Related
I am using haversine_distance function to calculate distance between coordinates in a dataset to a specific coordinate. [start_lat, start_lon = 40.6976637, -74.1197643]
def haversine_distance(lat1, lon1, lat2, lon2):
r = 6371
phi1 = np.radians(lat1)
phi2 = np.radians(lat2)
delta_phi = np.radians(lat2-lat1)
delta_lambda = np.radians(lon2-lon1)
a = np.sin(delta_phi / 2)**2 + np.cos(phi1) * np.cos(phi2) * np.sin(delta_lambda / 2)**2
res = r * (2 * np.arctan2(np.sqrt(a), np.sqrt(1-a)))
return np.round(res, 2)
start_lat, start_lon = 40.6976637, -74.1197643
distances_km = []
for row in pandas_df.itertuples(index=False):
distances_km.append(
haversine_distance(start_lat, start_lon, row.lat, row.lon)
)
pandas_df['Distance'] = distances_km
pandas_df
This successfully creates a column in my data set measuring the distance from given point like this:
Now I want to modify this code so that instead of using [start_lat, start_lon = 40.6976637, -74.1197643] I want to use another dataset containing cities.
How can I modify this existing code such that I create column for every city using its coordinates instead.
So desired output shows different columns with each city name and distance as calculated above.
Any Help is appreciated, new to python!
Cities array as requested in comments
[['Nanaimo' -123.9364 49.1642]
['Prince Rupert' -130.3271 54.3122]
['Vancouver' -123.1386 49.2636]
['Victoria' -123.3673 48.4275]
['Edmonton' -113.4909 53.5445]
['Winnipeg' -97.1392 49.8994]
['Sarnia' -82.4065 42.9746]
['Sarnia' -82.4065 42.9746]
['North York' -79.4112 43.7598]
['Kingston' -76.4812 44.2305]
['St. Catharines' -79.2333 43.1833]
['Thunder Bay' -89.2461 48.3822]
['Gaspé' -64.4833 48.8333]
['Cap-aux-Meules' -61.8607 47.3801]
['Kangiqsujuaq' -71.9667 61.6]
['Montreal' -73.5534 45.5091]
['Quebec City' -71.2074 46.8142]
['Rimouski' -68.524 48.4489]
['Sept-Îles' -66.3833 50.2167]
['Bathurst' -65.6497 47.6186]
['Charlottetown' -63.1399 46.24]
['Corner Brook' -57.9711 48.9411]
['Dartmouth' -63.5714 44.6715]
['Lewisporte' -55.0667 49.2333]
['Port Hawkesbury' -61.3642 45.6153]
['Saint John' -66.0628 45.2796]
["St. John's" -52.7072 47.5675]
['Sydney' -60.1947 46.1381]
['Yarmouth' -66.1175 43.8361]]
The beauty of Python is that you can use the same code to do different things.
To consider different [start_lat, start_lon] values for every column in your data, you can use the same code that you have now. All you need to do is to define start_lat and start_lon as arrays:
# --------------------- Array Initialization ---------------------
import pandas as pd
import numpy as np
np.random.seed(0)
pandas_df = pd.DataFrame(data = {'lat': np.random.rand(100),
'lon': np.random.rand(100)})
start_cities = pd.DataFrame([['Nanaimo' , -123.9364 , 49.1642], ['Prince Rupert' , -130.3271 , 54.3122],
['Vancouver' , -123.1386 , 49.2636], ['Victoria' , -123.3673 , 48.4275],
['Edmonton' , -113.4909 , 53.5445], ['Winnipeg' , -97.1392 , 49.8994],
['Sarnia' , -82.4065 , 42.9746], ['Sarnia' , -82.4065 , 42.9746],
['North York' , -79.4112 , 43.7598], ['Kingston' , -76.4812 , 44.2305],
['St. Catharines' , -79.2333 , 43.1833], ['Thunder Bay' , -89.2461 , 48.3822],
['Gaspé' , -64.4833 , 48.8333], ['Cap-aux-Meules' , -61.8607 , 47.3801],
['Kangiqsujuaq' , -71.9667 , 61.6 ], ['Montreal' , -73.5534 , 45.5091],
['Quebec City' , -71.2074 , 46.8142], ['Rimouski' , -68.524 , 48.4489],
['Sept-Îles' , -66.3833 , 50.2167], ['Bathurst' , -65.6497 , 47.6186],
['Charlottetown' , -63.1399 , 46.24 ], ['Corner Brook' , -57.9711 , 48.9411],
['Dartmouth' , -63.5714 , 44.6715], ['Lewisporte' , -55.0667 , 49.2333],
['Port Hawkesbury' , -61.3642 , 45.6153], ['Saint John' , -66.0628 , 45.2796],
["St. John's" , -52.7072 , 47.5675], ['Sydney' , -60.1947 , 46.1381],
['Yarmouth' , -66.1175 , 43.8361]])
start_cities.columns = 'names', 'start_lat', 'start_lon'
start_lat = start_cities.start_lat
start_lon = start_cities.start_lon
# --------------------- Same code as before (as promised) ---------------------
def haversine_distance(lat1, lon1, lat2, lon2):
r = 6371
phi1 = np.radians(lat1)
phi2 = np.radians(lat2)
delta_phi = np.radians(lat2-lat1)
delta_lambda = np.radians(lon2-lon1)
a = np.sin(delta_phi / 2)**2 + np.cos(phi1) * np.cos(phi2) * np.sin(delta_lambda / 2)**2
res = r * (2 * np.arctan2(np.sqrt(a), np.sqrt(1-a)))
return np.round(res, 2)
distances_km = []
for row in pandas_df.itertuples(index=False):
distances_km.append(
haversine_distance(start_lat, start_lon, row.lat, row.lon))
# --------------------- Store data ---------------------
distances_km = np.array(distances_km)
for ind, name in enumerate(start_cities.names):
pandas_df['distance_km_' + name] = distances_km[:,ind]
# print(pandas_df.keys())
# ["lat" , "lon" ,
# "distance_km_Nanaimo" , "distance_km_Prince Rupert" ,
# "distance_km_Vancouver" , "distance_km_Victoria" ,
# "distance_km_Edmonton" , "distance_km_Winnipeg" ,
# "distance_km_Sarnia" , "distance_km_North York" ,
# "distance_km_Kingston" , "distance_km_St. Catharines" ,
# "distance_km_Thunder Bay" , "distance_km_Gaspé" ,
# "distance_km_Cap-aux-Meules" , "distance_km_Kangiqsujuaq" ,
# "distance_km_Montreal" , "distance_km_Quebec City" ,
# "distance_km_Rimouski" , "distance_km_Sept-Îles" ,
# "distance_km_Bathurst" , "distance_km_Charlottetown" ,
# "distance_km_Corner Brook" , "distance_km_Dartmouth" ,
# "distance_km_Lewisporte" , "distance_km_Port Hawkesbury",
# "distance_km_Saint John" , "distance_km_St. John's" ,
# "distance_km_Sydney" , "distance_km_Yarmouth" ]
I am trying to integrate a numpy array which looks something like this:
I tried doing np.trapz(y=f, x=x) but end up getting a negative value of -0.000802483, which was unexpected as f is never negative over the given x interval. I expect it to be a positive value. Am I doing something wrong here and does using np.trapz make sense here? I am quite inexperienced with numerical methods in python, any help would be greatly appreciated, thanks!
