print doesn't work in __getattr__ - python

I have this class:
class Meta:
def __getattr__(self, atr):
print('get', atr)
def __setattr__(self, atr, atr_value):
print('{0} with value {1} added'.format(atr, atr_value))
self.__dict__[atr] = atr_value
and when I set an attribute - print works:
>>> x.a = 1
a with value 1 added
but when I call it:
>>> x.a
1
Value is returned without the print output.
Help will be much appreciated.

__getattr__ is called only when the attribute does not exist. You want to override __gettattribute__.
def __getattribute__(self, name):
print("get", name)
return object.__getattribute__(self, name)

If the attribute is in the class or the instance dictionary, __getattr__ won't be called. This is an intentional asymmetry from __setattr__.
Implement __getattribute__ if you want full control.

In new-style classes __getattr__(true for old style classes as well) is called only if the attribute cannot be found on the instance or its class(well this includes the base classes as well).
In new-style classes you can achieve this by overriding __getattribute__.

Related

Why does binding a (user defined) class instance to a class attribute change the data type? [duplicate]

I am trying to understand what Python's descriptors are and what they are useful for. I understand how they work, but here are my doubts. Consider the following code:
class Celsius(object):
def __init__(self, value=0.0):
self.value = float(value)
def __get__(self, instance, owner):
return self.value
def __set__(self, instance, value):
self.value = float(value)
class Temperature(object):
celsius = Celsius()
Why do I need the descriptor class?
What is instance and owner here? (in __get__). What is the purpose of these parameters?
How would I call/use this example?
The descriptor is how Python's property type is implemented. A descriptor simply implements __get__, __set__, etc. and is then added to another class in its definition (as you did above with the Temperature class). For example:
temp=Temperature()
temp.celsius #calls celsius.__get__
Accessing the property you assigned the descriptor to (celsius in the above example) calls the appropriate descriptor method.
instance in __get__ is the instance of the class (so above, __get__ would receive temp, while owner is the class with the descriptor (so it would be Temperature).
You need to use a descriptor class to encapsulate the logic that powers it. That way, if the descriptor is used to cache some expensive operation (for example), it could store the value on itself and not its class.
An article about descriptors can be found here.
EDIT: As jchl pointed out in the comments, if you simply try Temperature.celsius, instance will be None.
Why do I need the descriptor class?
It gives you extra control over how attributes work. If you're used to getters and setters in Java, for example, then it's Python's way of doing that. One advantage is that it looks to users just like an attribute (there's no change in syntax). So you can start with an ordinary attribute and then, when you need to do something fancy, switch to a descriptor.
An attribute is just a mutable value. A descriptor lets you execute arbitrary code when reading or setting (or deleting) a value. So you could imagine using it to map an attribute to a field in a database, for example – a kind of ORM.
Another use might be refusing to accept a new value by throwing an exception in __set__ – effectively making the "attribute" read only.
What is instance and owner here? (in __get__). What is the purpose of these parameters?
This is pretty subtle (and the reason I am writing a new answer here - I found this question while wondering the same thing and didn't find the existing answer that great).
A descriptor is defined on a class, but is typically called from an instance. When it's called from an instance both instance and owner are set (and you can work out owner from instance so it seems kinda pointless). But when called from a class, only owner is set – which is why it's there.
This is only needed for __get__ because it's the only one that can be called on a class. If you set the class value you set the descriptor itself. Similarly for deletion. Which is why the owner isn't needed there.
How would I call/use this example?
Well, here's a cool trick using similar classes:
class Celsius:
def __get__(self, instance, owner):
return 5 * (instance.fahrenheit - 32) / 9
def __set__(self, instance, value):
instance.fahrenheit = 32 + 9 * value / 5
class Temperature:
celsius = Celsius()
def __init__(self, initial_f):
self.fahrenheit = initial_f
t = Temperature(212)
print(t.celsius)
t.celsius = 0
print(t.fahrenheit)
(I'm using Python 3; for python 2 you need to make sure those divisions are / 5.0 and / 9.0). That gives:
100.0
32.0
Now there are other, arguably better ways to achieve the same effect in python (e.g. if celsius were a property, which is the same basic mechanism but places all the source inside the Temperature class), but that shows what can be done...
I am trying to understand what Python's descriptors are and what they can be useful for.
Descriptors are objects in a class namespace that manage instance attributes (like slots, properties, or methods). For example:
class HasDescriptors:
__slots__ = 'a_slot' # creates a descriptor
def a_method(self): # creates a descriptor
"a regular method"
#staticmethod # creates a descriptor
def a_static_method():
"a static method"
#classmethod # creates a descriptor
def a_class_method(cls):
"a class method"
#property # creates a descriptor
def a_property(self):
"a property"
