I am reading in some xml data and in particular I have the following string
H.P. Dembinski, B. K\'{e}gl, I.C. Mari\c{s}, M. Roth, D. Veberi\v{c}
this is latex notation. I am using mathjax, but without the $ sign mathjax does not recognize this text. So this text is shown in my browser as printed above.
I am reading in xml data with the following code
today = some date
base_url = "http://export.arxiv.org/oai2?verb=ListRecords&"
url = (base_url + "from=%s&until=%s&" % (today, today) + "metadataPrefix=arXivRaw")
try:
response = urllib2.urlopen(url)
except urllib2.HTTPError, e:
return
rawdata = response.read()
root = ET.fromstring(rawdata)
if root.find(OAI+'ListRecords') is not None:
for record in root.find(OAI+'ListRecords').findall(OAI+"record"):
author_string = info.find(ARXIVRAW+"authors").text
I can read the same text using feedparser and in that case I get
u'H. P. Dembinski, B. K\xe9gl, I. C. Mari\u015f, M. Roth, D. Veberi\u010d'
which my browser can correctly interpret with all the special characters. Here is my feedparser solution
url = 'some url'
response = urllib.urlopen(url).read().decode('latin-1')
feed = feedparser.parse(response)
for entry in feed.entries:
data = {}
try:
data['authors'] = ', '.join(author.name for author in entry.authors)
except AttributeError:
data['authors'] = ''
how do I have to change my ElementTree solution (the first one) to get the same string as from the feedparser solution?
EDIT: Here is a working piece of code which produces the unwanted result
import urllib2
from itertools import ifilter
import xml.etree.ElementTree as ET
import feedparser
OAI = "{http://www.openarchives.org/OAI/2.0/}"
ARXIV = "{http://arxiv.org/OAI/arXiv/}"
ARXIVRAW = "{http://arxiv.org/OAI/arXivRaw/}"
def main():
url = "http://export.arxiv.org/oai2?verb=GetRecord&identifier=oai:arXiv.org:1503.09027&metadataPrefix=arXivRaw"
try:
response = urllib2.urlopen(url)
except urllib2.HTTPError, e:
return
rawdata = response.read().decode('latin-1')
root = ET.fromstring(rawdata)
record = root.find(OAI+'GetRecord').findall(OAI+"record")
meta = record[0].find(OAI+'metadata')
info = meta.find(ARXIVRAW+"arXivRaw")
print "author = ", info.find(ARXIVRAW+"authors").text
base_url = 'http://export.arxiv.org/api/query?'
search_query = 'id:1503.09027'
max_results = 2000
sortBy = 'submittedDate'
sortOrder = 'ascending'
query = 'search_query=%s&max_results=%i&sortBy=%s&sortOrder=%s' % (search_query, max_results, sortBy, sortOrder)
response = urllib2.urlopen(base_url+query).read().decode('latin-1')
feed = feedparser.parse(response)
for entry in feed.entries:
print "entry.authors = ", entry.authors
if __name__ == "__main__":
main()
output:
python test.py
author = H.P. Dembinski, B. K\'{e}gl, I.C. Mari\c{s}, M. Roth, D. Veberi\v{c}
Related
I am trying to obtain a stock's current price, and then put it into a variable to run if / else statements on. I have used the Google API to retrieve current stock prices, but I am unable to figure out how to put it into a variable. Thanks!