f array:
[8.50448832e-06, 1.05913683e-05, 1.11672674e-05, 1.03133123e-05,
8.55576374e-06, 6.51874371e-06, 4.66984459e-06, 3.23400327e-06,
2.23952788e-06, 1.61397514e-06, 1.26551646e-06, 1.11602722e-06,
1.09337264e-06, 1.16013046e-06, 1.29750464e-06, 1.48914243e-06,
1.71015364e-06, 1.92463843e-06, 2.11557374e-06, 2.27914844e-06,
2.41413389e-06, 2.52152682e-06, 2.60410241e-06, 2.66593017e-06,
2.71192544e-06, 2.74748305e-06, 2.77821789e-06, 2.80982042e-06,
2.84802547e-06, 2.89868017e-06, 2.96550880e-06, 3.04685482e-06,
3.14027584e-06, 3.24321794e-06, 3.35292462e-06, 3.46637434e-06,
3.58025198e-06, 3.69202940e-06, 3.80158930e-06, 3.90921139e-06,
4.01521443e-06, 4.11995070e-06, 4.22380119e-06, 4.32717165e-06,
4.43048947e-06, 4.53420149e-06, 4.63876310e-06, 4.74441156e-06,
4.85115094e-06, 4.95898043e-06, 5.06790572e-06, 5.17793927e-06,
5.28910054e-06, 5.40141637e-06, 5.51492115e-06, 5.62965722e-06,
5.74566570e-06, 5.86294288e-06, 5.98146531e-06, 6.10120449e-06,
6.22212681e-06, 6.34419345e-06, 6.46736032e-06, 6.59157794e-06,
6.71679139e-06, 6.84294018e-06, 6.96995819e-06, 7.09777352e-06,
7.22630845e-06, 7.35548870e-06, 7.48530158e-06, 7.61576302e-06,
7.74689094e-06, 7.87870523e-06, 8.01122775e-06, 8.14448236e-06,
8.27849500e-06, 8.41329367e-06, 8.54890851e-06, 8.68537178e-06,
8.82271792e-06, 8.96098359e-06, 9.10020767e-06, 9.24043128e-06,
9.38169220e-06, 9.52399166e-06, 9.66731438e-06, 9.81164377e-06,
9.95696193e-06, 1.01032497e-05, 1.02504864e-05, 1.03986503e-05,
1.05477182e-05, 1.06976654e-05, 1.08484660e-05, 1.10000927e-05,
1.11525166e-05, 1.13057075e-05, 1.14596338e-05, 1.16142624e-05,
1.17695588e-05, 1.19254869e-05, 1.20820259e-05, 1.22391888e-05,
1.23969940e-05, 1.25554608e-05, 1.27146099e-05, 1.28744630e-05,
1.30350432e-05, 1.31963744e-05, 1.33584820e-05, 1.35213926e-05,
1.36851339e-05, 1.38497349e-05, 1.40152258e-05, 1.41816381e-05,
1.43490045e-05, 1.45173591e-05, 1.46867371e-05, 1.48571751e-05,
1.50287105e-05, 1.52013618e-05, 1.53751190e-05, 1.55499688e-05,
1.57258974e-05, 1.59028901e-05, 1.60809314e-05, 1.62600049e-05,
1.64400935e-05, 1.66211790e-05, 1.68032427e-05, 1.69862648e-05,
1.71702248e-05, 1.73551011e-05, 1.75408716e-05, 1.77275129e-05,
1.79150010e-05, 1.81033110e-05, 1.82924169e-05, 1.84822921e-05,
1.86729088e-05, 1.88642383e-05, 1.90562544e-05, 1.92489505e-05,
1.94423280e-05, 1.96363887e-05, 1.98311346e-05, 2.00265678e-05,
2.02226907e-05, 2.04195058e-05, 2.06170156e-05, 2.08152233e-05,
2.10141318e-05, 2.12137445e-05, 2.14140649e-05, 2.16150966e-05,
2.18168436e-05, 2.20193100e-05, 2.22225000e-05, 2.24264183e-05,
2.26310696e-05, 2.28364587e-05, 2.30425910e-05, 2.32494716e-05,
2.34571064e-05, 2.36655022e-05, 2.38746665e-05, 2.40846075e-05,
2.42953332e-05, 2.45068523e-05, 2.47191735e-05, 2.49323059e-05,
2.51462588e-05, 2.53610420e-05, 2.55766653e-05, 2.57931389e-05,
2.60104733e-05, 2.62286795e-05, 2.64477684e-05, 2.66677514e-05,
2.68886403e-05, 2.71104471e-05, 2.73331840e-05, 2.75568637e-05,
2.77814991e-05, 2.80071034e-05, 2.82336902e-05, 2.84612731e-05,
2.86898648e-05, 2.89194782e-05, 2.91501262e-05, 2.93818220e-05,
2.96145791e-05, 2.98484114e-05, 3.00833329e-05, 3.03193579e-05,
3.05565011e-05, 3.07947774e-05, 3.10342019e-05, 3.12747902e-05,
3.15165580e-05, 3.17595214e-05, 3.20036966e-05, 3.22491003e-05,
3.24957494e-05, 3.27436611e-05, 3.29928530e-05, 3.32433427e-05,
3.34951484e-05, 3.37482885e-05, 3.40027817e-05, 3.42586461e-05,
3.45158800e-05, 3.47744606e-05, 3.50343633e-05, 3.52955627e-05,
3.55580326e-05, 3.58217460e-05, 3.60866750e-05, 3.63527911e-05,
3.66200649e-05, 3.68884659e-05, 3.71579632e-05, 3.74285249e-05,
3.77001182e-05, 3.79727094e-05, 3.82462641e-05, 3.85207471e-05,
3.87961220e-05, 3.90723520e-05, 3.93493990e-05, 3.96272243e-05,
3.99057882e-05, 4.01850501e-05, 4.04649684e-05, 4.07455009e-05,
4.10266042e-05, 4.13082348e-05, 4.15903804e-05, 4.18730703e-05,
4.21563372e-05, 4.24402148e-05, 4.27247376e-05, 4.30099411e-05,
4.32958616e-05, 4.35825364e-05, 4.38700036e-05, 4.41583023e-05,
4.44474726e-05, 4.47375553e-05, 4.50285924e-05, 4.53206267e-05,
4.56137020e-05, 4.59078630e-05, 4.62031555e-05, 4.64996261e-05,
4.67973225e-05, 4.70962935e-05, 4.73965885e-05, 4.76982583e-05,
4.80013546e-05, 4.83059299e-05, 4.86120380e-05, 4.89197251e-05,
4.92289986e-05, 4.95398538e-05, 4.98522856e-05, 5.01662890e-05,
5.04818583e-05, 5.07989878e-05, 5.11176714e-05, 5.14379028e-05,
5.17596752e-05, 5.20829817e-05, 5.24078151e-05, 5.27341678e-05,
5.30620321e-05, 5.33913998e-05, 5.37222624e-05, 5.40546112e-05,
5.43884373e-05, 5.47237312e-05, 5.50604834e-05, 5.53986839e-05,
5.57383224e-05, 5.60793884e-05, 5.64218710e-05, 5.67657590e-05,
5.71110410e-05, 5.74577047e-05, 5.78057281e-05, 5.81550770e-05,
5.85057158e-05, 5.88576079e-05, 5.92107163e-05, 5.95650029e-05,
5.99204289e-05, 6.02769547e-05, 6.06345400e-05, 6.09931435e-05,
6.13527232e-05, 6.17132363e-05, 6.20746392e-05, 6.24368873e-05,
6.27999353e-05, 6.31637371e-05, 6.35282455e-05, 6.38934127e-05,
6.42591899e-05, 6.46255276e-05, 6.49923751e-05, 6.53596810e-05,
6.57273931e-05, 6.60954580e-05, 6.64638218e-05, 6.68324292e-05,
6.72012496e-05, 6.75703534e-05, 6.79398379e-05, 6.83098025e-05,
6.86803487e-05, 6.90515798e-05, 6.94236014e-05, 6.97965210e-05,
7.01704482e-05, 7.05454949e-05, 7.09217748e-05, 7.12994040e-05,
7.16785006e-05, 7.20591849e-05, 7.24415794e-05, 7.28258086e-05,
7.32119995e-05, 7.36002812e-05, 7.39907848e-05, 7.43836438e-05,
7.47789940e-05, 7.51769734e-05, 7.55777221e-05, 7.59813826e-05,
7.63880996e-05, 7.67980127e-05, 7.72111298e-05, 7.76273428e-05,
7.80465374e-05, 7.84685970e-05, 7.88934026e-05, 7.93208325e-05,
7.97507629e-05, 8.01830673e-05, 8.06176169e-05, 8.10542803e-05,
8.14929237e-05, 8.19334107e-05, 8.23756026e-05, 8.28193580e-05,
8.32645329e-05, 8.37109809e-05, 8.41585530e-05, 8.46070975e-05,