# even a regular function:
def a_function(some_obj_or_self): # creates a descriptor
"create a function suitable for monkey patching"
HasDescriptors.a_function = a_function # (but we usually don't do this)
Pedantically, descriptors are objects with any of the following special methods, which may be known as "descriptor methods":
__get__: non-data descriptor method, for example on a method/function
__set__: data descriptor method, for example on a property instance or slot
__delete__: data descriptor method, again used by properties or slots
These descriptor objects are attributes in other object class namespaces. That is, they live in the __dict__ of the class object.
Descriptor objects programmatically manage the results of a dotted lookup (e.g. foo.descriptor) in a normal expression, an assignment, or a deletion.
Functions/methods, bound methods, property, classmethod, and staticmethod all use these special methods to control how they are accessed via the dotted lookup.
A data descriptor, like property, can allow for lazy evaluation of attributes based on a simpler state of the object, allowing instances to use less memory than if you precomputed each possible attribute.
Another data descriptor, a member_descriptor created by __slots__, allows memory savings (and faster lookups) by having the class store data in a mutable tuple-like datastructure instead of the more flexible but space-consuming __dict__.
Non-data descriptors, instance and class methods, get their implicit first arguments (usually named self and cls, respectively) from their non-data descriptor method, __get__ - and this is how static methods know not to have an implicit first argument.
Most users of Python need to learn only the high-level usage of descriptors, and have no need to learn or understand the implementation of descriptors further.
But understanding how descriptors work can give one greater confidence in one's mastery of Python.
In Depth: What Are Descriptors?
A descriptor is an object with any of the following methods (__get__, __set__, or __delete__), intended to be used via dotted-lookup as if it were a typical attribute of an instance. For an owner-object, obj_instance, with a descriptor object:
obj_instance.descriptor invokes
descriptor.__get__(self, obj_instance, owner_class) returning a value
This is how all methods and the get on a property work.
obj_instance.descriptor = value invokes
descriptor.__set__(self, obj_instance, value) returning None
This is how the setter on a property works.
del obj_instance.descriptor invokes
descriptor.__delete__(self, obj_instance) returning None
This is how the deleter on a property works.
obj_instance is the instance whose class contains the descriptor object's instance. self is the instance of the descriptor (probably just one for the class of the obj_instance)
To define this with code, an object is a descriptor if the set of its attributes intersects with any of the required attributes:
def has_descriptor_attrs(obj):
return set(['__get__', '__set__', '__delete__']).intersection(dir(obj))
def is_descriptor(obj):
"""obj can be instance of descriptor or the descriptor class"""
return bool(has_descriptor_attrs(obj))
A Data Descriptor has a __set__ and/or __delete__.
A Non-Data-Descriptor has neither __set__ nor __delete__.
def has_data_descriptor_attrs(obj):
return set(['__set__', '__delete__']) & set(dir(obj))
def is_data_descriptor(obj):
return bool(has_data_descriptor_attrs(obj))
Builtin Descriptor Object Examples:
classmethod
staticmethod
property
functions in general
Non-Data Descriptors
We can see that classmethod and staticmethod are Non-Data-Descriptors:
>>> is_descriptor(classmethod), is_data_descriptor(classmethod)
(True, False)
>>> is_descriptor(staticmethod), is_data_descriptor(staticmethod)
(True, False)
Both only have the __get__ method:
>>> has_descriptor_attrs(classmethod), has_descriptor_attrs(staticmethod)
(set(['__get__']), set(['__get__']))
Note that all functions are also Non-Data-Descriptors:
>>> def foo(): pass
...
>>> is_descriptor(foo), is_data_descriptor(foo)
(True, False)
Data Descriptor, property
However, property is a Data-Descriptor:
>>> is_data_descriptor(property)
True
>>> has_descriptor_attrs(property)
set(['__set__', '__get__', '__delete__'])
Dotted Lookup Order
These are important distinctions, as they affect the lookup order for a dotted lookup.
obj_instance.attribute
First the above looks to see if the attribute is a Data-Descriptor on the class of the instance,
If not, it looks to see if the attribute is in the obj_instance's __dict__, then
it finally falls back to a Non-Data-Descriptor.
The consequence of this lookup order is that Non-Data-Descriptors like functions/methods can be overridden by instances.
Recap and Next Steps
We have learned that descriptors are objects with any of __get__, __set__, or __delete__. These descriptor objects can be used as attributes on other object class definitions. Now we will look at how they are used, using your code as an example.
Analysis of Code from the Question
Here's your code, followed by your questions and answers to each:
class Celsius(object):
def __init__(self, value=0.0):
self.value = float(value)
def __get__(self, instance, owner):
return self.value
def __set__(self, instance, value):
self.value = float(value)
class Temperature(object):
celsius = Celsius()
Why do I need the descriptor class?
Your descriptor ensures you always have a float for this class attribute of Temperature, and that you can't use del to delete the attribute:
>>> t1 = Temperature()
>>> del t1.celsius
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: __delete__