import json
import sys
try:
from urllib.request import Request, urlopen
except ImportError: #python 2
from urllib2 import Request, urlopen
googleFinanceKeyToFullName = {
u'id' : u'ID',
u't' : u'StockSymbol',
u'e' : u'Index',
u'l' : u'LastTradePrice',
u'l_cur' : u'LastTradeWithCurrency',
u'ltt' : u'LastTradeTime',
u'lt_dts' : u'LastTradeDateTime',
u'lt' : u'LastTradeDateTimeLong',
u'div' : u'Dividend',
u'yld' : u'Yield'
}
def buildUrl(symbols):
symbol_list = ','.join([symbol for symbol in symbols])
#a deprecated but still active & correct api
return 'http://finance.google.com/finance/info?client=ig&q=' \
+ symbol_list
def request(symbols):
url = buildUrl(symbols)
req = Request(url)
resp = urlopen(req)
#remove special symbols such as the pound symbol
content = resp.read().decode('ascii', 'ignore').strip()
content = content[3:]
return content
def replaceKeys(quotes):
global googleFinanceKeyToFullName
quotesWithReadableKey = []
for q in quotes:
qReadableKey = {}
for k in googleFinanceKeyToFullName:
if k in q:
qReadableKey[googleFinanceKeyToFullName[k]] = q[k]
quotesWithReadableKey.append(qReadableKey)
return quotesWithReadableKey
def getQuotes(symbols):
if type(symbols) == type('str'):
symbols = [symbols]
content = json.loads(request(symbols))
return replaceKeys(content);
if __name__ == '__main__':
try:
symbols = sys.argv[1]
except:
symbols = "GOOG,AAPL,MSFT,AMZN,SBUX"
symbols = symbols.split(',')
try:
print(json.dumps(getQuotes(symbols), indent=2))
except:
print("Fail")
You can get the last current stock price from the dictionary and put it into a variable, say price,
by changing the last part of the code to
try:
quotes = getQuotes(symbols)
price = quotes[-1]['LastTradePrice'] # -1 means last in a list
print(price)
except Exception as e:
print(e)
but it is very unreliable because if the order of prices is changed, you will get a price for a different stock.
What you should do is to learn how to define a data structure that's suitable ro solve your problem.
I've written a program that fetches the desired information from a blog or any page. The next thing, I want to achieve is to retrieve the first image from that page, that belongs to the respective post (Just like Facebook does when a post is shared).
I was able to achieve this to some extent by fetching the first image with an alt tag (since many websites don't have alt tags in their logos and icons etc, the first one should belong to the post). But this does not seem to work in some cases. Is there any other (better) way to achieve this?
I'm using python 2.7.9 and BeautifulSoup 4.
d = feedparser.parse('http://rss.cnn.com/rss/edition.rss')
for entry in d.entries:
try:
if entry.title is not None:
print entry.title
print ""
except Exception, e:
print e
try:
if entry.link is not None:
print entry.link
print ""
except Exception, e:
print e
try:
if entry.published[5:16] is not None:
print entry.published[5:16]
print ""
except Exception, e:
print e
try:
if entry.category is not None:
print entry.category
print ""
except Exception, e:
print e
try:
if entry.get('summary', '') is not None:
print entry.get('summary', '')
print ""
except Exception, e:
print e
time.sleep(5)
r = requests.get(entry.link, headers = {'User-Agent' : 'Safari/534.55.3 '})
soup = BeautifulSoup(r.text, 'html.parser')
for img in soup.findAll('img'):
if img.has_attr('alt'):
if img['src'].endswith('.jpg') == True or img['src'].endswith('.png') == True:
print img['src']
break
It is probably more practical to take a look at the opengraph module:
https://pypi.python.org/pypi/opengraph/0.5
and correct it the way you like.
It will fetch "first image" from HTML code or use og:image.
If you want to learn, you can also do it by looking at the source code. The module uses BeautifulSoup too.
I needed the following monkeypatch to activate scraping as fallback:
import re
from bs4 import BeautifulSoup
from opengraph import OpenGraph
def parser(self, html):
"""
"""
if not isinstance(html,BeautifulSoup):
doc = BeautifulSoup(html, from_encoding='utf-8')
else:
doc = html
ogs = doc.html.head.findAll(property=re.compile(r'^og'))
for og in ogs:
self[og[u'property'][3:]]=og[u'content']
# Couldn't fetch all attrs from og tags, try scraping body
if not self.is_valid() and self.scrape:
for attr in self.required_attrs:
if not hasattr(self, attr):
try:
self[attr] = getattr(self, 'scrape_%s' % attr)(doc)
except AttributeError:
pass
OpenGraph.parser = parser
OpenGraph.scrape = True # workaround for some subtle bug in opengraph
You may need to handle relatives URLs in the image sources, but it is quite straightforward with use of urljoin from urlparse
import opengraph
...
page = opengraph.OpenGraph(url=link, scrape=True)
...
if page.is_valid():
...
image_url = page.get('image', None)
...
if not image_url.startswith('http'):
image_url = urljoin(page['_url'], page['image'])
(some check are omitted for brevity from the code fragment)
I'm trying to use multithreads to go through a txt file of urls and scrape the contents found at each url. This works for about 20 URLs (not consistent how many) but then consistently gets stuck on the last url in the file. It doesn't seem to be doing them in order.