8.50564601e-05, 8.55064839e-05, 8.59570094e-05, 8.64078743e-05,
8.68589136e-05, 8.73099596e-05, 8.77608418e-05, 8.82113882e-05,
8.86615329e-05, 8.91113973e-05, 8.95611241e-05, 9.00108582e-05,
9.04607475e-05, 9.09109426e-05, 9.13615966e-05, 9.18128656e-05,
9.22649084e-05, 9.27178865e-05, 9.31719644e-05, 9.36273094e-05,
9.40840916e-05, 9.45424841e-05, 9.50026628e-05, 9.54648067e-05,
9.59290976e-05, 9.63957202e-05, 9.68648626e-05, 9.73367153e-05,
9.78114722e-05, 9.82893303e-05, 9.87704892e-05, 9.92551521e-05,
9.97435237e-05, 1.00235716e-04, 1.00731671e-04, 1.01231313e-04,
1.01734564e-04, 1.02241344e-04, 1.02751571e-04, 1.03265163e-04,
1.03782036e-04, 1.04302101e-04, 1.04825273e-04, 1.05351460e-04,
1.05880572e-04, 1.06412515e-04, 1.06947194e-04, 1.07484514e-04,
1.08024375e-04, 1.08566678e-04, 1.09111320e-04, 1.09658199e-04,
1.10207209e-04, 1.10758243e-04, 1.11311192e-04, 1.11865946e-04,
1.12422391e-04, 1.12980414e-04, 1.13539922e-04, 1.14100904e-04,
1.14663365e-04, 1.15227312e-04, 1.15792750e-04, 1.16359685e-04,
1.16928123e-04, 1.17498070e-04, 1.18069533e-04, 1.18642517e-04,
1.19217029e-04, 1.19793076e-04, 1.20370663e-04, 1.20949798e-04,
1.21530488e-04, 1.22112738e-04, 1.22696556e-04, 1.23281949e-04,
1.23868924e-04, 1.24457488e-04, 1.25047648e-04, 1.25639411e-04,
1.26232785e-04, 1.26827778e-04, 1.27424399e-04, 1.28022682e-04,
1.28622678e-04, 1.29224438e-04, 1.29828015e-04, 1.30433462e-04,
1.31040833e-04, 1.31650183e-04, 1.32261567e-04, 1.32875041e-04,
1.33490664e-04, 1.34108492e-04, 1.34728584e-04, 1.35351001e-04,
1.35975801e-04, 1.36603048e-04, 1.37232802e-04, 1.37865127e-04,
1.38500087e-04, 1.39137746e-04, 1.39778169e-04, 1.40421423e-04,
1.41067575e-04, 1.41716694e-04, 1.42368825e-04, 1.43023960e-04,
1.43682077e-04, 1.44343158e-04, 1.45007183e-04, 1.45674130e-04,
1.46343979e-04, 1.47016707e-04, 1.47692293e-04, 1.48370715e-04,
1.49051948e-04, 1.49735970e-04, 1.50422756e-04, 1.51112282e-04,
1.51804523e-04, 1.52499454e-04, 1.53197049e-04, 1.53897280e-04,
1.54600122e-04, 1.55305547e-04, 1.56013526e-04, 1.56724032e-04,
1.57437035e-04, 1.58152529e-04, 1.58870541e-04, 1.59591101e-04,
1.60314238e-04, 1.61039982e-04, 1.61768365e-04, 1.62499418e-04,
1.63233172e-04, 1.63969659e-04, 1.64708911e-04, 1.65450960e-04,
1.66195841e-04, 1.66943585e-04, 1.67694227e-04, 1.68447801e-04,
1.69204341e-04, 1.69963883e-04, 1.70726461e-04, 1.71492111e-04,
1.72260869e-04, 1.73032773e-04, 1.73807858e-04, 1.74586144e-04,
1.75367629e-04, 1.76152305e-04, 1.76940166e-04, 1.77731206e-04,
1.78525418e-04, 1.79322794e-04, 1.80123328e-04, 1.80927011e-04,
1.81733837e-04, 1.82543796e-04, 1.83356882e-04, 1.84173084e-04,
1.84992395e-04, 1.85814805e-04, 1.86640305e-04, 1.87468886e-04,
1.88300539e-04, 1.89135252e-04, 1.89973016e-04, 1.90813821e-04,
1.91657686e-04, 1.92504708e-04, 1.93354998e-04, 1.94208665e-04,
1.95065822e-04, 1.95926585e-04, 1.96791067e-04, 1.97659386e-04,
1.98531660e-04, 1.99408011e-04, 2.00288559e-04, 2.01173427e-04,
2.02062741e-04, 2.02956628e-04, 2.03855214e-04, 2.04758630e-04,
2.05667007e-04, 2.06580478e-04, 2.07499178e-04, 2.08423242e-04,
2.09352789e-04, 2.10287784e-04, 2.11228127e-04, 2.12173718e-04,
2.13124451e-04, 2.14080222e-04, 2.15040923e-04, 2.16006445e-04,
2.16976678e-04, 2.17951508e-04, 2.18930822e-04, 2.19914503e-04,
2.20902434e-04, 2.21894493e-04, 2.22890560e-04, 2.23890511e-04,
2.24894220e-04]
x array:
[192.68860048, 192.18172021, 191.72558157, 191.31429202,
190.94296221, 190.60745222, 190.30419615, 190.03007711,
189.78233599, 189.55850331, 189.35634746, 189.17383451,
189.00909674, 188.86040749, 188.72616092, 188.60485555,
188.49508064, 188.39550495, 188.30486735, 188.22196886,
188.14566599, 188.07486501, 188.00851713, 187.94561432,
187.88518575, 187.82629479, 187.7680363 , 187.70953449,
187.64994097, 187.58843501, 187.52471988, 187.4596708 ,
187.39430761, 187.3296264 , 187.26660038, 187.20618083,
187.14929649, 187.09642682, 187.04703778, 187.00046645,
186.95606702, 186.91320987, 186.87128073, 186.82967999,
186.78782204, 186.74513475, 186.70107768, 186.6555782 ,
186.6090346 , 186.56185881, 186.51445461, 186.46721785,
186.4205366 , 186.37479146, 186.33035568, 186.28759548,
186.2468023 , 186.20790552, 186.17071973, 186.13506353,
186.10075942, 186.06763367, 186.03551617, 186.00424032,
185.97364285, 185.94356377, 185.91384622, 185.8843364 ,
185.85488347, 185.82535666, 185.79574633, 185.7660932 ,
185.73643756, 185.70681915, 185.67727713, 185.64785007,
185.61857602, 185.58949246, 185.56063631, 185.53204398,
185.50375134, 185.47579373, 185.44820599, 185.42102245,
185.3942708 , 185.36793712, 185.34199086, 185.316402 ,
185.29114105, 185.26617909, 185.24148772, 185.21703906,
185.19280573, 185.16876086, 185.14487802, 185.12113129,
185.09749519, 185.0739447 , 185.05045522, 185.02700259,
185.00356308, 184.98011344, 184.95664239, 184.93316263,
184.90968964, 184.88623867, 184.86282477, 184.83946279,
184.81616738, 184.79295299, 184.76983385, 184.74682402,
184.72393734, 184.7011875 , 184.67858795, 184.65615197,
184.63389268, 184.61182296, 184.58995557, 184.56830304,
184.54687752, 184.52568079, 184.50470008, 184.48392178,
184.46333244, 184.44291885, 184.422668 , 184.40256707,
184.38260346, 184.36276475, 184.3430387 , 184.32341329,
184.30387666, 184.28441713, 184.26502323, 184.24568362,
184.22638719, 184.20712296, 184.18788013, 184.16864807,
184.14941633, 184.13017459, 184.11091392, 184.09163324,
184.07233455, 184.05301986, 184.03369114, 184.01435034,
183.99499939, 183.97564022, 183.95627473, 183.9369048 ,
183.91753228, 183.89815902, 183.87878683, 183.85941754,
183.84005291, 183.82069471, 183.80134469, 183.78200458,
183.76267609, 183.74336089, 183.72406066, 183.70477706,
183.68551173, 183.66626656, 183.64704358, 183.6278448 ,
183.60867219, 183.58952772, 183.57041331, 183.55133087,
