Saving and loading simple data in Python convenient way - python

I'm currently working on a simple Python 3.4.3 and Tkinter game.
I struggle with saving/reading data now, because I'm a beginner at coding.
What I do now is use .txt files to store my data, but I find this extremely counter-intuitive, as saving/reading more than one line of data requires of me to have additional code to catch any newlines.
Skipping a line would be terrible too.
I've googled it, but I either find .txt save/file options or way too complex ones for saving large-scale data.
I only need to save some strings right now and be able to access them (if possible) by key like in a dictionary key:value .
Do you know of any file format/method to help me accomplish that?
Also: If possible, should work on Win/iOS/Linux.

It sounds like using json would be best for this, which comes as part of the Python Standard library in Python-2.6+
import json
data = {'username':'John', 'health':98, 'weapon':'warhammer'}
# serialize the data to user-data.txt
with open('user-data.txt', 'w') as fobj:
json.dump(data, fobj)
# read the data back in
with open('user-data.txt', 'r') as fobj:
data = json.load(fobj)
print(data)
# outputs:
# {u'username': u'John', u'weapon': u'warhammer', u'health': 98}
A popular alternative is yaml, which is actually a superset of json and produces slightly more human readable results.

You might want to try Redis.
http://redis.io/
I'm not totally sure it'll meet all your needs, but it would probably be better than a flat file.

Related

Get different strings from a file and write a .txt

I'am trying to get lines from a text file (.log) into a .txt document.
I need get into my .txt file the same data. But the line itself is sometimes different. From what I have seen on internet, it's usualy done with a pattern that will anticipate how the line is made.
1525:22Player 11 spawned with userinfo: \team\b\forcepowers\0-5-030310001013001131\ip\46.98.134.211:24806\rate\25000\snaps\40\cg_predictItems\1\char_color_blue\34\char_color_green\34\char_color_red\34\color1\65507\color2\14942463\color3\2949375\color4\2949375\handicap\100\jp\0\model\desann/default\name\Faybell\pbindicator\1\saber1\saber_malgus_broken\saber2\none\sex\male\ja_guid\420D990471FC7EB6B3EEA94045F739B7\teamoverlay\1
The line i'm working with usualy looks like this. The data i'am trying to collect are :
\ip\0.0.0.0
\name\NickName_of_the_player
\ja_guid\420D990471FC7EB6B3EEA94045F739B7
And print these data, inside a .txt file. Here is my current code.
As explained above, i'am unsure about what keyword to use for my research on google. And how this could be called (Because the string isn't the same?)
I have been looking around alot, and most of the test I have done, have allowed me to do some things, but i'am not yet able to do as explained above. So i'am in hope for guidance here :) (Sorry if i'am noobish, I understand alot how it works, I just didn't learned language in school, I mostly do small scripts, and usualy they work fine, this time it's way harder)
def readLog(filename):
with open(filename,'r') as eventLog:
data = eventLog.read()
dataList = data.splitlines()
return dataList
eventLog = readLog('games.log')
You'll need to read the files in "raw" mode rather than as strings. When reading the file from disk, use open(filename,'rb'). To use your example, I ran
text_input = r"1525:22Player 11 spawned with userinfo: \team\b\forcepowers\0-5-030310001013001131\ip\46.98.134.211:24806\rate\25000\snaps\40\cg_predictItems\1\char_color_blue\34\char_color_green\34\char_color_red\34\color1\65507\color2\14942463\color3\2949375\color4\2949375\handicap\100\jp\0\model\desann/default\name\Faybell\pbindicator\1\saber1\saber_malgus_broken\saber2\none\sex\male\ja_guid\420D990471FC7EB6B3EEA94045F739B7\teamoverlay\1"
text_as_array = text_input.split('\\')
You'll need to know which columns contain the strings you care about. For example,
with open('output.dat','w') as fil:
fil.write(text_as_array[6])
You can figure these array positions from the sample string
>>> text_as_array[6]
'46.98.134.211:24806'
>>> text_as_array[34]
'Faybell'
>>> text_as_array[44]
'420D990471FC7EB6B3EEA94045F739B7'
If the column positions are not consistent but the key-value pairs are always adjacent, we can leverage that
>>> text_as_array.index("ip")
5
>>> text_as_array[text_as_array.index("ip")+1]
'46.98.134.211:24806'