Otherwise, your descriptors ignore the owner-class and instances of the owner, instead, storing state in the descriptor. You could just as easily share state across all instances with a simple class attribute (so long as you always set it as a float to the class and never delete it, or are comfortable with users of your code doing so):
class Temperature(object):
celsius = 0.0
This gets you exactly the same behavior as your example (see response to question 3 below), but uses a Pythons builtin (property), and would be considered more idiomatic:
class Temperature(object):
_celsius = 0.0
#property
def celsius(self):
return type(self)._celsius
#celsius.setter
def celsius(self, value):
type(self)._celsius = float(value)
What is instance and owner here? (in get). What is the purpose of these parameters?
instance is the instance of the owner that is calling the descriptor. The owner is the class in which the descriptor object is used to manage access to the data point. See the descriptions of the special methods that define descriptors next to the first paragraph of this answer for more descriptive variable names.
How would I call/use this example?
Here's a demonstration:
>>> t1 = Temperature()
>>> t1.celsius
0.0
>>> t1.celsius = 1
>>>
>>> t1.celsius
1.0
>>> t2 = Temperature()
>>> t2.celsius
1.0
You can't delete the attribute:
>>> del t2.celsius
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: __delete__
And you can't assign a variable that can't be converted to a float:
>>> t1.celsius = '0x02'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 7, in __set__
ValueError: invalid literal for float(): 0x02
Otherwise, what you have here is a global state for all instances, that is managed by assigning to any instance.
The expected way that most experienced Python programmers would accomplish this outcome would be to use the property decorator, which makes use of the same descriptors under the hood, but brings the behavior into the implementation of the owner class (again, as defined above):
class Temperature(object):
_celsius = 0.0
#property
def celsius(self):
return type(self)._celsius
#celsius.setter
def celsius(self, value):
type(self)._celsius = float(value)
Which has the exact same expected behavior of the original piece of code:
>>> t1 = Temperature()
>>> t2 = Temperature()
>>> t1.celsius
0.0
>>> t1.celsius = 1.0
>>> t2.celsius
1.0
>>> del t1.celsius
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: can't delete attribute
>>> t1.celsius = '0x02'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 8, in celsius
ValueError: invalid literal for float(): 0x02
Conclusion
We've covered the attributes that define descriptors, the difference between data- and non-data-descriptors, builtin objects that use them, and specific questions about use.
So again, how would you use the question's example? I hope you wouldn't. I hope you would start with my first suggestion (a simple class attribute) and move on to the second suggestion (the property decorator) if you feel it is necessary.
Before going into the details of descriptors it may be important to know how attribute lookup in Python works. This assumes that the class has no metaclass and that it uses the default implementation of __getattribute__ (both can be used to "customize" the behavior).
The best illustration of attribute lookup (in Python 3.x or for new-style classes in Python 2.x) in this case is from Understanding Python metaclasses (ionel's codelog). The image uses : as substitute for "non-customizable attribute lookup".
This represents the lookup of an attribute foobar on an instance of Class:
Two conditions are important here:
If the class of instance has an entry for the attribute name and it has __get__ and __set__.
If the instance has no entry for the attribute name but the class has one and it has __get__.
That's where descriptors come into it:
Data descriptors which have both __get__ and __set__.
Non-data descriptors which only have __get__.
In both cases the returned value goes through __get__ called with the instance as first argument and the class as second argument.
The lookup is even more complicated for class attribute lookup (see for example Class attribute lookup (in the above mentioned blog)).
Let's move to your specific questions:
Why do I need the descriptor class?
In most cases you don't need to write descriptor classes! However you're probably a very regular end user. For example functions. Functions are descriptors, that's how functions can be used as methods with self implicitly passed as first argument.
def test_function(self):
return self
class TestClass(object):
def test_method(self):
...
If you look up test_method on an instance you'll get back a "bound method":
>>> instance = TestClass()
>>> instance.test_method
<bound method TestClass.test_method of <__main__.TestClass object at ...>>
Similarly you could also bind a function by invoking its __get__ method manually (not really recommended, just for illustrative purposes):
>>> test_function.__get__(instance, TestClass)
<bound method test_function of <__main__.TestClass object at ...>>
You can even call this "self-bound method":
>>> test_function.__get__(instance, TestClass)()
<__main__.TestClass at ...>
Note that I did not provide any arguments and the function did return the instance I had bound!
Functions are Non-data descriptors!
Some built-in examples of a data-descriptor would be property. Neglecting getter, setter, and deleter the property descriptor is (from Descriptor HowTo Guide "Properties"):
class Property(object):
def __init__(self, fget=None, fset=None, fdel=None, doc=None):