183.53228228, 183.5132694 , 183.49429406, 183.47535805,
183.45646317, 183.43761116, 183.41880377, 183.40004269,
183.38132962, 183.3626662 , 183.34405408, 183.32549485,
183.30699012, 183.28854144, 183.27015034, 183.25181831,
183.23354652, 183.21533608, 183.19718805, 183.1791035 ,
183.16108346, 183.14312895, 183.12524098, 183.10742052,
183.08966855, 183.07198601, 183.05437384, 183.03683294,
183.01936422, 183.00196856, 182.98464682, 182.96739984,
182.95022844, 182.93313345, 182.91611565, 182.89917582,
182.88231471, 182.86553307, 182.84883163, 182.83221094,
182.81566809, 182.79919663, 182.78279 , 182.76644177,
182.75014557, 182.73389514, 182.71768429, 182.70150693,
182.68535706, 182.66922874, 182.65311615, 182.63701353,
182.62091521, 182.60481561, 182.58870922, 182.57259062,
182.55645448, 182.54029553, 182.52410861, 182.50788861,
182.49163052, 182.47532939, 182.45898038, 182.4425787 ,
182.42611965, 182.40959872, 182.39301574, 182.3763761 ,
182.35968543, 182.34294934, 182.32617332, 182.3093628 ,
182.29252312, 182.27565956, 182.25877731, 182.24188148,
182.22497712, 182.20806919, 182.19116258, 182.1742621 ,
182.15737249, 182.14049841, 182.12364445, 182.10681513,
182.09001489, 182.0732481 , 182.05651905, 182.03983197,
182.02319101, 182.00660025, 181.99006371, 181.97358443,
181.95716127, 181.94079185, 181.92447382, 181.90820486,
181.8919827 , 181.87580506, 181.85966973, 181.84357449,
181.82751719, 181.81149566, 181.7955078 , 181.77955152,
181.76362476, 181.74772547, 181.73185167, 181.71600135,
181.70017259, 181.68436344, 181.66857201, 181.65279642,
181.63703484, 181.62128543, 181.60554641, 181.589816 ,
181.57409247, 181.55837406, 181.54265828, 181.52694172,
181.51122096, 181.49549266, 181.47975351, 181.46400028,
181.44822976, 181.43243883, 181.4166244 , 181.40078344,
181.38491298, 181.36901011, 181.35307194, 181.33709567,
181.32107853, 181.30501782, 181.28891088, 181.2727551 ,
181.25654793, 181.24028688, 181.22396949, 181.20759338,
181.19115619, 181.17465564, 181.15808949, 181.14145555,
181.12475331, 181.10798876, 181.09116943, 181.07430268,
181.05739579, 181.04045588, 181.02348997, 181.00650495,
180.98950756, 180.97250445, 180.95550213, 180.93850699,
180.92152529, 180.90456319, 180.8876267 , 180.87072172,
180.85385404, 180.8370293 , 180.82025306, 180.80353074,
180.78686763, 180.77026891, 180.75373966, 180.73728483,
180.72090924, 180.70461725, 180.68840633, 180.67226823,
180.65619464, 180.6401774 , 180.62420847, 180.60827997,
180.59238417, 180.57651346, 180.56066036, 180.54481757,
180.52897788, 180.51313424, 180.49727975, 180.48140762,
180.4655112 , 180.449584 , 180.43361963, 180.41761187,
180.4015546 , 180.38544186, 180.36926781, 180.35302676,
180.33671313, 180.32032151, 180.30384658, 180.28728325,
180.27063081, 180.25389595, 180.23708594, 180.22020794,
180.20326895, 180.18627582, 180.16923529, 180.15215395,
180.13503824, 180.11789447, 180.10072882, 180.08354732,
180.06635587, 180.04916023, 180.03196601, 180.01477872,
179.99760368, 179.98044613, 179.96331113, 179.94620363,
179.92912843, 179.91209022, 179.89509352, 179.87814276,
179.86124217, 179.84439292, 179.82759098, 179.81083186,
179.79411112, 179.77742445, 179.76076761, 179.74413641,
179.7275268 , 179.71093475, 179.69435636, 179.67778779,
179.66122528, 179.64466516, 179.62810383, 179.61153778,
179.59496356, 179.57837783, 179.5617773 , 179.54515878,
179.52851914, 179.51185535, 179.49516445, 179.47844355,
179.46168984, 179.44490059, 179.42807373, 179.41120912,
179.39430705, 179.3773678 , 179.36039166, 179.34337889,
179.32632976, 179.30924454, 179.2921235 , 179.27496689,
179.25777497, 179.24054799, 179.2232862 , 179.20598984,
179.18865916, 179.17129439, 179.15389577, 179.13646353,
179.11899788, 179.10149907, 179.08396729, 179.06640278,
179.04880574, 179.03117638, 179.01351494, 178.99582209,
178.97809874, 178.96034578, 178.9425641 , 178.92475451,
178.90691783, 178.88905484, 178.87116628, 178.85325289,
178.83531534, 178.81735431, 178.79937043, 178.78136431,
178.76333651, 178.7452876 , 178.72721808, 178.70912845,
178.69101917, 178.67289068, 178.65474338, 178.63657764,
178.61839382, 178.60019223, 178.58197287, 178.56373501,
178.5454778 , 178.52720042, 178.50890207, 178.49058198,
178.47223937, 178.4538735 , 178.43548366, 178.41706912,
178.39862922, 178.38016327, 178.36167064, 178.34315068,
178.3246028 , 178.30602639, 178.28742088, 178.26878573,
178.25012039, 178.23142435, 178.21269711, 178.19393819,
178.17514713, 178.15632369, 178.13746795, 178.11857998,
178.09965986, 178.08070765, 178.06172339, 178.04270713,
178.0236589 , 178.00457871, 177.98546659, 177.96632251,
177.94714649, 177.92793849, 177.90869848, 177.88942642,
177.87012227, 177.85078595, 177.83141739, 177.81201652,
177.79258324, 177.77311744, 177.75361901, 177.73408774,
177.71452325, 177.69492518, 177.67529317, 177.65562687,
177.63592595, 177.61619007, 177.59641892, 177.57661218,
177.55676955, 177.53689073, 177.51697545, 177.49702343,
177.4770344 , 177.45700811, 177.4369443 , 177.41684275,
177.39670321, 177.37652548, 177.35630934, 177.33605459,
177.31576113, 177.2954291 , 177.27505864, 177.25464985,
177.23420277, 177.21371743, 177.19319379, 177.1726318 ,
177.15203134, 177.13139227, 177.1107144 , 177.08999751,
177.06924133, 177.04844555, 177.02760982, 177.00673375,
176.98581692, 176.96485885, 176.94385905, 176.92281695,
176.90173195, 176.88060326, 176.85943008, 176.83821163,
176.81694721, 176.79563615, 176.77427785, 176.75287176,
176.73141736, 176.70991421, 176.68836189, 176.66676006,
176.64510842, 176.62340672, 176.60165476, 176.57985239,
176.55799952]
The trapezoidal method sums over
0.5*(y[k]+y[k+1])*(x[k+1]-x[k])
As for your given arrays the middle factor is always positive and the last factor always negative, the sum over it will also be negative.
