-09-18,1204.95,1216.30,1197.20,1205.70,6827281
2019-09-19,1207.85,1209.70,1172.65,1179.05,6293454
2019-09-20,1187.95,1269.90,1174.30,1254.35,22019674
2019-09-23,1274.15,1281.00,1235.00,1239.20,9879751
2019-09-24,1243.60,1298.80,1242.75,1278.70,15982067
2019-09-25,1284.00,1295.00,1268.85,1279.55,8316894
2019-09-26,1292.00,1298.80,1283.50,1296.80,8389212
2019-09-27,1292.50,1315.00,1284.00,1309.05,8712980
2019-09-30,1310.00,1335.75,1305.55,1332.25,11549746
2019-10-01,1337.00,1342.00,1293.30,1304.90,8192597
2019-10-03,1286.00,1314.70,1281.30,1311.05,6183107
2019-10-04,1319.90,1328.60,1303.85,1308.10,6853954
2019-10-07,1308.10,1320.80,1301.70,1310.10,4599818
2019-10-09,1308.70,1329.95,1292.50,1324.75,8040938
2019-10-10,1325.00,1369.00,1321.00,1362.75,16003744
2019-10-11,1363.70,1365.60,1336.55,1352.60,7587648
2019-10-14,1364.95,1364.95,1350.85,1358.00,6123412
2019-10-15,1362.50,1370.00,1354.30,1364.15,4422075
2019-10-16,1369.90,1379.65,1363.70,1372.35,8870701
2019-10-17,1375.00,1399.00,1372.00,1396.50,7332464
2019-10-18,1404.00,1427.90,1398.70,1416.35,12856410
2019-10-22,1425.00,1436.85,1403.35,1414.15,12703054
2019-10-23,1416.30,1425.95,1383.15,1392.40,8432964
2019-10-24,1401.00,1441.40,1386.55,1436.45,10351384
2019-10-25,1441.10,1441.45,1411.25,1431.20,6190013
2019-10-29,1445.50,1480.00,1442.10,1467.05,11780494
2019-10-30,1480.00,1484.55,1460.30,1479.10,7470723
2019-10-31,1484.00,1489.65,1461.70,1464.35,8898168
2019-11-01,1455.00,1461.80,1441.00,1456.90,6356579
2019-11-04,1465.90,1471.00,1445.10,1457.65,6429329
2019-11-05,1463.10,1468.95,1441.00,1447.30,5799318
2019-11-06,1442.70,1446.45,1428.50,1434.90,6686289
2019-11-07,1435.00,1463.00,1432.20,1458.60,6438749
2019-11-08,1449.00,1459.65,1441.30,1445.50,5494844
2019-11-11,1439.10,1444.25,1422.55,1427.80,5192423
2019-11-13,1430.00,1475.90,1430.00,1472.30,11532364
2019-11-14,1476.00,1481.60,1455.80,1462.75,6518339
2019-11-15,1465.65,1486.80,1463.15,1470.85,7173674
2019-11-18,1472.65,1486.00,1455.40,1459.20,6435097
2019-11-19,1467.00,1514.90,1465.00,1509.75,13795569
2019-11-20,1555.05,1572.40,1543.20,1547.65,19904164
2019-11-21,1545.00,1556.00,1528.55,1537.60,6810577
2019-11-22,1542.10,1569.50,1537.60,1546.50,10218978
2019-11-25,1551.15,1564.80,1551.00,1561.55,6924313
2019-11-26,1568.10,1576.35,1556.00,1560.25,16152137
2019-11-27,1559.95,1575.50,1556.10,1569.85,4408336
2019-11-28,1572.65,1584.15,1563.95,1580.30,6284885
2019-11-29,1581.95,1581.95,1547.85,1551.15,8484822
2019-12-02,1600.00,1614.45,1577.00,1586.50,14275186
2019-12-03,1592.75,1594.00,1572.60,1578.90,5938786
2019-12-04,1573.00,1577.50,1533.75,1552.70,9594828
2019-12-05,1574.00,1579.75,1544.00,1550.85,9117022
2019-12-06,1553.00,1568.00,1541.10,1554.90,5982129
2019-12-09,1556.15,1577.40,1546.50,1572.60,5779807
2019-12-10,1572.05,1573.60,1554.15,1561.95,4650906
2019-12-11,1555.60,1574.50,1550.60,1562.40,5652698