I have no idea why it's getting stuck or where to start so thank you so much for your help.
from bs4 import BeautifulSoup, SoupStrainer
import urllib3
import urllib2
import io
import os
import re
import workerpool
from urllib2 import Request, urlopen, URLError
NUM_SOCKETS = 3
NUM_WORKERS = 5
urlfile = open("dailynewsurls.txt",'r') # read one line at a time until end of file
http = urllib3.PoolManager(maxsize=NUM_SOCKETS)
workers = workerpool.WorkerPool(size=NUM_WORKERS)
class MyJob(workerpool.Job):
def __init__(self, url):
self.url = url
def run(self):
r = http.request('GET', self.url)
req = urllib2.Request(url)
try:
page = urllib2.urlopen(req)
except:
print "had to skip one"
return
pagecontent = page.read() # get a file-like object at this url
#this tells it to soup the page that is at the url above
soup = BeautifulSoup(pagecontent)
#this tells it to find the string in the first instance of each of the tags in the parenthesis
title = soup.find_all('title')
article = soup.find_all('article')
try:
title = str(title[0].get_text().encode('utf-8'))
except:
print "had to skip one"
return
try:
article = str(article[0].get_text().encode('utf-8'))
except:
print "had to skip one"
return
try:
# make the file using the things above
output_files_pathname = 'DailyNews/' # path where output will go
new_filename = title + ".txt"
# write each of the things defined into the text file
outfile = open(output_files_pathname + new_filename,'w')
outfile.write(title)
outfile.write("\n")
outfile.write(article)
outfile.close()
print "%r added as a text file" % title
return
except:
print "had to skip one"
return
return
for url in urlfile:
workers.put(MyJob(url))
workers.shutdown()
workers.wait()
print "All done."
Here's an example list of the urls:
http://www.nydailynews.com/entertainment/tv-movies/x-factor-season-2-episode-2-recap-oops-britney-spears-article-1.1159546
http://www.nydailynews.com/new-york/brooklyn/lois-mclohon-resurfaced-iconic-daily-news-coney-island-cheesecake-photo-brings-back-memories-50-year-long-romance-article-1.1160457
http://www.nydailynews.com/new-york/uptown/espaillat-linares-rivals-bitter-history-battle-state-senate-seat-article-1.1157994
http://www.nydailynews.com/sports/baseball/mlb-power-rankings-yankees-split-orioles-tumble-rankings-nationals-shut-stephen-strasburg-hang-top-spot-article-1.1155953
http://www.nydailynews.com/news/national/salon-sell-internet-online-communities-article-1.1150614
http://www.nydailynews.com/sports/more-sports/jiyai-shin-wins-women-british-open-dominating-fashion-record-nine-shot-victory-article-1.1160894
http://www.nydailynews.com/entertainment/music-arts/justin-bieber-offered-hockey-contract-bakersfield-condors-minor-league-team-article-1.1157991
http://www.nydailynews.com/sports/baseball/yankees/umpire-blown-call-9th-inning-dooms-yankees-5-4-loss-baltimore-orioles-camden-yards-article-1.1155141
http://www.nydailynews.com/entertainment/gossip/kellie-pickler-shaving-head-support-best-friend-cancer-fight-hair-article-1.1160938
http://www.nydailynews.com/new-york/secret-103-000-settlement-staffers-accused-assemblyman-vito-lopez-sexual-harassment-included-penalty-20k-involved-talked-details-article-1.1157849
http://www.nydailynews.com/entertainment/tv-movies/ricki-lake-fun-adds-substance-new-syndicated-daytime-show-article-1.1153301
http://www.nydailynews.com/sports/college/matt-barkley-loyalty-usc-trojans-contention-bcs-national-championship-article-1.1152969
http://www.nydailynews.com/sports/daily-news-sports-photos-day-farewell-andy-roddick-world-1-u-s-open-champ-retires-loss-juan-martin-del-potro-article-1.1152827
http://www.nydailynews.com/entertainment/gossip/britney-spears-made-move-relationship-fiance-jason-trawick-reveals-article-1.1152722
http://www.nydailynews.com/new-york/brooklyn/brooklyn-lupus-center-tayumika-zurita-leads-local-battle-disease-difficult-adversary-article-1.1153494