This is also mathematically correct, an integral with a falling integration variable has the negative value of the same integral with the interval ends switched
I am trying to use differential_evolution from SciPy. I have three matrices: x, y and P - all of size (14,6). I have to use the following formula:
z= np.log10(g)+ np.log10(c)*np.log10(P)
to find the value of c (real number from 0 to 2) which minimize:
numpy.median(z**2)
this expression. What I try is this (I provide the data for the convenience):
import numpy as np
from scipy.optimize import differential_evolution
def func(c, args):
z = args[0] + np.log10(c)*np.log10(args[1])
return np.median(z**2)
if __name__ == '__main__':
bounds = [(0, 2)]
x = np.array([[126581.94951205, 97601.85624482, 59659.00330833,
27646.48551627, 9202.50377458, 4840.25789068],
[213571.84886437, 148750.52154776, 85979.81139937,
38757.37831212, 11775.99906427, 4619.32027948],
[195684.50299021, 131818.78542437, 74376.55189913,
32793.21715377, 10288.70838873, 4042.58093119],
[177598.13865746, 120942.50439911, 68866.09898276,
30819.5354775 , 10588.08746517, 5011.71808947],
[126433.18311483, 85863.57788065, 48923.64502157,
21828.60950911, 7907.37639781, 4410.61819399],
[103431.88029629, 67452.94418262, 37608.36861047,
16456.97701443, 6027.98704858, 3550.06927169],
[100689.06813945, 64380.21348052, 34764.02910376,
14849.85472635, 5607.19256065, 3605.5709208 ],
[ 96509.22946744, 63832.74512518, 36041.69174706,
15802.87650901, 6473.33232805, 4664.07058733],
[113078.63455882, 73227.02362359, 40861.09037499,
17385.89127848, 7074.98444924, 5136.84232454],
[121241.93118924, 78537.13681709, 44257.97654994,
18584.94999742, 7733.39219718, 5869.49536788],
[115948.06368262, 73995.07204278, 41536.21315507,
16851.59724901, 6736.25125909, 4851.5738275 ],
[115024.20359423, 72108.15245783, 40341.98473413,
15900.55422399, 6243.63777265, 4411.24859372],
[108754.83802899, 66210.25952459, 36485.42905112,
14577.73925124, 5553.23702141, 3736.5217322 ],
[ 95340.59125024, 58458.97552915, 32364.19705748,
13236.30114676, 4929.04023171, 3202.21731277]])
y = y=np.array([[118166.08 , 95784.692 , 68134.878 , 37119.959 , 17924.157 ,
7445.3083],
[ 99265.027 , 70679.135 , 43297.559 , 19822.017 , 8527.8497,
3404.7113],
[ 80227.797 , 50972.879 , 26648.604 , 11190.488 , 4836.6514,
2249.9172],
[ 68510.582 , 39288.19 , 19938.938 , 9312.6881, 4907.6661,
2681.2709],
[ 65193.15 , 36610.107 , 18612.181 , 9211.144 , 5416.1685,
3372.1282],
[ 67188.918 , 37227.699 , 20132.92 , 11663.275 , 7315.3472,
4648.1669],
[ 64802.06 , 38885.622 , 22008.537 , 13100.638 , 8043.0185,
5049.2097],
[ 68104.867 , 41212.89 , 23247.898 , 14134.707 , 8805.2547,
5526.1014],
[ 74180.595 , 41268.904 , 22868.016 , 13841.437 , 8660.1413,
5401.245 ],
[ 78920.685 , 42743.389 , 23932.305 , 13910.089 , 8439.3342,
5141.7051],
[ 91329.012 , 45733.772 , 25430.818 , 14144.185 , 8273.7953,
5016.5839],
[ 92217.594 , 44984.3 , 23353.596 , 13467.631 , 8099.728 ,
4948.26 ],
[ 94508.441 , 48114.879 , 24735.311 , 13358.097 , 7821.8587,
4806.7923],
[108211.73 , 53987.095 , 25872.772 , 13189.61 , 7552.7164,
4497.2611]])
P=10000*np.array([[0.6011,0.6011,0.6011,0.6011,0.6011,0.6011],
[0.9007,0.9007,0.9007,0.9007,0.9007,0.9007],
[1.1968,1.1968,1.1968,1.1968,1.1968,1.1968],
[1.4178,1.4178,1.4178,1.4178,1.4178,1.4178],
[1.5015,1.5015,1.5015,1.5015,1.5015,1.5015],
[1.439,1.439,1.439,1.439,1.439,1.439],
[1.2721,1.2721,1.2721,1.2721,1.2721,1.2721],
[1.0616,1.0616,1.0616,1.0616,1.0616,1.0616],
[0.8543,0.8543,0.8543,0.8543,0.8543,0.8543],
[0.6723,0.6723,0.6723,0.6723,0.6723,0.6723],
[0.5204,0.5204,0.5204,0.5204,0.5204,0.5204],
[0.3963,0.3963,0.3963,0.3963,0.3963,0.3963],
[0.2990,0.2990,0.2990,0.2990,0.2990,0.2990],
[0.2211,0.2211,0.2211,0.2211,0.2211,0.2211]])
g=np.log10(y) - np.log10(x)
args = (g,P)
result = differential_evolution(func, bounds, args=args)
print(func(bounds, args))
I get this error: TypeError: func() takes exactly 2 arguments (3 given) . Is there any way to fix this?
def func(c, g, P):
z = g + np.log10(c)*np.log10(P)
return np.median(z**2)
if __name__ == '__main__':
# Your arrays go here
g = np.log10(y) - np.log10(x)
args = (g, P)
result = differential_evolution(func, bounds, args=(g, P))
# will print the value of c and value of the optimized function
print (result.x, result.fun)
I'm attempting to break a vigenere cipher without knowing the key and I'm struggling to figure out my error since the caesar_break function seems to work perfectly fine on its own.
This is the code for the function i'm attempting to call:
def caesar_break( cipher, frequencies ): # help!
alpha = ["A" , "B" , "C" , "D" , "E" , "F" , "G" , "H" , "I" , "J" , "K" , "L" , "M" ,
"N" , "O" , "P" , "Q" , "R" , "S" , "T" , "U" , "V" , "W" , "X" , "Y" , "Z" ]
dist_ls = []
for key in alpha:
poss_plaintxt = caesar_dec( cipher, key )
counts = letter_counts( poss_plaintxt )
observed = normalize( counts )
dist = distance( observed, frequencies )
dist_ls.append( (dist , poss_plaintxt , key) )
can = dist_ls[ 0 ][ 0 ]
can_t = 0
for t in dist_ls:
if t[ 0 ] < can:
can = t[ 0 ]
can_t = t
return [ can_t[ 2 ], can_t[ 1 ] ]
This is what I have so far for my current function, I am not completely done with it, but I just need to figure out this error in order to move forward:
def vig_break( c, maxlen, frequencies ):
from i in range( 1, maxlen ):
break_ls = list(vig_break_for_length( c, i, frequencies ))
print( break_ls ) #this print is unneeded, i just like to test my code as i go
For specificity this is the error code:
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "ciphers.py", line 310, in vig_break
break_ls = list(vig_break_for_length( c, i, frequencies ))
File "ciphers.py", line 288, in vig_break_for_length
split_break = caesar_break( ciphertext, frequencies )
File "ciphers.py", line 192, in caesar_break
return [ can_t[ 2 ], can_t[ 1 ] ]
TypeError: 'int' object is not subscriptable
I am using scipy's BVP solver:
http://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_bvp.html
The problem I am running into is that you can only have as many boundary conditions as you have equations. I only have one equation but I have two boundary conditions. How can this be fixed?
