We have a blob storage where plenty of files are arriving during the whole day.
I have a Databricks notebook running in batch read the directorylist, looping the files and send them all into a Azure SQLDW.Works fine.
After that the processed files are moved into a archive.
But the process of looping the filelist, appending each one of them and adding the filename to a column goes a bit slow.
I was wondering if this could be done in 1 run. The loading off all csv's at once can be done, but how to memorise the corresponding filenames in a column.
Anybody has a suggestion ?
There are couple of ways which I can think of
1. spark.read.format("csv").load("path").select(input_file_name())
2. spark.sparkContext.wholeTextFiles("path").map{case(x,y) => x} <-- avoid if data is huge
Both provides all filenames in the given path.Where as former one is based on DF might be faster than later RDD one.
Note : Have n't tested the solution.
I currently have the following csv writer class:
class csvwriter():
writer = None
writehandler = None
#classmethod
def open(cls,file):
cls.writehandler = open(file,'wb')
cls.writer = csv.writer(cls.writehandler, delimiter=',',quotechar='"', quoting=csv.QUOTE_NONNUMERIC)
#classmethod
def write(cls,arr):
cls.writer.writerow(arr)
#classmethod
def close(cls):
cls.writehandler.close()
which can generate proper csv files without ever having to store the full array in memory at a single time.
However, the files created through use of this code can be quite large, so I'm looking to compress them, rather than writing them uncompressed. (In order to save on disk usage). I can't effectively store the file in memory either, as I'm expecting files of well over 20gb to be a regular occurence.
The recipients of the resulting files are generally not sysadmins of their PCs, nor do they all use linux, so I'm constrained in the types of algorithms I'm able to use for this task. Preferably, the solution would use a compression scheme that's natively readable (no executables required) in Windows, OSX and any linux distribution.
I've found gzip provides a very handy interface in Python, but reading gzipped files in windows seems like quite a hassle.. Ideally I'd put them in a zip archive, but zip archive don't allow you to append data to files already present in the archive, which then forces me to store the whole file in memory, or write the data away to several smaller files that I would be able to fit in memory.
My question: Is there a solution that would benefit from the best of both worlds? Widespread availability of tools to read the target format on the end-user's machine, and also the ability to append, rather than write the whole file in one go?
Thanks in advance for your consideration!
gzlog may provide the functionality you're looking for. It efficiently appends short strings to a gzip file, intended for applications where short messages are appended to a long log.
I've been trying to use the built-in python zipfiles module to manipulate some .zip files on windows, I wish to use them to store a number of files related to the current project in a program. The problem comes when I load the files from the zip and then wish to re-save them into a new, different zip file:
import zipfile
zp = zipfile.ZipFile(r"first.zip",mode='r')
myfile = zp.open(r"stored_file.txt",mode='r')
### Do something, then want to save again ###
zp2 = zipfile.ZipFile(r"second.zip",mode='w')
#Doesn't work, as myfile isn't a real file:
zp2.write(myfile)
#Doesn't work, as the path can't be resolved:
zp2.write(os.path.join(zp.filename,myfile.name))
#The following works... as long as you haven't called read()
#since .seek(0) doesn't work for ZipExtFile
zp2.writestr(myfile.name,myfile.read())
I could, of course, extract the files to somewhere and then re-add them to the new zip that way, but it would be clunky and require a lot of cleanup (and creating a lot of temporary files).
Equally I could keep track of the original zip file and use the writestr method by re-opening the file, but I was hoping to avoid it. I just wondered if there was a better way around this problem; it means I'll have to have code that determines whether the file originally came from a zip or not as well and handle it differently if it did.
Edit: If anyone else has the final problem with seek(0) not working on ZipExtFile, it is possible to use an io.StringIO class to hold the result of str(myfile.read()), which is then seekable. It means I have to keep the files loaded in memory, though, so I'm going to go with keeping track of the zipfile and transferring them only when I need them.
I have a large XML file, ~30 MB.
Every now and then I need to update some of the values. I am using element tree module to modify the XML. I am currently fetching the entire file, updating it and then placing it again. SO there is ~60 MB of data transfer every time. Is there a way I update the file remotely?
I am using the following code to update the file.
import xml.etree.ElementTree as ET
tree = ET.parse("feed.xml")
root = tree.getroot()
skus = ["RUSSE20924","PSJAI22443"]
qtys = [2,3]
for child in root:
sku = child.find("Product_Code").text.encode("utf-8")
if sku in skus:
print "found"
i = skus.index(sku)
child.find("Quantity").text = str(qtys[i])
child.set('updated', 'yes')
tree.write("feed.xml")
Modifying a file directly via FTP without uploading the entire thing is not possible except when appending to a file.