http://www.nydailynews.com/life-style/fashion/kate-middleton-prabal-gurung-dress-sells-hour-myhabit-site-sold-1-995-dress-599-article-1.1161583
http://www.nydailynews.com/news/politics/obama-romney-campaigns-vie-advantage-president-maintains-lead-article-1.1161540
http://www.nydailynews.com/life-style/free-cheap-new-york-city-tuesday-sept-11-article-1.1155950
http://www.nydailynews.com/news/world/dozens-storm-embassy-compound-tunis-article-1.1159663
http://www.nydailynews.com/opinion/send-egypt-message-article-1.1157828
http://www.nydailynews.com/sports/more-sports/witnesses-feel-sheryl-crow-lance-amstrong-activities-article-1.1152899
http://www.nydailynews.com/sports/baseball/yankees/hiroki-kuroda-replacing-cc-sabathia-yankees-ace-pitcher-real-possibility-playoffs-looming-article-1.1161812
http://www.nydailynews.com/life-style/eats/finland-hosts-pop-down-restaurant-belly-earth-262-feet-underground-article-1.1151523
http://www.nydailynews.com/sports/more-sports/mighty-quinn-sept-23-article-1.1165584
http://www.nydailynews.com/sports/more-sports/jerry-king-lawler-stable-condition-suffering-heart-attack-wwe-raw-broadcast-monday-night-article-1.1156915
http://www.nydailynews.com/news/politics/ambassador-chris-stevens-breathing-libyans-found-american-consulate-rescue-article-1.1161454
http://www.nydailynews.com/news/crime/swiss-banker-bradley-birkenfeld-104-million-reward-irs-blowing-whistle-thousands-tax-dodgers-article-1.1156736
http://www.nydailynews.com/sports/hockey/nhl-board-governors-votes-favor-lockout-league-players-association-fail-reach-agreement-cba-article-1.1159131
http://www.nydailynews.com/news/national/iphone-5-works-t-network-article-1.1165543
http://www.nydailynews.com/sports/baseball/yankees/yankees-broadcasters-michael-kay-ken-singleton-opportunity-important-statement-article-1.1165479
http://www.nydailynews.com/news/national/boss-year-michigan-car-dealer-retires-employees-1-000-year-service-article-1.1156763
http://www.nydailynews.com/entertainment/tv-movies/hero-denzel-washington-clint-eastwood-article-1.1165538
http://www.nydailynews.com/sports/football/giants/ny-giants-secondary-roasted-tony-romo-dallas-cowboys-offense-article-1.1153055
http://www.nydailynews.com/news/national/hide-and-seek-tragedy-3-year-old-suffocates-hiding-bean-bag-article-1.1160138
I would try using the threading module; here is something I think is working:
from bs4 import BeautifulSoup, SoupStrainer
import threading
import urllib2
def fetch_url(url):
urlHandler = urllib2.urlopen(url)
html = urlHandler.read()
#this tells it to soup the page that is at the url above
soup = BeautifulSoup(html)
#this tells it to find the string in the first instance of each of the tags in the parenthesis
title = soup.find_all('title')
article = soup.find_all('article')
try:
title = str(title[0].get_text().encode('utf-8'))
except:
print "had to skip one bad title\n"
return
try:
article = str(article[0].get_text().encode('utf-8'))
except:
print "had to skip one bad article"
return
try:
# make the file using the things above
output_files_pathname = 'DailyNews/' # path where output will go
new_filename = title + ".txt"
# write each of the things defined into the text file
outfile = open(output_files_pathname + new_filename, 'w')
outfile.write(title)
outfile.write("\n")
outfile.write(article)
outfile.close()
print "%r added as a text file" % title
return
except:
print "had to skip one cant write file"
return
return
with open("dailynewsurls.txt", 'r') as urlfile:
# read one line at a time until end of file
threads = [threading.Thread(target=fetch_url, args=(url,)) for url in urlfile]
for thread in threads:
thread.start()
for thread in threads:
thread.join()
I would like to estimate the impact of the news on the Dow Jones quotes. For this, I wrote the Python html parser, using the beutifullsoup library. I extract an article and store it in XML file for the further analysis using NLTK library. How can I increase the speed of parsing? The code below does the required task, but in a very slow manner.