2019-12-12,1570.25,1573.85,1556.65,1568.20,4720977
2019-12-13,1580.00,1590.00,1572.40,1582.90,5791522
2019-12-16,1592.00,1593.90,1564.35,1566.60,5436951
2019-12-17,1566.75,1579.00,1555.55,1562.70,9291724
2019-12-18,1563.00,1580.00,1562.00,1575.85,6739582
2019-12-19,1573.70,1614.90,1571.80,1609.95,9375484
2019-12-20,1615.00,1617.55,1596.10,1599.10,9724619
2019-12-23,1560.10,1577.55,1557.80,1571.40,11478429
2019-12-24,1568.90,1572.05,1542.50,1546.45,8251144
2019-12-26,1541.65,1552.95,1510.15,1515.40,13605737
2019-12-27,1527.00,1546.20,1521.30,1542.35,8081591
2019-12-30,1545.95,1547.65,1528.05,1544.20,7828402
2019-12-31,1542.00,1543.70,1508.05,1514.05,10150467
2020-01-01,1518.00,1527.10,1505.50,1509.60,6402372
2020-01-02,1512.00,1540.95,1512.00,1535.30,8096561
2020-01-03,1533.00,1541.65,1523.00,1537.15,9593498
2020-01-06,1520.00,1527.90,1498.00,1501.50,11209343
2020-01-07,1519.00,1534.50,1513.50,1524.60,7627191
2020-01-08,1515.00,1534.45,1510.00,1513.15,7336561
2020-01-09,1538.60,1550.00,1531.25,1548.00,6849606
2020-01-10,1551.90,1557.95,1539.65,1547.65,5704686
2020-01-13,1545.05,1558.70,1538.40,1543.70,8358090
2020-01-14,1540.00,1550.00,1521.85,1529.40,7230788
2020-01-15,1535.85,1539.90,1518.25,1523.85,7231393
2020-01-16,1529.00,1543.35,1528.00,1537.90,5873662
2020-01-17,1553.50,1584.95,1553.20,1581.00,13469708
2020-01-20,1609.00,1609.00,1526.40,1532.35,14878868
2020-01-21,1528.60,1545.85,1522.00,1533.90,8650831
2020-01-22,1544.00,1546.75,1531.10,1533.35,4719245
2020-01-23,1536.50,1541.95,1520.70,1526.85,5142037
2020-01-24,1527.00,1536.35,1518.55,1521.55,6687633
2020-01-27,1514.90,1524.45,1505.00,1506.55,6120429
2020-01-28,1508.60,1510.00,1463.60,1471.75,11215313
2020-01-29,1474.05,1494.40,1464.05,1479.85,11313297
2020-01-30,1479.00,1479.70,1440.00,1443.75,10241756
2020-01-31,1453.00,1453.25,1407.20,1411.65,15886673
2020-02-01,1405.30,1426.95,1317.10,1383.35,10718667
The problem with second script above is that I am getting error at line
candlestick_ohlc(ax=ax, opens=df['Open'], highs=df['High'],lows=df['Low'],closes=df['Close'],width=0.4, colorup='#ff1717', colordown='#53c156')
It gives me error (you can see I have tried various version of code to build candlestick_ohlc charts)
main loop candlestick_ohlc() got an unexpected keyword argument 'opens'
I have the following questions to ask:
What is wrong with second script?
How can draw support/resistance (line), harmonic-pattern using matplotlib. The support lines and harmonic-patterns are stored in a pandas dataframe which needs to be plotted on the chart
Note: Support and resistance are some points of stock charts on which you can draw line and they act as support or resistance for stock
matplotlib.use('agg')
This is non-interactive backend. Use interactive backends like -GTK3Agg, GTK3Cairo, MacOSX, nbAgg,Qt4Agg, Qt4Cairo, Qt5Agg, Qt5Cairo, TkAgg, TkCairo, WebAgg, WX, WXAgg, WXCairo.