MWE
>>> import numpy as np
>>> from scipy.integrate import solve_bvp
>>>
>>> x = np.linspace(0, 1, 100)
>>> dydx = lambda x,y: y*np.sin(x)
>>>
>>> result = solve_bvp(dydx,
... lambda ya,yb: np.array([ (ya[0]-1)**2 + (yb[0]-1)**2 ]),
... x, [np.ones(len(x))], max_nodes=100000, tol=1e-9)
>>>
>>> result
message: 'The algorithm converged to the desired accuracy.'
niter: 2
p: None
rms_residuals: array([ 3.48054730e-10, 3.47134800e-10, 3.46220750e-10,
3.45304147e-10, 3.44446495e-10, 3.43708535e-10,
3.42834209e-10, 3.41730399e-10, 3.40902853e-10,
3.40116511e-10, 3.39286663e-10, 3.38873550e-10,
3.37853506e-10, 3.36632825e-10, 3.35880059e-10,
3.35385717e-10, 3.35453551e-10, 3.34784891e-10,
3.32401725e-10, 3.34486867e-10, 3.35674629e-10,
3.37743169e-10, 3.34329677e-10, 3.29311236e-10,
3.27606354e-10, 3.28578369e-10, 3.27772742e-10,
3.26447666e-10, 3.24908674e-10, 3.24192402e-10,
3.25862692e-10, 3.28872815e-10, 3.22757465e-10,
3.21914926e-10, 3.20227078e-10, 3.23579897e-10,
3.28140843e-10, 3.18151515e-10, 3.21177949e-10,
3.16611117e-10, 3.45372059e-10, 3.18345626e-10,
3.24069081e-10, 3.32570305e-10, 3.19141250e-10,
3.14376144e-10, 3.18278959e-10, 3.11802424e-10,
3.15597596e-10, 3.22818017e-10, 3.15384028e-10,
3.17673241e-10, 3.08099021e-10, 3.11743210e-10,
3.28763320e-10, 3.24475197e-10, 3.28343741e-10,
3.25892534e-10, 3.12411478e-10, 3.37194926e-10,
3.20060651e-10, 3.03517565e-10, 3.00795182e-10,
3.06846379e-10, 3.00064770e-10, 3.05765788e-10,
2.99543196e-10, 2.98157661e-10, 2.97863071e-10,
2.96467397e-10, 3.74567928e-10, 3.24304178e-10,
3.16165056e-10, 3.02449962e-10, 2.93348900e-10,
3.08601600e-10, 2.93492038e-10, 3.11756310e-10,
2.97438508e-10, 3.17903029e-10, 3.05491804e-10,
3.02623385e-10, 3.06340149e-10, 2.94595579e-10,
2.87571373e-10, 3.03866639e-10, 3.42985927e-10,
3.21829601e-10, 3.70164964e-10, 3.53563487e-10,
3.00178404e-10, 2.83888849e-10, 2.82310753e-10,
2.85661232e-10, 3.11405296e-10, 2.80954237e-10,
2.79523163e-10, 2.80819968e-10, 2.94406497e-10,
3.19548071e-10, 2.95355340e-10, 2.77522541e-10,
2.76703591e-10, 2.88121141e-10, 2.75290617e-10,
2.84220379e-10, 2.89876300e-10, 3.14510031e-10,
3.11057911e-10, 2.72303350e-10, 2.79168046e-10,
2.90700062e-10, 2.78438999e-10, 2.68897634e-10,
2.69286657e-10, 2.90472537e-10, 2.78378707e-10,
2.97980086e-10, 2.97008148e-10, 2.65028623e-10,
2.64744165e-10, 2.69437313e-10, 2.63909411e-10,
2.62339786e-10, 2.71045386e-10, 2.65850861e-10,
2.78162780e-10, 2.61231989e-10, 2.70109868e-10,
2.61595375e-10, 2.59299272e-10, 2.65106316e-10,
2.74283076e-10, 2.86861196e-10, 3.03175803e-10,
2.58290170e-10, 3.61324845e-10, 3.39239278e-10,
2.91296094e-10, 2.83918017e-10, 4.52002829e-10,
2.52915179e-10, 3.13709791e-10, 3.72555078e-10,
2.48903834e-10, 2.58089690e-10, 2.86634265e-10,
2.60879823e-10, 2.64643448e-10, 3.03583577e-10,
5.12385186e-10, 2.42415186e-10, 3.47677749e-10,
2.41037177e-10, 2.91624837e-10, 2.88486833e-10,
2.97731066e-10, 3.46537042e-10, 2.44416103e-10,
4.29099468e-10, 4.71320607e-10, 2.97672164e-10,
3.26787171e-10, 2.34920240e-10, 2.64792458e-10,
2.91952218e-10, 2.47064463e-10, 2.34000456e-10,
4.10948830e-10, 2.36520479e-10, 3.42444147e-10,
2.76749245e-10, 2.51379106e-10, 2.40093828e-10,
2.72602754e-10, 3.94004751e-10, 2.84796018e-10,
3.72431030e-10, 2.23313796e-10, 3.32252341e-10,
3.34369044e-10, 2.63230702e-10, 2.17694780e-10,
3.25346854e-10, 2.64869219e-10, 3.51158895e-10,
3.60872478e-10, 3.09047143e-10, 2.22308395e-10,
2.43344334e-10, 2.16527726e-10, 2.98642975e-10,
2.77152047e-10, 2.66161092e-10, 2.91230604e-10,
2.37973344e-10, 2.95802884e-10, 2.78890213e-10,
2.19485810e-10, 3.53536609e-10, 2.16716319e-10,
2.51682560e-10, 2.04749227e-10, 4.31531575e-10,
3.47595602e-10, 2.38112586e-10, 1.92156254e-10,
2.46451083e-10, 2.99903096e-10, 1.90926751e-10,
2.05652721e-10, 2.33415220e-10, 2.43209873e-10,
1.85670073e-10, 2.02780645e-10, 1.89290313e-10,
1.81291292e-10, 1.77940599e-10, 3.60470288e-10,
3.28978503e-10, 1.74204497e-10, 1.95779041e-10,
2.50524362e-10, 2.49249184e-10, 1.67522152e-10,
1.68202192e-10, 1.82172067e-10, 1.77510490e-10,
1.62468247e-10, 1.75426885e-10, 3.24084379e-10,
2.21087707e-10, 1.88843987e-10, 2.57800867e-10,
1.53483353e-10, 1.80491618e-10, 2.28820880e-10,
2.32095332e-10, 1.90031952e-10, 1.46493968e-10,
2.00403717e-10, 3.23811210e-10, 1.90421082e-10,
1.45237509e-10, 1.67970046e-10, 1.49189288e-10,
1.39748871e-10, 1.40621758e-10, 1.33316350e-10,
2.22781676e-10, 1.31021647e-10, 2.12758988e-10,
1.38894682e-10, 1.75219768e-10, 1.78296709e-10,
3.67044064e-10, 2.04279379e-10, 2.11899286e-10,
1.59322174e-10, 1.21129350e-10, 1.18003803e-10,
1.42850831e-10, 1.33020880e-10, 1.27620814e-10,
1.48379719e-10, 3.35008994e-10, 3.31675208e-10,
2.49871984e-10, 1.06526186e-10, 1.57190187e-10,
9.38688508e-11, 2.16167913e-10, 1.12548066e-10,
1.98572296e-10, 2.12773340e-10, 3.09554965e-10,
2.32665662e-10, 8.05365861e-11, 2.71090303e-10,
1.60686511e-10, 1.20088934e-10, 3.23772391e-10,
2.01129249e-10, 3.04370308e-10, 6.75862037e-11,
7.60074235e-11, 1.55486106e-10, 2.24650749e-10,
2.10826836e-10, 3.75354523e-10, 1.48504437e-10,
1.65019969e-10, 7.52309342e-11, 3.59188285e-10,
1.55801401e-10, 1.52568581e-10, 5.38230045e-11])
sol: <scipy.interpolate.interpolate.PPoly object at 0x2ad860930d58>
status: 0
success: True
x: array([ 0. , 0.003367 , 0.00673401, 0.01010101, 0.01346801,
0.01683502, 0.02020202, 0.02356902, 0.02693603, 0.03030303,
0.03367003, 0.03703704, 0.04040404, 0.04377104, 0.04713805,
0.05050505, 0.05387205, 0.05723906, 0.06060606, 0.06397306,