self.fget = fget
self.fset = fset
self.fdel = fdel
if doc is None and fget is not None:
doc = fget.__doc__
self.__doc__ = doc
def __get__(self, obj, objtype=None):
if obj is None:
return self
if self.fget is None:
raise AttributeError("unreadable attribute")
return self.fget(obj)
def __set__(self, obj, value):
if self.fset is None:
raise AttributeError("can't set attribute")
self.fset(obj, value)
def __delete__(self, obj):
if self.fdel is None:
raise AttributeError("can't delete attribute")
self.fdel(obj)
Since it's a data descriptor it's invoked whenever you look up the "name" of the property and it simply delegates to the functions decorated with #property, #name.setter, and #name.deleter (if present).
There are several other descriptors in the standard library, for example staticmethod, classmethod.
The point of descriptors is easy (although you rarely need them): Abstract common code for attribute access. property is an abstraction for instance variable access, function provides an abstraction for methods, staticmethod provides an abstraction for methods that don't need instance access and classmethod provides an abstraction for methods that need class access rather than instance access (this is a bit simplified).
Another example would be a class property.
One fun example (using __set_name__ from Python 3.6) could also be a property that only allows a specific type:
class TypedProperty(object):
__slots__ = ('_name', '_type')
def __init__(self, typ):
self._type = typ
def __get__(self, instance, klass=None):
if instance is None:
return self
return instance.__dict__[self._name]
def __set__(self, instance, value):
if not isinstance(value, self._type):
raise TypeError(f"Expected class {self._type}, got {type(value)}")
instance.__dict__[self._name] = value
def __delete__(self, instance):
del instance.__dict__[self._name]
def __set_name__(self, klass, name):
self._name = name
Then you can use the descriptor in a class:
class Test(object):
int_prop = TypedProperty(int)
And playing a bit with it:
>>> t = Test()
>>> t.int_prop = 10
>>> t.int_prop
10
>>> t.int_prop = 20.0
TypeError: Expected class <class 'int'>, got <class 'float'>
Or a "lazy property":
class LazyProperty(object):
__slots__ = ('_fget', '_name')
def __init__(self, fget):
self._fget = fget
def __get__(self, instance, klass=None):
if instance is None:
return self
try:
return instance.__dict__[self._name]
except KeyError:
value = self._fget(instance)
instance.__dict__[self._name] = value
return value
def __set_name__(self, klass, name):
self._name = name
class Test(object):
#LazyProperty
def lazy(self):
print('calculating')
return 10
>>> t = Test()
>>> t.lazy
calculating
10
>>> t.lazy
10
These are cases where moving the logic into a common descriptor might make sense, however one could also solve them (but maybe with repeating some code) with other means.
What is instance and owner here? (in __get__). What is the purpose of these parameters?
It depends on how you look up the attribute. If you look up the attribute on an instance then:
the second argument is the instance on which you look up the attribute
the third argument is the class of the instance
In case you look up the attribute on the class (assuming the descriptor is defined on the class):
the second argument is None
the third argument is the class where you look up the attribute
So basically the third argument is necessary if you want to customize the behavior when you do class-level look-up (because the instance is None).
How would I call/use this example?
Your example is basically a property that only allows values that can be converted to float and that is shared between all instances of the class (and on the class - although one can only use "read" access on the class otherwise you would replace the descriptor instance):
>>> t1 = Temperature()
>>> t2 = Temperature()
>>> t1.celsius = 20 # setting it on one instance
>>> t2.celsius # looking it up on another instance
20.0
>>> Temperature.celsius # looking it up on the class
20.0
That's why descriptors generally use the second argument (instance) to store the value to avoid sharing it. However in some cases sharing a value between instances might be desired (although I cannot think of a scenario at this moment). However it makes practically no sense for a celsius property on a temperature class... except maybe as purely academic exercise.
Why do I need the descriptor class?
Inspired by Fluent Python by Buciano Ramalho
Imaging you have a class like this
class LineItem:
price = 10.9
weight = 2.1
def __init__(self, name, price, weight):
self.name = name
self.price = price
self.weight = weight
item = LineItem("apple", 2.9, 2.1)
item.price = -0.9 # it's price is negative, you need to refund to your customer even you delivered the apple :(
item.weight = -0.8 # negative weight, it doesn't make sense
We should validate the weight and price in avoid to assign them a negative number, we can write less code if we use descriptor as a proxy as this
class Quantity(object):
__index = 0
def __init__(self):
self.__index = self.__class__.__index
self._storage_name = "quantity#{}".format(self.__index)
self.__class__.__index += 1
def __set__(self, instance, value):
if value > 0:
setattr(instance, self._storage_name, value)
else:
raise ValueError('value should >0')
def __get__(self, instance, owner):
return getattr(instance, self._storage_name)
then define class LineItem like this:
class LineItem(object):
weight = Quantity()
price = Quantity()
def __init__(self, name, weight, price):
self.name = name
self.weight = weight
self.price = price