Try using above. May be this is helpful

How to manually change the tick labels of the margin plots on a Seaborn jointplot

I am trying to use a log scale as the margin plots for my seaborn jointplot. I am usings set_xticks() and set_yticks(), but my changes do not appear. Here is my code below and the resulting graph:
import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np
import seaborn as sns
import pandas as pd
tips = sns.load_dataset('tips')
female_waiters = tips[tips['sex']=='Female']
def graph_joint_histograms(df1):
g=sns.jointplot(x = 'total_bill',y = 'tip', data = tips, space = 0.3,ratio = 3)
g.ax_joint.cla()
g.ax_marg_x.cla()
g.ax_marg_y.cla()
for xlabel_i in g.ax_marg_x.get_xticklabels():
xlabel_i.set_visible(False)
for ylabel_i in g.ax_marg_y.get_yticklabels():
ylabel_i.set_visible(False)
x_labels = g.ax_joint.get_xticklabels()
x_labels[0].set_visible(False)
x_labels[-1].set_visible(False)
y_labels = g.ax_joint.get_yticklabels()
y_labels[0].set_visible(False)
y_labels[-1].set_visible(False)
g.ax_joint.set_xlim(0,200)
g.ax_marg_x.set_xlim(0,200)
g.ax_joint.scatter(x = df1['total_bill'],y = df1['tip'],data = df1,c = 'y',edgecolors= '#080808',zorder = 2)
g.ax_joint.scatter(x = tips['total_bill'],y = tips['tip'],data = tips, c= 'c',edgecolors= '#080808')
ax1 =g.ax_marg_x.get_axes()
ax2 = g.ax_marg_y.get_axes()
ax1.set_yscale('log')
ax2.set_xscale('log')
ax1.set_yscale('log')
ax2.set_xscale('log')
ax2.set_xlim(1e0, 1e4)
ax1.set_ylim(1e0, 1e3)
ax2.xaxis.set_ticks([1e0,1e1,1e2,1e3])
ax2.xaxis.set_ticklabels(("1","10","100","1000"), visible = True)
plt.setp(ax2.get_xticklabels(), visible = True)
colors = ['y','c']
ax1.hist([df1['total_bill'],tips['total_bill']],bins = 10, stacked=True,log = True,color = colors, ec='black')
ax2.hist([df1['tip'],tips['tip']],bins = 10,orientation = 'horizontal', stacked=True,log = True,color = colors, ec='black')
ax2.set_ylabel('')
Any ideas would be much appreciated.
Here is the resulting graph:
You should actually get an error from the line g.ax_marg_y.get_axes() since an axes does not have a get_axes() method.
Correcting for that
ax1 =g.ax_marg_x
ax2 = g.ax_marg_y
should give you the desired plot. The ticklabels for the log axis are unfortunately overwritten by the histogram's log=True argument. So you can either leave that out (since you already set the axes to log scale anyways) or you need to set the labels after calling hist.
import matplotlib.pyplot as plt
import seaborn as sns
tips = sns.load_dataset('tips')
def graph_joint_histograms(tips):
g=sns.jointplot(x = 'total_bill',y = 'tip', data = tips, space = 0.3,ratio = 3)
g.ax_joint.cla()
g.ax_marg_x.cla()
g.ax_marg_y.cla()
for xlabel_i in g.ax_marg_x.get_xticklabels():
xlabel_i.set_visible(False)
for ylabel_i in g.ax_marg_y.get_yticklabels():
ylabel_i.set_visible(False)
x_labels = g.ax_joint.get_xticklabels()
x_labels[0].set_visible(False)
x_labels[-1].set_visible(False)
y_labels = g.ax_joint.get_yticklabels()
y_labels[0].set_visible(False)
y_labels[-1].set_visible(False)
g.ax_joint.set_xlim(0,200)
g.ax_marg_x.set_xlim(0,200)
g.ax_joint.scatter(x = tips['total_bill'],y = tips['tip'],data = tips,
c = 'y',edgecolors= '#080808',zorder = 2)
g.ax_joint.scatter(x = tips['total_bill'],y = tips['tip'],data = tips,
c= 'c',edgecolors= '#080808')
ax1 =g.ax_marg_x
ax2 = g.ax_marg_y
ax1.set_yscale('log')
ax2.set_xscale('log')
ax2.set_xlim(1e0, 1e4)
ax1.set_ylim(1e0, 1e3)
ax2.xaxis.set_ticks([1e0,1e1,1e2,1e3])
ax2.xaxis.set_ticklabels(("1","10","100","1000"), visible = True)
plt.setp(ax2.get_xticklabels(), visible = True)
colors = ['y','c']
ax1.hist([tips['total_bill'],tips['total_bill']],bins = 10,
stacked=True, color = colors, ec='black')
ax2.hist([tips['tip'],tips['tip']],bins = 10,orientation = 'horizontal',
stacked=True, color = colors, ec='black')
ax2.set_ylabel('')
graph_joint_histograms(tips)
plt.show()

How do I animate a scatterplot over a basemap in matplotlib?