Python Storing Data

I have a list in my program. I have a function to append to the list, unfortunately when you close the program the thing you added goes away and the list goes back to the beginning. Is there any way that I can store the data so the user can re-open the program and the list is at its full.
You may try pickle module to store the memory data into disk,Here is an example:
store data:
import pickle
dataset = ['hello','test']
outputFile = 'test.data'
fw = open(outputFile, 'wb')
pickle.dump(dataset, fw)
fw.close()
load data:
import pickle
inputFile = 'test.data'
fd = open(inputFile, 'rb')
dataset = pickle.load(fd)
print dataset
You can make a database and save them, the only way is this. A database with SQLITE or a .txt file. For example:
with open("mylist.txt","w") as f: #in write mode
f.write("{}".format(mylist))
Your list goes into the format() function. It'll make a .txt file named mylist and will save your list data into it.
After that, when you want to access your data again, you can do:
with open("mylist.txt") as f: #in read mode, not in write mode, careful
rd=f.readlines()
print (rd)
The built-in pickle module provides some basic functionality for serialization, which is a term for turning arbitrary objects into something suitable to be written to disk. Check out the docs for Python 2 or Python 3.
Pickle isn't very robust though, and for more complex data you'll likely want to look into a database module like the built-in sqlite3 or a full-fledged object-relational mapping (ORM) like SQLAlchemy.
For storing big data, HDF5 library is suitable. It is implemented by h5py in Python.

Parameter with dictionary path

I am very new to Python and am not very familiar with the data structures in Python.
I am writing an automatic JSON parser in Python, the JSON message is read into a dictionary using Ultra-JSON:
jsonObjs = ujson.loads(data)
Now, if I try something like:
jsonObjs[param1][0][param2] it works fine
However, I need to get the path from an external source (I read it from the DB), we initially thought we'll just write in the DB:
myPath = [param1][0][param2]
and then try to access:
jsonObjs[myPath]
But after a couple of failures I realized I'm trying to access:
jsonObjs[[param1][0][param2]]
Is there a way to fix this without parsing myPath?
Many thanks for your help and advice
Store the keys in a format that preserves type information, e.g. JSON, and then use reduce() to perform recursive accesses on the structure.

Simple questions about txt file input and output with Python 2.6

this is my first post here to stackoverflow, and I am still just learning Python and programming in general. I'm working on some simple game logic, and I'm getting a little washed up on how Python handles file input/output.
What I'm trying to do is, while my game is running, store a series of variables (all numeric, integer data), and when the game is over, dump that information to txt file that can later be read (again, as numeric, integer data) so that it can be added to. A tracker, really.
Perhaps if you were playing some racing game, for example, every time you hit a pedestrian, pedestrians += 1. Then when your game is over, after hitting like 23 pedestrians, that number (along with any other variables I wished to track) is saved to a text file. When you start the game again, it loads the number 23 back into the pedestrians variable, so if you hit 30 more this time you end up with 53 total, and so on. Thanks in advance!
Does it have to be text? I'd use pickle if not
http://docs.python.org/library/pickle.html
There are quite a few ways to do this. Do you want the file to be human-readable or human-writable? (Could encourage cheating if you do.)
The simplest thing that you could do which would work is to use the ConfigParser library, which stores simple data like what you described in a text file. Something like:
Reading:
import ConfigParser
config = ConfigParser.ConfigParser()
config.readfp(open('game_data.dat'))
dead_pedestrians = config.getint('JoeUser', 'dead_pedestrians')
Writing:
config = ConfigParser.RawConfigParser()
config.add_section('JoeUser')
config.set('JoeUser', 'dead_pedestrians', '15')
with open('game_data.dat', 'wb') as configfile:
config.write(configfile)
Other options: If you don't want it to be human-readable, you could use shelve (but a clever user who knows you're using python would find it trivial to read.
Hope that helps!

Is there a memory efficient and fast way to load big JSON files?