and we can extend the Quantity class to do more common validating
You'd see https://docs.python.org/3/howto/descriptor.html#properties
class Property(object):
"Emulate PyProperty_Type() in Objects/descrobject.c"
def __init__(self, fget=None, fset=None, fdel=None, doc=None):
self.fget = fget
self.fset = fset
self.fdel = fdel
if doc is None and fget is not None:
doc = fget.__doc__
self.__doc__ = doc
def __get__(self, obj, objtype=None):
if obj is None:
return self
if self.fget is None:
raise AttributeError("unreadable attribute")
return self.fget(obj)
def __set__(self, obj, value):
if self.fset is None:
raise AttributeError("can't set attribute")
self.fset(obj, value)
def __delete__(self, obj):
if self.fdel is None:
raise AttributeError("can't delete attribute")
self.fdel(obj)
def getter(self, fget):
return type(self)(fget, self.fset, self.fdel, self.__doc__)
def setter(self, fset):
return type(self)(self.fget, fset, self.fdel, self.__doc__)
def deleter(self, fdel):
return type(self)(self.fget, self.fset, fdel, self.__doc__)
Easy to digest (with example) Explanation for __get__ & __set__ & __call__ in classes, what is Owner, Instance?
Some points to mug up before diving in:
__get__ __set__ are called descriptors of the class to work/save their internal attributes namely: __name__ (name of class/owner class), variables - __dict__ etc. I will explain what is an owner later
Descriptors are used in design patterers more commonly, for example, with decorators (to abstract things out). You can consider it's more often used in software architecture design to make things less redundant and more readable (seems ironical). Thus abiding SOLID and DRY principles.
If you are not designing software that should abide by SOLID and DRY principles, you probably don't need them, but it's always wise to understand them.
1. Conside this code:
class Method:
def __init__(self, name):
self.name = name
def __call__(self, instance, arg1, arg2):
print(f"{self.name}: {instance} called with {arg1} and {arg2}")
class MyClass:
method = Method("Internal call")
instance = MyClass()
instance.method("first", "second")
# Prints:TypeError: __call__() missing 1 required positional argument: 'arg2'
So, when instance.method("first", "second") is called, __call__ method is called from the Method class (call method makes a class object just callable like a function - whenever a class instance is called __call__ gets instiantiated), and following arguments are assigned: instance: "first", arg1: "second", and the last arg2 is left out, this prints out the error: TypeError: __call__() missing 1 required positional argument: 'arg2'
2. how to solve it?
Since __call__ takes instance as first argument (instance, arg1, arg2), but instance of what?
Instance is the instance of main class (MyClass) which is calling the descriptor class (Method). So, instance = MyClass() is the instance and so who is the owner? the class holding the discriptor class - MyClass, However, there is no method in our descriptor class (Method) to recognise it as an instance. So that is where we need __get__ method. Again consider the code below:
from types import MethodType
class Method:
def __init__(self, name):
self.name = name
def __call__(self, instance, arg1, arg2):
print(f"{self.name}: {instance} called with {arg1} and {arg2}")
def __set__(self, instance, value):
self.value = value
instance.__dict__["method"] = value
def __get__(self, instance, owner):
if instance is None:
return self
print (instance, owner)
return MethodType(self, instance)
class MyClass:
method = Method("Internal call")
instance = MyClass()
instance.method("first", "second")
# Prints: Internal call: <__main__.MyClass object at 0x7fb7dd989690> called with first and second
forget about set for now according to docs:
__get__ "Called to get the attribute of the owner class (class attribute access) or of an instance of that class (instance attribute access)."
if you do: instance.method.__get__(instance)
Prints:<__main__.MyClass object at 0x7fb7dd9eab90> <class '__main__.MyClass'>
this means instance: object of MyClass which is instance
and Owner is MyClass itself
3. __set__ Explaination:
__set__ is used to set some value in the class __dict__ object (let's say using a command line). command for setting the internal value for set is: instance.descriptor = 'value' # where descriptor is method in this case
(instance.__dict__["method"] = value in the code just update the __dict__ object of the descriptor)
So do: instance.method = 'value' now to check if the value = 'value' is set in the __set__ method we can access __dict__ object of the descriptor method.
Do:
instance.method.__dict__ prints: {'_name': 'Internal call', 'value': 'value'}
Or you can check the __dict__ value using vars(instance.method)
prints: {'name': 'Internal call', 'value': 'value'}
I hope things are clear now:)
I tried (with minor changes as suggested) the code from Andrew Cooke's answer. (I am running python 2.7).
The code:
#!/usr/bin/env python
class Celsius:
def __get__(self, instance, owner): return 9 * (instance.fahrenheit + 32) / 5.0
def __set__(self, instance, value): instance.fahrenheit = 32 + 5 * value / 9.0
class Temperature:
def __init__(self, initial_f): self.fahrenheit = initial_f
celsius = Celsius()
if __name__ == "__main__":
t = Temperature(212)
print(t.celsius)
t.celsius = 0
print(t.fahrenheit)
The result:
C:\Users\gkuhn\Desktop>python test2.py
<__main__.Celsius instance at 0x02E95A80>
212
With Python prior to 3, make sure you subclass from object which will make the descriptor work correctly as the get magic does not work for old style classes.