The reason is that there are only three commands in FTP that actually modify a file (Source):
APPE: Appends to a file
STOR: Uploads a file
STOU: Creates a new file on the server with a unique name
What you could do
Track changes
Cache the remote file locally and track changes to the file using the MDTM command.
Pros:
Will half the required data transfer in many cases.
Hardly requires any change to existing code.
Almost zero overhead.
Cons:
Other clients will have to download the entire thing every time something changes(no change from current situation)
Split up into several files
Split up your XML into several files. (One per product code?)
This way you only have to download the data that you actually need.
Pros:
Less data to transfer
Allows all scripts that access the data to only download what they need
Combinable with suggestion #1
Cons:
All existing code has to be adapted
Additional overhead when downloading or updating all the data
Switch to a delta-sync protocol
If the storage server supports it switching to a delta synchronization protocol like rsync would help a lot because these only transmit the changes (with little overhead).
Pros:
Less data transfer
Requires little change to existing code
Cons:
Might not be available
Do it remotely
You already pointed out that you can't but it still would be the best solution.
What won't help
Switch to a network filesystem
As somebody in the comments already pointed out switching to a network file system (like NFS or CIFS/SMB) would not really help because you cannot actually change parts of the file unless the new data has the exact same length.
What to do
Unless you can do delta synchronization I'd suggest to implement some caching on the client side first and if it doesn't help enough to then split up your files.
Attempt #2:
People don't seem to be understanding what I'm trying to do. Let me see if I can state it more clearly:
1) Reading a list of files is much faster than walking a directory.
2) So let's have a function that walks a directory and writes the resulting list to a file. Now, in the future, if we want to get all the files in that directory we can just read this file instead of walking the dir. I call this file the index.
3) Obviously, as the filesystem changes the index file gets out of sync. To overcome this, we have a separate program that hooks into the OS in order to monitor changes to the filesystem. It writes those changes to a file called the monitor log. Immediately after we read the index file for a particular directory, we use the monitor log to apply the various changes to the index so that it reflects the current state of the directory.
Because reading files is so much cheaper than walking a directory, this should be much faster than walking for all calls after the first.
Original post:
I want a function that will recursively get all the files in any given directory and filter them according to various parameters. And I want it to be fast -- like, an order of magnitude faster than simply walking the dir. And I'd prefer to do it in Python. Cross-platform is preferable, but Windows is most important.
Here's my idea for how to go about this:
I have a function called all_files:
def all_files(dir_path, ...parms...):
...
The first time I call this function it will use os.walk to build a list of all the files, along with info about the files such as whether they are hidden, a symbolic link, etc. I'll write this data to a file called ".index" in the directory. On subsequent calls to all_files, the .index file will be detected, and I will read that file rather than walking the dir.
This leaves the problem of the index getting out of sync as files are added and removed. For that I'll have a second program that runs on startup, detects all changes to the entire filesystem, and writes them to a file called "mod_log.txt". It detects changes via Windows signals, like the method described here. This file will contain one event per line, with each event consisting of the path affected, the type of event (create, delete, etc.), and a timestamp. The .index file will have a timestamp as well for the time it was last updated. After I read the .index file in all_files I will tail mod_log.txt and find any events that happened after the timestamp in the .index file. It will take these recent events, find any that apply to the current directory, and update the .index accordingly.
Finally, I'll take the list of all files, filter it according to various parameters, and return the result.
What do you think of my approach? Is there a better way to do this?
Edit:
Check this code out. I'm seeing a drastic speedup from reading a cached list over a recursive walk.
import os
from os.path import join, exists
import cProfile, pstats
dir_name = "temp_dir"
index_path = ".index"
def create_test_files():
os.mkdir(dir_name)
index_file = open(index_path, 'w')
for i in range(10):
print "creating dir: ", i
sub_dir = join(dir_name, str(i))
os.mkdir(sub_dir)
for i in range(100):
file_path = join(sub_dir, str(i))
open(file_path, 'w').close()
index_file.write(file_path + "\n")
index_file.close()
#
# 0.238 seconds
def test_walk():
for info in os.walk("temp_dir"):
pass
# 0.001 seconds
def test_read():
open(index_path).readlines()
if not exists("temp_dir"):
create_test_files()
def profile(s):
cProfile.run(s, 'profile_results.txt')
p = pstats.Stats('profile_results.txt')
p.strip_dirs().sort_stats('cumulative').print_stats(10)
profile("test_walk()")
profile("test_read()")
Do not try to duplicate the work that the filesystem already does. You are not going to do better than it already does.
Your scheme is flawed in many ways and it will not get you an order-of-magnitude improvement.
Flaws and potential problems:
You are always going to be working with a snapshot of the file system. You will never know with any certainty that it is not significantly disjoint from reality. If that is within the working parameters of your application, no sweat.
The filesystem monitor program still has to recursively walk the file system, so the work is still being done.