The code below generates a animated basemap, but not exactly the one I want: I want the scatterplot from the previous frame to disappear, but it persists through the remainder of the animation.
I suspect it has something to do with my not understanding what the basemap really is. I understand calling it on lat/lons to project them to x/y, but I don't entirely get what's going on when I call event_map.scatter().
import random
import os
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.basemap import Basemap
from matplotlib import animation
import pandas as pd
from IPython.display import HTML
# Enables animation display directly in IPython
#(http://jakevdp.github.io/blog/2013/05/12/embedding-matplotlib-animations/)
from tempfile import NamedTemporaryFile
VIDEO_TAG = """<video controls>
<source src="data:video/x-m4v;base64,{0}" type="video/mp4">
Your browser does not support the video tag.
</video>"""
def anim_to_html(anim):
if not hasattr(anim, '_encoded_video'):
with NamedTemporaryFile(suffix='.mp4') as f:
anim.save(f.name, fps=20, extra_args=['-vcodec', 'libx264'])
video = open(f.name, "rb").read()
anim._encoded_video = video.encode("base64")
return VIDEO_TAG.format(anim._encoded_video)
def display_animation(anim):
plt.close(anim._fig)
return HTML(anim_to_html(anim))
animation.Animation._repr_html_ = anim_to_html
FRAMES = 20
POINTS_PER_FRAME = 30
LAT_MIN = 40.5
LAT_MAX = 40.95
LON_MIN = -74.15
LON_MAX = -73.85
FIGSIZE = (10,10)
MAP_BACKGROUND = '.95'
MARKERSIZE = 20
#Make Sample Data
data_frames = {}
for i in range(FRAMES):
lats = [random.uniform(LAT_MIN, LAT_MAX) for x in range(POINTS_PER_FRAME)]
lons = [random.uniform(LON_MIN, LON_MAX) for x in range(POINTS_PER_FRAME)]
data_frames[i] = pd.DataFrame({'lat':lats, 'lon':lons})
class AnimatedMap(object):
""" An animated scatter plot over a basemap"""
def __init__(self, data_frames):
self.dfs = data_frames
self.fig = plt.figure(figsize=FIGSIZE)
self.event_map = Basemap(projection='merc',
resolution='i', area_thresh=1.0, # Medium resolution
lat_0 = (LAT_MIN + LAT_MAX)/2, lon_0=(LON_MIN + LON_MAX)/2, # Map center
llcrnrlon=LON_MIN, llcrnrlat=LAT_MIN, # Lower left corner
urcrnrlon=LON_MAX, urcrnrlat=LAT_MAX) # Upper right corner
self.ani = animation.FuncAnimation(self.fig, self.update, frames=FRAMES, interval=1000,
init_func=self.setup_plot, blit=True,
repeat=False)
def setup_plot(self):
self.event_map.drawcoastlines()
self.event_map.drawcounties()
self.event_map.fillcontinents(color=MAP_BACKGROUND) # Light gray
self.event_map.drawmapboundary()
self.scat = self.event_map.scatter(x = [], y=[], s=MARKERSIZE,marker='o', zorder=10)
return self.scat
def project_lat_lons(self, i):
df = data_frames[i]
x, y = self.event_map(df.lon.values, df.lat.values)
x_y = pd.DataFrame({'x': x, 'y': y}, index=df.index)
df = df.join(x_y)
return df
def update(self, i):
"""Update the scatter plot."""
df = self.project_lat_lons(i)
self.scat = self.event_map.scatter(x = df.x.values, y=df.y.values, marker='o', zorder=10)
return self.scat,
s = AnimatedMap(data_frames)
s.ani
It looks like you're simply adding a new scatter plot at each update. What you should do instead is change the data in the existing path collection at each update. Try something along the lines of
def update(self, i):
"""Update the scatter plot."""
df = self.project_lat_lons(i)
new_offsets = np.vstack([df.x.values, df.y.values]).T
self.scat.set_offsets(new_offsets)
return self.scat,
Note that I haven't tested this.

Categories

Resources