Overriding getters and setters for attributes from a list of strings

The aim is to provide some strings in a list as attributes of a class. The class shall have not only attributes, but also the respective getter and setter methods. In some other class inherited from that some of those setters need to be overridden.
To this end I came up with the following. Using setattr in a loop over the list of strings, an attribute and the respective methods are created. Concerning this first part, the code works as expected.
However I am not able to override the setters in an inheriting class.
class Base():
attributes = ["attr{}".format(i) for i in range(100)]
def __init__(self):
_get = lambda a: lambda : getattr(self, a)
_set = lambda a: lambda v: setattr(self, a, v)
for attr in self.attributes:
setattr(self, attr, None)
setattr(self, "get_"+attr, _get(attr))
setattr(self, "set_"+attr, _set(attr))
class Child(Base):
def __init__(self):
super().__init__()
#setattr(self, "set_attr4", set_attr4)
# Here I want to override one of the setters to perform typechecking
def set_attr4(self, v):
print("This being printed would probably solve the problem.")
if type(v) == bool:
super().set_attr4(v)
else:
raise ValueError("attr4 must be a boolean")
if __name__ == "__main__":
b = Base()
b.attr2 = 5
print(b.get_attr2())
b.set_attr3(55)
print(b.get_attr3())
c = Child()
c.set_attr4("SomeString")
print(c.get_attr4())
The output here is
5
555
SomeString
The expected output would however be
5
555
This being printed would probably solve the problem.
ValueError("attr4 must be a boolean")
So somehow the set_attr4 method is never called; which I guess is expected, because __init__ is called after the class structure is read in. But I am at loss on how else to override those methods. I tried to add setattr(self, "set_attr4", set_attr4) (the commented line in the code above) but to no avail.
Or more generally, there is the propery which is usually used for creating getters and setters. But I don't think I understand how to apply it in a case where the getters and setters are created dynamically and need to be overridden by a child.
Is there any solution to this?
Update due to comments: It was pointed out by several people that using getters/setters in python may not be a good style and that they may usually not be needed. While this is definitely something to keep in mind, the background of this question is that I'm extending an old existing code which uses getters/setters throughout. I hence do not wish to change the style and let the user (this project only has some 20 users in total, but still...) suddenly change the way they access properties within the API.
However any future reader of this may consider that the getter/setter approach is at least questionable.
Metaclasses to the rescue!
class Meta(type):
def __init__(cls, name, bases, dct):
for attr in cls.attributes:
if not hasattr(cls, attr):
setattr(cls, attr, None)
setattr(cls, f'get_{attr}', cls._get(attr))
setattr(cls, f'set_{attr}', cls._set(attr))
class Base(metaclass=Meta):
attributes = ["attr{}".format(i) for i in range(100)]
_get = lambda a: lambda self: getattr(self, a)
_set = lambda a: lambda self, v: setattr(self, a, v)
# the rest of your code goes here
This is pretty self-explanatory: make attributes, _get, _set class variables (so that you can access them without class instantiation), then let the metaclass set everything up for you.
The __init__ is executed after the subclass is created, so it overrides what was specified there.
The minimal change needed to fix the problem is to check whether the attribute has already been set:
class Base():
attributes = ["attr{}".format(i) for i in range(100)]
def __init__(self):
_get = lambda a: lambda : getattr(self, a)
_set = lambda a: lambda v: setattr(self, a, v)
for attr in self.attributes:
setattr(self, attr, None)
if not hasattr(self, "get_"+attr):
setattr(self, "get_"+attr, _get(attr))
if not hasattr(self, "set_"+attr):
setattr(self, "set_"+attr, _set(attr))
However, I do not see to point in doing that this way. This is creating a new getter and setter for each instance of Base. I would instead rather create them on the class. That can be done with a class decorator, or with a metaclass, or in the body of the class itself, or in some other way.
For example, this is ugly, but simple:
class Base():
attributes = ["attr{}".format(i) for i in range(100)]
for attr in attributes:
exec(f"get_{attr} = lambda self: self.{attr}")
exec(f"set_{attr} = lambda self, value: setattr(self, '{attr}', value)")
del attr
This is better:
class Base:
pass
attributes = ["attr{}".format(i) for i in range(100)]
for attr in attributes:
setattr(Base, f"get_{attr}", lambda self: getattr(self, attr))
setattr(Base, f"set_{attr}", lambda self, value: setattr(self, '{attr}', value))
You're right about the problem. The creation of your Base instance happens after the Child class defines set_attr4. Since Base is creating it's getters/setters dynamically, it just blasts over Childs version upon creation.
One alternative way (in addition to the other answers) is to create the Child's getters/setters dynamically too. The idea here is to go for "convention over configuration" and just prefix methods you want to override with override_. Here's an example:
class Child(Base):
def __init__(self):
super().__init__()
overrides = [override for override in dir(self) if override.startswith("override_")]
for override in overrides:
base_name = override.split("override_")[-1]
setattr(self, base_name, getattr(self, override))
# Here I want to override one of the setters to perform typechecking
def override_set_attr4(self, v):
print("This being printed would probably solve the problem.")
if type(v) == bool:
super().set_attr4(v)
else:
raise ValueError("attr4 must be a boolean") # Added "raise" to this, overwise we just return None...
which outputs:
5
55
This being printed would probably solve the problem.
Traceback (most recent call last):
File ".\stack.py", line 39, in <module>
c.set_attr4("SomeString")
File ".\stack.py", line 29, in override_set_attr4
raise ValueError("attr4 must be a boolean") # Added "raise" to this, overwise we just return None...
ValueError: attr4 must be a boolean
Advantages here are that the Base doesn't have to know about the Child class. In the other answers, there's very subtle Base/Child coupling going on. It also might not be desirable to touch the Base class at all (violation of the Open/Closed principle).
Disadvantages are that "convention over configuration" to avoid a true inheritance mechanism is a bit clunky and unintuitive. The override_ function is also still hanging around on the Child instance (which you may or may not care about).
I think the real problem here is that you're trying to define getters and setters in such a fashion. We usually don't even want getters/setters in Python. This definitely feels like an X/Y problem, but maybe it isn't. You have a lot of rep, so I'm not going to give you some pedantic spiel about it. Even so, maybe take a step back and think about what you're really trying to do and consider alternatives.
The problem here is that you're creating the "methods" in the instance of the Base class (__init__ only runs in the instance).
Inheriting happens before you instance your class, and won't look into instances.
In other words, When you try to override the method, it wasn't even created in first place.
A solution is to create them in the class and not in self instance inside __init__:
def _create_getter(attr):
def _get(self):
return getattr(self, attr)
return _get
def _create_setter(attr):
def _set(self, value):
return setattr(self, attr, value)
return _set
class Base():
attributes = ["attr{}".format(i) for i in range(100)]
for attr in Base.attributes:
setattr(Base, 'get_' + attr, _create_getter(attr))
setattr(Base, 'set_' + attr, _create_setter(attr))
Then inheriting will work normally:
class Child(Base):
def set_attr4(self, v):
print("This being printed would probably solve the problem.")
if type(v) == bool:
super().set_attr4(v)
else:
raise ValueError("attr4 must be a boolean")
if __name__ == "__main__":
b = Base()
b.attr2 = 5
print(b.get_attr2())
b.set_attr3(55)
print(b.get_attr3())
c = Child()
c.set_attr4("SomeString")
print(c.get_attr4())
You could also just not do it - make your Base class as normal, and make setters only for the attributes you want, in the child class:
class Base:
pass
class Child(Base):
#property
def attr4(self):
return self._attr4
#attr4.setter
def attr4(self, new_v):
if not isinstance(new_v, bool):
raise TypeError('Not bool')
self._attr4 = new_v
Testing:
c = Child()
c.attr3 = 2 # works fine even without any setter
c.attr4 = True #works fine, runs the setter
c.attr4 = 3 #type error