0.06734007, 0.07070707, 0.07407407, 0.07744108, 0.08080808,
0.08417508, 0.08754209, 0.09090909, 0.09427609, 0.0976431 ,
0.1010101 , 0.1043771 , 0.10774411, 0.11111111, 0.11447811,
0.11784512, 0.12121212, 0.12457912, 0.12794613, 0.13131313,
0.13468013, 0.13804714, 0.14141414, 0.14478114, 0.14814815,
0.15151515, 0.15488215, 0.15824916, 0.16161616, 0.16498316,
0.16835017, 0.17171717, 0.17508418, 0.17845118, 0.18181818,
0.18518519, 0.18855219, 0.19191919, 0.1952862 , 0.1986532 ,
0.2020202 , 0.20538721, 0.20875421, 0.21212121, 0.21548822,
0.21885522, 0.22222222, 0.22558923, 0.22895623, 0.23232323,
0.23569024, 0.23905724, 0.24242424, 0.24579125, 0.24915825,
0.25252525, 0.25589226, 0.25925926, 0.26262626, 0.26599327,
0.26936027, 0.27272727, 0.27609428, 0.27946128, 0.28282828,
0.28619529, 0.28956229, 0.29292929, 0.2962963 , 0.2996633 ,
0.3030303 , 0.30639731, 0.30976431, 0.31313131, 0.31649832,
0.31986532, 0.32323232, 0.32659933, 0.32996633, 0.33333333,
0.33670034, 0.34006734, 0.34343434, 0.34680135, 0.35016835,
0.35353535, 0.35690236, 0.36026936, 0.36363636, 0.36700337,
0.37037037, 0.37373737, 0.37710438, 0.38047138, 0.38383838,
0.38720539, 0.39057239, 0.39393939, 0.3973064 , 0.4006734 ,
0.4040404 , 0.40740741, 0.41077441, 0.41414141, 0.41750842,
0.42087542, 0.42424242, 0.42760943, 0.43097643, 0.43434343,
0.43771044, 0.44107744, 0.44444444, 0.44781145, 0.45117845,
0.45454545, 0.45791246, 0.46127946, 0.46464646, 0.46801347,
0.47138047, 0.47474747, 0.47811448, 0.48148148, 0.48484848,
0.48821549, 0.49158249, 0.49494949, 0.4983165 , 0.5016835 ,
0.50505051, 0.50841751, 0.51178451, 0.51515152, 0.51851852,
0.52188552, 0.52525253, 0.52861953, 0.53198653, 0.53535354,
0.53872054, 0.54208754, 0.54545455, 0.54882155, 0.55218855,
0.55555556, 0.55892256, 0.56228956, 0.56565657, 0.56902357,
0.57239057, 0.57575758, 0.57912458, 0.58249158, 0.58585859,
0.58922559, 0.59259259, 0.5959596 , 0.5993266 , 0.6026936 ,
0.60606061, 0.60942761, 0.61279461, 0.61616162, 0.61952862,
0.62289562, 0.62626263, 0.62962963, 0.63299663, 0.63636364,
0.63973064, 0.64309764, 0.64646465, 0.64983165, 0.65319865,
0.65656566, 0.65993266, 0.66329966, 0.66666667, 0.67003367,
0.67340067, 0.67676768, 0.68013468, 0.68350168, 0.68686869,
0.69023569, 0.69360269, 0.6969697 , 0.7003367 , 0.7037037 ,
0.70707071, 0.71043771, 0.71380471, 0.71717172, 0.72053872,
0.72390572, 0.72727273, 0.73063973, 0.73400673, 0.73737374,
0.74074074, 0.74410774, 0.74747475, 0.75084175, 0.75420875,
0.75757576, 0.76094276, 0.76430976, 0.76767677, 0.77104377,
0.77441077, 0.77777778, 0.78114478, 0.78451178, 0.78787879,
0.79124579, 0.79461279, 0.7979798 , 0.8013468 , 0.8047138 ,
0.80808081, 0.81144781, 0.81481481, 0.81818182, 0.82154882,
0.82491582, 0.82828283, 0.83164983, 0.83501684, 0.83838384,
0.84175084, 0.84511785, 0.84848485, 0.85185185, 0.85521886,
0.85858586, 0.86195286, 0.86531987, 0.86868687, 0.87205387,
0.87542088, 0.87878788, 0.88215488, 0.88552189, 0.88888889,
0.89225589, 0.8956229 , 0.8989899 , 0.9023569 , 0.90572391,
0.90909091, 0.91245791, 0.91582492, 0.91919192, 0.92255892,
0.92592593, 0.92929293, 0.93265993, 0.93602694, 0.93939394,
0.94276094, 0.94612795, 0.94949495, 0.95286195, 0.95622896,
0.95959596, 0.96296296, 0.96632997, 0.96969697, 0.97306397,
0.97643098, 0.97979798, 0.98316498, 0.98653199, 0.98989899,
0.99326599, 0.996633 , 1. ])
y: array([[ 0.79388397, 0.79388847, 0.79390197, 0.79392447, 0.79395597,
0.79399647, 0.79404598, 0.79410449, 0.794172 , 0.79424853,
0.79433406, 0.7944286 , 0.79453215, 0.79464471, 0.7947663 ,
0.7948969 , 0.79503653, 0.79518518, 0.79534287, 0.79550958,
0.79568534, 0.79587013, 0.79606397, 0.79626686, 0.7964788 ,
0.7966998 , 0.79692987, 0.797169 , 0.79741721, 0.7976745 ,
0.79794087, 0.79821634, 0.7985009 , 0.79879457, 0.79909735,
0.79940925, 0.79973028, 0.80006043, 0.80039973, 0.80074817,
0.80110577, 0.80147253, 0.80184846, 0.80223358, 0.80262788,
0.80303138, 0.80344409, 0.80386601, 0.80429716, 0.80473755,
0.80518718, 0.80564606, 0.80611421, 0.80659164, 0.80707835,
0.80757437, 0.80807969, 0.80859433, 0.8091183 , 0.80965162,
0.8101943 , 0.81074634, 0.81130776, 0.81187857, 0.81245879,
0.81304843, 0.8136475 , 0.81425602, 0.814874 , 0.81550144,
0.81613838, 0.81678482, 0.81744077, 0.81810625, 0.81878128,
0.81946586, 0.82016002, 0.82086378, 0.82157714, 0.82230012,
0.82303274, 0.82377501, 0.82452696, 0.8252886 , 0.82605994,
0.826841 , 0.8276318 , 0.82843236, 0.82924269, 0.83006282,
0.83089275, 0.83173252, 0.83258213, 0.83344161, 0.83431098,
0.83519025, 0.83607944, 0.83697858, 0.83788768, 0.83880677,
0.83973586, 0.84067497, 0.84162413, 0.84258336, 0.84355267,
0.84453209, 0.84552164, 0.84652134, 0.84753122, 0.84855129,
0.84958158, 0.85062211, 0.8516729 , 0.85273397, 0.85380536,
0.85488708, 0.85597915, 0.85708161, 0.85819447, 0.85931775,
0.86045149, 0.86159571, 0.86275043, 0.86391567, 0.86509147,
0.86627784, 0.86747482, 0.86868242, 0.86990068, 0.87112962,
0.87236927, 0.87361965, 0.8748808 , 0.87615273, 0.87743548,
0.87872907, 0.88003353, 0.88134889, 0.88267518, 0.88401242,
0.88536065, 0.88671989, 0.88809017, 0.88947152, 0.89086397,
0.89226754, 0.89368228, 0.89510821, 0.89654536, 0.89799375,
0.89945343, 0.90092442, 0.90240675, 0.90390045, 0.90540555,
0.9069221 , 0.90845011, 0.90998962, 0.91154066, 0.91310327,
0.91467748, 0.91626331, 0.91786081, 0.91947001, 0.92109093,
0.92272362, 0.92436811, 0.92602442, 0.9276926 , 0.92937269,
0.9310647 , 0.93276869, 0.93448468, 0.93621271, 0.93795282,