I have some json files with 500MB.
If I use the "trivial" json.load() to load its content all at once, it will consume a lot of memory.
Is there a way to read partially the file? If it was a text, line delimited file, I would be able to iterate over the lines. I am looking for analogy to it.
There was a duplicate to this question that had a better answer. See https://stackoverflow.com/a/10382359/1623645, which suggests ijson.
Update:
I tried it out, and ijson is to JSON what SAX is to XML. For instance, you can do this:
import ijson
for prefix, the_type, value in ijson.parse(open(json_file_name)):
print prefix, the_type, value
where prefix is a dot-separated index in the JSON tree (what happens if your key names have dots in them? I guess that would be bad for Javascript, too...), theType describes a SAX-like event, one of 'null', 'boolean', 'number', 'string', 'map_key', 'start_map', 'end_map', 'start_array', 'end_array', and value is the value of the object or None if the_type is an event like starting/ending a map/array.
The project has some docstrings, but not enough global documentation. I had to dig into ijson/common.py to find what I was looking for.
So the problem is not that each file is too big, but that there are too many of them, and they seem to be adding up in memory. Python's garbage collector should be fine, unless you are keeping around references you don't need. It's hard to tell exactly what's happening without any further information, but some things you can try:
Modularize your code. Do something like:
for json_file in list_of_files:
process_file(json_file)
If you write process_file() in such a way that it doesn't rely on any global state, and doesn't
change any global state, the garbage collector should be able to do its job.
Deal with each file in a separate process. Instead of parsing all the JSON files at once, write a
program that parses just one, and pass each one in from a shell script, or from another python
process that calls your script via subprocess.Popen. This is a little less elegant, but if
nothing else works, it will ensure that you're not holding on to stale data from one file to the
next.
Hope this helps.
Yes.
You can use jsonstreamer SAX-like push parser that I have written which will allow you to parse arbitrary sized chunks, you can get it here and checkout the README for examples. Its fast because it uses the 'C' yajl library.
It can be done by using ijson. The working of ijson has been very well explained by Jim Pivarski in the answer above. The code below will read a file and print each json from the list. For example, file content is as below
[{"name": "rantidine", "drug": {"type": "tablet", "content_type": "solid"}},
{"name": "nicip", "drug": {"type": "capsule", "content_type": "solid"}}]
You can print every element of the array using the below method
def extract_json(filename):
with open(filename, 'rb') as input_file:
jsonobj = ijson.items(input_file, 'item')
jsons = (o for o in jsonobj)
for j in jsons:
print(j)
Note: 'item' is the default prefix given by ijson.
if you want to access only specific json's based on a condition you can do it in following way.
def extract_tabtype(filename):
with open(filename, 'rb') as input_file:
objects = ijson.items(input_file, 'item.drugs')
tabtype = (o for o in objects if o['type'] == 'tablet')
for prop in tabtype:
print(prop)
This will print only those json whose type is tablet.
On your mention of running out of memory I must question if you're actually managing memory. Are you using the "del" keyword to remove your old object before trying to read a new one? Python should never silently retain something in memory if you remove it.
Update
See the other answers for advice.
Original answer from 2010, now outdated
Short answer: no.
Properly dividing a json file would take intimate knowledge of the json object graph to get right.
However, if you have this knowledge, then you could implement a file-like object that wraps the json file and spits out proper chunks.
For instance, if you know that your json file is a single array of objects, you could create a generator that wraps the json file and returns chunks of the array.
You would have to do some string content parsing to get the chunking of the json file right.
I don't know what generates your json content. If possible, I would consider generating a number of managable files, instead of one huge file.
Another idea is to try load it into a document-store database like MongoDB.
It deals with large blobs of JSON well. Although you might run into the same problem loading the JSON - avoid the problem by loading the files one at a time.
If path works for you, then you can interact with the JSON data via their client and potentially not have to hold the entire blob in memory
http://www.mongodb.org/
"the garbage collector should free the memory"
Correct.
Since it doesn't, something else is wrong. Generally, the problem with infinite memory growth is global variables.
Remove all global variables.
Make all module-level code into smaller functions.
in addition to #codeape
I would try writing a custom json parser to help you figure out the structure of the JSON blob you are dealing with. Print out the key names only, etc. Make a hierarchical tree and decide (yourself) how you can chunk it. This way you can do what #codeape suggests - break the file up into smaller chunks, etc
You can parse the JSON file to CSV file and you can parse it line by line:
import ijson
import csv
def convert_json(self, file_path):
did_write_headers = False
headers = []
row = []
iterable_json = ijson.parse(open(file_path, 'r'))
with open(file_path + '.csv', 'w') as csv_file:
csv_writer = csv.writer(csv_file, ',', '"', csv.QUOTE_MINIMAL)
for prefix, event, value in iterable_json:
if event == 'end_map':
if not did_write_headers:
csv_writer.writerow(headers)
did_write_headers = True
csv_writer.writerow(row)
row = []
if event == 'map_key' and not did_write_headers:
headers.append(value)
if event == 'string':
row.append(value)
So simply using json.load() will take a lot of time. Instead, you can load the json data line by line using key and value pair into a dictionary and append that dictionary to the final dictionary and convert it to pandas DataFrame which will help you in further analysis
def get_data():
with open('Your_json_file_name', 'r') as f:
for line in f:
yield line
data = get_data()
data_dict = {}
each = {}
for line in data:
each = {}
# k and v are the key and value pair
for k, v in json.loads(line).items():
#print(f'{k}: {v}')
each[f'{k}'] = f'{v}'
data_dict[i] = each
Data = pd.DataFrame(data_dict)
#Data will give you the dictionary data in dataFrame (table format) but it will
#be in transposed form , so will then finally transpose the dataframe as ->
Data_1 = Data.T

Categories

Resources