Porting __getattr__ to new style classes with special methods [duplicate]

I'm trying to intercept calls to python's double underscore magic methods in new style classes. This is a trivial example but it show's the intent:
class ShowMeList(object):
def __init__(self, it):
self._data = list(it)
def __getattr__(self, name):
attr = object.__getattribute__(self._data, name)
if callable(attr):
def wrapper(*a, **kw):
print "before the call"
result = attr(*a, **kw)
print "after the call"
return result
return wrapper
return attr
If I use that proxy object around list I get the expected behavior for non-magic methods but my wrapper function is never called for magic methods.
>>> l = ShowMeList(range(8))
>>> l #call to __repr__
<__main__.ShowMeList object at 0x9640eac>
>>> l.append(9)
before the call
after the call
>> len(l._data)
9
If I don't inherit from object (first line class ShowMeList:) everything works as expected:
>>> l = ShowMeList(range(8))
>>> l #call to __repr__
before the call
after the call
[0, 1, 2, 3, 4, 5, 6, 7]
>>> l.append(9)
before the call
after the call
>> len(l._data)
9
How do I accomplish this intercept with new style classes?
For performance reasons, Python always looks in the class (and parent classes') __dict__ for magic methods and does not use the normal attribute lookup mechanism. A workaround is to use a metaclass to automatically add proxies for magic methods at the time of class creation; I've used this technique to avoid having to write boilerplate call-through methods for wrapper classes, for example.
class Wrapper(object):
"""Wrapper class that provides proxy access to some internal instance."""
__wraps__ = None
__ignore__ = "class mro new init setattr getattr getattribute"
def __init__(self, obj):
if self.__wraps__ is None:
raise TypeError("base class Wrapper may not be instantiated")
elif isinstance(obj, self.__wraps__):
self._obj = obj
else:
raise ValueError("wrapped object must be of %s" % self.__wraps__)
# provide proxy access to regular attributes of wrapped object
def __getattr__(self, name):
return getattr(self._obj, name)
# create proxies for wrapped object's double-underscore attributes
class __metaclass__(type):
def __init__(cls, name, bases, dct):
def make_proxy(name):
def proxy(self, *args):
return getattr(self._obj, name)
return proxy
type.__init__(cls, name, bases, dct)
if cls.__wraps__:
ignore = set("__%s__" % n for n in cls.__ignore__.split())
for name in dir(cls.__wraps__):
if name.startswith("__"):
if name not in ignore and name not in dct:
setattr(cls, name, property(make_proxy(name)))
Usage:
class DictWrapper(Wrapper):
__wraps__ = dict
wrapped_dict = DictWrapper(dict(a=1, b=2, c=3))
# make sure it worked....
assert "b" in wrapped_dict # __contains__
assert wrapped_dict == dict(a=1, b=2, c=3) # __eq__
assert "'a': 1" in str(wrapped_dict) # __str__
assert wrapped_dict.__doc__.startswith("dict()") # __doc__
Using __getattr__ and __getattribute__ are the last resources of a class to respond to getting an attribute.
Consider the following:
>>> class C:
x = 1
def __init__(self):
self.y = 2
def __getattr__(self, attr):
print(attr)
>>> c = C()
>>> c.x
1
>>> c.y
2
>>> c.z
z
The __getattr__ method is only called when nothing else works (It will not work on operators, and you can read about that here).
On your example, the __repr__ and many other magic methods are already defined in the object class.
One thing can be done, thought, and it is to define those magic methods and make then call the __getattr__ method. Check this other question by me and its answers (link) to see some code doing that.
As of the answers to Asymmetric behavior for __getattr__, newstyle vs oldstyle classes (see also the Python docs), modifying access to "magic" methods with __getattr__ or __getattribute__ is just not possible with new-style classes. This restriction makes the interpreter much faster.
Cut and copy from the documentation:
For old-style classes, special methods are always looked up in exactly the same way as any other method or attribute.
For new-style classes, implicit invocations of special methods are only guaranteed to work correctly if defined on an object’s type, not in the object’s instance dictionary.