0.93970504, 0.9414694 , 0.94324595, 0.94503471, 0.94683573,
0.94864904, 0.95047469, 0.95231269, 0.9541631 , 0.95602595,
0.95790128, 0.95978913, 0.96168953, 0.96360252, 0.96552814,
0.96746643, 0.96941743, 0.97138117, 0.9733577 , 0.97534706,
0.97734928, 0.97936441, 0.98139248, 0.98343353, 0.98548761,
0.98755476, 0.98963501, 0.99172841, 0.993835 , 0.99595481,
0.9980879 , 1.0002343 , 1.00239405, 1.0045672 , 1.00675379,
1.00895385, 1.01116744, 1.0133946 , 1.01563536, 1.01788978,
1.02015789, 1.02243974, 1.02473537, 1.02704483, 1.02936815,
1.03170539, 1.03405659, 1.03642179, 1.03880103, 1.04119437,
1.04360185, 1.0460235 , 1.04845939, 1.05090954, 1.05337402,
1.05585286, 1.05834611, 1.06085381, 1.06337602, 1.06591277,
1.06846412, 1.07103012, 1.0736108 , 1.07620622, 1.07881642,
1.08144145, 1.08408136, 1.0867362 , 1.08940601, 1.09209084,
1.09479074, 1.09750576, 1.10023595, 1.10298135, 1.10574202,
1.108518 , 1.11130934, 1.11411609, 1.1169383 , 1.11977602,
1.1226293 , 1.12549819, 1.12838274, 1.13128299, 1.13419901,
1.13713083, 1.14007851, 1.14304211, 1.14602166, 1.14901722,
1.15202884, 1.15505658, 1.15810048, 1.1611606 , 1.16423698,
1.16732967, 1.17043874, 1.17356423, 1.17670619, 1.17986467,
1.18303973, 1.18623141, 1.18943978, 1.19266488, 1.19590676,
1.19916548, 1.20244108, 1.20573363, 1.20904318, 1.21236977,
1.21571346, 1.2190743 , 1.22245235, 1.22584765, 1.22926027,
1.23269025, 1.23613766, 1.23960253, 1.24308492, 1.2465849 ,
1.25010251, 1.2536378 , 1.25719083]])
yp: array([[ 0. , 0.00267302, 0.0053461 , 0.0080193 , 0.01069269,
0.01336631, 0.01604024, 0.01871453, 0.02138925, 0.02406445,
0.0267402 , 0.02941655, 0.03209358, 0.03477132, 0.03744986,
0.04012924, 0.04280954, 0.0454908 , 0.04817309, 0.05085648,
0.05354102, 0.05622677, 0.05891379, 0.06160215, 0.0642919 ,
0.06698311, 0.06967583, 0.07237013, 0.07506607, 0.0777637 ,
0.0804631 , 0.08316431, 0.08586741, 0.08857244, 0.09127948,
0.09398858, 0.0966998 , 0.09941321, 0.10212887, 0.10484683,
0.10756715, 0.11028991, 0.11301515, 0.11574295, 0.11847335,
0.12120642, 0.12394223, 0.12668083, 0.12942228, 0.13216665,
0.134914 , 0.13766438, 0.14041786, 0.1431745 , 0.14593436,
0.1486975 , 0.15146398, 0.15423387, 0.15700722, 0.1597841 ,
0.16256456, 0.16534867, 0.16813649, 0.17092808, 0.1737235 ,
0.17652281, 0.17932607, 0.18213335, 0.18494471, 0.1877602 ,
0.1905799 , 0.19340385, 0.19623212, 0.19906478, 0.20190187,
0.20474348, 0.20758965, 0.21044044, 0.21329593, 0.21615617,
0.21902122, 0.22189114, 0.22476599, 0.22764585, 0.23053076,
0.23342079, 0.236316 , 0.23921645, 0.2421222 , 0.24503332,
0.24794987, 0.2508719 , 0.25379948, 0.25673268, 0.25967155,
0.26261615, 0.26556655, 0.2685228 , 0.27148497, 0.27445313,
0.27742732, 0.28040762, 0.28339409, 0.28638678, 0.28938576,
0.29239109, 0.29540283, 0.29842105, 0.3014458 , 0.30447715,
0.30751515, 0.31055988, 0.31361139, 0.31666974, 0.31973499,
0.32280722, 0.32588647, 0.32897281, 0.3320663 , 0.33516701,
0.33827498, 0.3413903 , 0.34451301, 0.34764319, 0.35078088,
0.35392616, 0.35707908, 0.3602397 , 0.3634081 , 0.36658432,
0.36976843, 0.37296049, 0.37616057, 0.37936872, 0.382585 ,
0.38580948, 0.38904223, 0.39228329, 0.39553273, 0.39879061,
0.402057 , 0.40533195, 0.40861553, 0.4119078 , 0.41520881,
0.41851863, 0.42183733, 0.42516495, 0.42850157, 0.43184723,
0.43520202, 0.43856597, 0.44193917, 0.44532166, 0.4487135 ,
0.45211476, 0.45552551, 0.45894578, 0.46237566, 0.4658152 ,
0.46926446, 0.47272349, 0.47619237, 0.47967114, 0.48315988,
0.48665863, 0.49016747, 0.49368644, 0.49721562, 0.50075505,
0.5043048 , 0.50786493, 0.5114355 , 0.51501656, 0.51860818,
0.52221041, 0.52582331, 0.52944695, 0.53308138, 0.53672666,
0.54038285, 0.54405001, 0.54772819, 0.55141745, 0.55511786,
0.55882946, 0.56255232, 0.5662865 , 0.57003205, 0.57378903,
0.5775575 , 0.58133751, 0.58512912, 0.58893239, 0.59274738,
0.59657414, 0.60041272, 0.60426319, 0.6081256 , 0.61200001,
0.61588646, 0.61978503, 0.62369576, 0.6276187 , 0.63155392,
0.63550147, 0.6394614 , 0.64343376, 0.64741862, 0.65141602,
0.65542602, 0.65944867, 0.66348403, 0.66753215, 0.67159308,
0.67566687, 0.67975358, 0.68385327, 0.68796597, 0.69209174,
0.69623064, 0.70038272, 0.70454802, 0.7087266 , 0.7129185 ,
0.71712379, 0.7213425 , 0.72557469, 0.72982041, 0.7340797 ,
0.73835262, 0.74263921, 0.74693953, 0.75125361, 0.75558151,
0.75992327, 0.76427895, 0.76864858, 0.77303222, 0.7774299 ,
0.78184168, 0.7862676 , 0.79070771, 0.79516204, 0.79963065,
0.80411358, 0.80861086, 0.81312256, 0.81764869, 0.82218932,
0.82674447, 0.8313142 , 0.83589854, 0.84049753, 0.84511122,
0.84973964, 0.85438283, 0.85904083, 0.86371368, 0.86840142,
0.87310408, 0.8778217 , 0.88255432, 0.88730198, 0.89206471,
0.89684254, 0.90163551, 0.90644365, 0.911267 , 0.91610559,
0.92095945, 0.92582862, 0.93071312, 0.93561298, 0.94052825,
0.94545894, 0.95040508, 0.95536671, 0.96034386, 0.96533654,
0.97034479, 0.97536863, 0.98040809, 0.98546319, 0.99053396,
0.99562042, 1.0007226 , 1.00584051, 1.01097418, 1.01612363,
1.02128888, 1.02646995, 1.03166686, 1.03687962, 1.04210827,
1.0473528 , 1.05261324, 1.0578896 ]])
As you can see, y is very far from the boundary conditions of y(x=0) = y(x=1) = 1.
If you specify two boundary conditions y(0)=1 and y(1)=1 for a first order ODE, then in general the problem is overdetermined and there is no solution. If you specify just the initial condition y(0)=y0, you have a first order initial value problem. In fact, in this case, you can derive the exact solution: y(x) = y0*exp(-cos(x)).