In order to increase the accuracy of the cache, you have to increase the frequency with which the filesystem monitor runs. The more it runs, the less actual time that you are saving.
Your client application likely won't be able to read the index file while it is being updated by the filesystem monitor program, so you'll lose time while the client waits for the index to be readable.
I could go on.
If, in fact, you don't care about working with a snapshot of the filesystem that may be very disjoint from reality, I think that you'd be much better off with keeping the index in memory and updating from with the application itself. That will scrub any file contention issues that will otherwise arise.
The best answer came from MichaĆ Marczyk toward the bottom of the comment list on the initial question. He pointed out that what I'm describing is very close to the UNIX locate program. I found a Windows version here: http://locate32.net/index.php. It solved my problem.
Edit: Actually the Everything search engine looks even better. Apparently Windows keeps journals of changes to the filesystem, and Everything uses that to keep the database up to date.
Doesn't Windows Desktop Search provide such an index as a byproduct? On the mac the spotlight index can be queried for filenames like this: mdfind -onlyin . -name '*'.
Of course it's much faster than walking the directory.
The short answer is "no". You will not be able to build an indexing system in Python that will outpace the file system by an order of magnitude.
"Indexing" a filesystem is an intensive/slow task, regardless of the caching implementation. The only realistic way to avoid the huge overhead of building filesystem indexes is to "index as you go" to avoid the big traversal. (After all, the filesystem itself is already a data indexer.)
There are operating system features that are capable of doing this "build as you go" filesystem indexing. It's the very foundation of services like Spotlight on OSX and Windows Desktop Search.
To have any hope of getting faster speeds than walking the directories, you'll want to leverage one of those OS or filesystem level tools.
Also, try not to mislead yourself into thinking solutions are faster just because you've "moved" the work to a different time/process. Your example code does exactly that. You traverse the directory structure of your sample files while you're building the same files and create the index, and then later just read that file.
There are two lessons, here. (a) To create a proper test it's essential to separate the "setup" from the "test". Here your performance test essentially says, "Which is faster, traversing a directory structure or reading an index that's already been created in advance?" Clearly this is not an apples to oranges comparison.
However, (b) you've stumbled on the correct answer at the same time. You can get a list of files much faster if you use an already existing index. This is where you'd need to leverage something like the Windows Desktop Search or Spotlight indexes.
Make no mistake, in order to build an index of a filesystem you must, by definition, "visit" every file. If your files are stored in a tree, then a recursive traversal is likely going to be the fastest way you can visit every file. If the question is "can I write Python code to do exactly what os.walk does but be an order of magnitude faster than os.walk" the answer is a resounding no. If the question is "can I write Python code to index every file on the system without taking the time to actually visit every file" then the answer is still no.
(Edit in response to "I don't think you understand what I'm trying to do")
Let's be clear here, virtually everyone here understands what you're trying to do. It seems that you're taking "no, this isn't going to work like you want it to work" to mean that we don't understand.
Let's look at this from another angle. File systems have been an essential component to modern computing from the very beginning. The categorization, indexing, storage, and retrieval of data is a serious part of computer science and computer engineering and many of the most brilliant minds in computer science are working on it constantly.
You want to be able to filter/select files based on attributes/metadata/data of the files. This is an extremely common task utilized constantly in computing. It's likely happening several times a second even on the computer you're working with right now.
If it were as simple to speed up this process by an order of magnitude(!) by simply keeping a text file index of the filenames and attributes, don't you think every single file system and operating system in existence would do exactly that?
That said, of course caching the results of your specific queries could net you some small performance increases. And, as expected, file system and disk caching is a fundamental part of every modern operating system and file system.
But your question, as you asked it, has a clear answer: No. In the general case, you're not going to get an order of magnitude faster reimplementing os.walk. You may be able to get a better amortized runtime by caching, but you're not going to be beat it by an order of magnitude if you properly include the work to build the cache in your profiling.
I would like to recommend you just use a combination of os.walk (to get directory trees) & os.stat (to get file information) for this. Using the std-lib will ensure it works on all platforms, and they do the job nicely. And no need to index anything.
As other have stated, I don't really think you're going to buy much by attempting to index and re-index the filesystem, especially if you're already limiting your functionality by path and parameters.
I'm new to Python, but I'm using a combination of list comprehensions, iterator and a generator should scream according to reports I've read.
class DirectoryIterator:
def __init__(self, start_dir, pattern):
self.directory = start_dir
self.pattern = pattern
def __iter__(self):
[([DirectoryIterator(dir, self.pattern) for dir in dirnames], [(yield os.path.join(dirpath, name)) for name in filenames if re.search(self.pattern, name) ]) for dirpath, dirnames, filenames in os.walk(self.directory)]
###########
for file_name in DirectoryIterator(".", "\.py$"): print file_name