__getattr__ of meta class not being called

As the title says. It seems no matter what I do, __getattr__ will not be called. I also tried it for instance (absurd, I know), with predictably no response. As if __getattr__ was banned in meta classes.
I'd appreciate any pointer to documentation about this.
The code:
class PreinsertMeta(type):
def resolvedField(self):
if isinstance(self.field, basestring):
tbl, fld = self.field.split(".")
self.field = (tbl, fld)
return self.field
Field = property(resolvedField)
def __getattr__(self, attrname):
if attrname == "field":
if isinstance(self.field, basestring):
tbl, fld = self.field.split(".")
self.field = (tbl, fld)
return self.field
else:
return super(PreinsertMeta, self).__getattr__(attrname)
def __setattr__(self, attrname, value):
super(PreinsertMeta, self).__setattr__(attrname, value)
class Test(object):
__metaclass__ = PreinsertMeta
field = "test.field"
print Test.field # Should already print the tuple
Test.field = "another.field" # __setattr__ gets called nicely
print Test.field # Again with the string?
print Test.Field # note the capital 'F', this actually calls resolvedField() and prints the tuple
Thanks to BrenBarn, here's the final working implementation:
class PreinsertMeta(type):
def __getattribute__(self, attrname):
if attrname == "field" and isinstance(object.__getattribute__(self, attrname), basestring):
tbl, fld = object.__getattribute__(self, attrname).split(".")
self.field = (tbl, fld)
return object.__getattribute__(self, attrname)
As documented, __getattr__ is only called if the attribute does not exist. Since your class has a field attribute, that blocks __getattr__. You can use __getattribute__ if you really want to intercept all attribute access, although it's not clear from your example why you need to do this. Note that this has nothing to do with metaclasses; you would see the same behavior if you created an instance of an ordinary class and gave it some attribute.
Even assuming you used __getattribute__, so it was called when the attribute exists, your implementation doesn't make much sense. Inside __getattr__ you try to get a value for self.field. But if __getattribute__ was called in the first place, it will be called again for this access, creating an infinite recursion: in order to get self.field, it has to call __getattribute__, which again tries to get self.field, which again calls __getattribute__, etc. See the documentation for __getattribute__ for how to get around this.

Transparent warp class in Python [duplicate]

I'm trying to intercept calls to python's double underscore magic methods in new style classes. This is a trivial example but it show's the intent:
class ShowMeList(object):
def __init__(self, it):
self._data = list(it)
def __getattr__(self, name):
attr = object.__getattribute__(self._data, name)
if callable(attr):
def wrapper(*a, **kw):
print "before the call"
result = attr(*a, **kw)
print "after the call"
return result
return wrapper
return attr
If I use that proxy object around list I get the expected behavior for non-magic methods but my wrapper function is never called for magic methods.
>>> l = ShowMeList(range(8))
>>> l #call to __repr__
<__main__.ShowMeList object at 0x9640eac>
>>> l.append(9)
before the call
after the call
>> len(l._data)
9
If I don't inherit from object (first line class ShowMeList:) everything works as expected:
>>> l = ShowMeList(range(8))
>>> l #call to __repr__
before the call
after the call
[0, 1, 2, 3, 4, 5, 6, 7]
>>> l.append(9)
before the call
after the call
>> len(l._data)
9
How do I accomplish this intercept with new style classes?
For performance reasons, Python always looks in the class (and parent classes') __dict__ for magic methods and does not use the normal attribute lookup mechanism. A workaround is to use a metaclass to automatically add proxies for magic methods at the time of class creation; I've used this technique to avoid having to write boilerplate call-through methods for wrapper classes, for example.
class Wrapper(object):
"""Wrapper class that provides proxy access to some internal instance."""
__wraps__ = None
__ignore__ = "class mro new init setattr getattr getattribute"
def __init__(self, obj):
if self.__wraps__ is None:
raise TypeError("base class Wrapper may not be instantiated")
elif isinstance(obj, self.__wraps__):
self._obj = obj
else:
raise ValueError("wrapped object must be of %s" % self.__wraps__)
# provide proxy access to regular attributes of wrapped object
def __getattr__(self, name):
return getattr(self._obj, name)
# create proxies for wrapped object's double-underscore attributes
class __metaclass__(type):
def __init__(cls, name, bases, dct):
def make_proxy(name):
def proxy(self, *args):
return getattr(self._obj, name)
return proxy
type.__init__(cls, name, bases, dct)
if cls.__wraps__:
ignore = set("__%s__" % n for n in cls.__ignore__.split())
for name in dir(cls.__wraps__):
if name.startswith("__"):
if name not in ignore and name not in dct:
setattr(cls, name, property(make_proxy(name)))
Usage:
class DictWrapper(Wrapper):
__wraps__ = dict
wrapped_dict = DictWrapper(dict(a=1, b=2, c=3))
# make sure it worked....
assert "b" in wrapped_dict # __contains__
assert wrapped_dict == dict(a=1, b=2, c=3) # __eq__
assert "'a': 1" in str(wrapped_dict) # __str__
assert wrapped_dict.__doc__.startswith("dict()") # __doc__
Using __getattr__ and __getattribute__ are the last resources of a class to respond to getting an attribute.
Consider the following:
>>> class C:
x = 1
def __init__(self):
self.y = 2
def __getattr__(self, attr):
print(attr)
>>> c = C()
>>> c.x
1
>>> c.y
2
>>> c.z
z
The __getattr__ method is only called when nothing else works (It will not work on operators, and you can read about that here).
On your example, the __repr__ and many other magic methods are already defined in the object class.
One thing can be done, thought, and it is to define those magic methods and make then call the __getattr__ method. Check this other question by me and its answers (link) to see some code doing that.
As of the answers to Asymmetric behavior for __getattr__, newstyle vs oldstyle classes (see also the Python docs), modifying access to "magic" methods with __getattr__ or __getattribute__ is just not possible with new-style classes. This restriction makes the interpreter much faster.
Cut and copy from the documentation:
For old-style classes, special methods are always looked up in exactly the same way as any other method or attribute.
For new-style classes, implicit invocations of special methods are only guaranteed to work correctly if defined on an object’s type, not in the object’s instance dictionary.

Categories

Resources