Here is the code of the html parser:
import urllib2
import re
import xml.etree.cElementTree as ET
import nltk
from bs4 import BeautifulSoup
from datetime import date
from dateutil.rrule import rrule, DAILY
from nltk.corpus import stopwords
from collections import defaultdict
def main_parser():
#starting date
a = date(2014, 3, 27)
#ending date
b = date(2014, 3, 27)
articles = ET.Element("articles")
f = open('~/Documents/test.xml', 'w')
#loop through the links and per each link extract the text of the article, store the latter at xml file
for dt in rrule(DAILY, dtstart=a, until=b):
url = "http://www.reuters.com/resources/archive/us/" + dt.strftime("%Y") + dt.strftime("%m") + dt.strftime("%d") + ".html"
page = urllib2.urlopen(url)
#use html5lib ??? possibility to use another parser
soup = BeautifulSoup(page.read(), "html5lib")
article_date = ET.SubElement(articles, "article_date")
article_date.text = str(dt)
for links in soup.find_all("div", "headlineMed"):
anchor_tag = links.a
if not 'video' in anchor_tag['href']:
try:
article_time = ET.SubElement(article_date, "article_time")
article_time.text = str(links.text[-11:])
article_header = ET.SubElement(article_time, "article_name")
article_header.text = str(anchor_tag.text)
article_link = ET.SubElement(article_time, "article_link")
article_link.text = str(anchor_tag['href']).encode('utf-8')
try:
article_text = ET.SubElement(article_time, "article_text")
#get text and remove all stop words
article_text.text = str(remove_stop_words(extract_article(anchor_tag['href']))).encode('ascii','ignore')
except Exception:
pass
except Exception:
pass
tree = ET.ElementTree(articles)
tree.write("~/Documents/test.xml","utf-8")
#getting the article text from the spicific url
def extract_article(url):
plain_text = ""
html = urllib2.urlopen(url).read()
soup = BeautifulSoup(html, "html5lib")
tag = soup.find_all("p")
#replace all html tags
plain_text = re.sub(r'<p>|</p>|[|]|<span class=.*</span>|<a href=.*</a>', "", str(tag))
plain_text = plain_text.replace(", ,", "")
return str(plain_text)
def remove_stop_words(text):
text=nltk.word_tokenize(text)
filtered_words = [w for w in text if not w in stopwords.words('english')]
return ' '.join(filtered_words)
Several fixes can be applied (without changing modules you are currently using):
use lxml parser instead of html5lib - it is much much (and 3 more muches) faster
parse only a part of document with SoupStrainer (note that html5lib doesn't support SoupStrainer - it will always parse the whole document slowly)
Here's how the code would look like after the changes. Brief performance test shows at least 3x improvement:
import urllib2
import xml.etree.cElementTree as ET
from datetime import date
from bs4 import SoupStrainer, BeautifulSoup
import nltk
from dateutil.rrule import rrule, DAILY
from nltk.corpus import stopwords
def main_parser():
a = b = date(2014, 3, 27)
articles = ET.Element("articles")
for dt in rrule(DAILY, dtstart=a, until=b):
url = "http://www.reuters.com/resources/archive/us/" + dt.strftime("%Y") + dt.strftime("%m") + dt.strftime(
"%d") + ".html"
links = SoupStrainer("div", "headlineMed")
soup = BeautifulSoup(urllib2.urlopen(url), "lxml", parse_only=links)
article_date = ET.SubElement(articles, "article_date")
article_date.text = str(dt)
for link in soup.find_all('a'):
if not 'video' in link['href']:
try:
article_time = ET.SubElement(article_date, "article_time")
article_time.text = str(link.text[-11:])
article_header = ET.SubElement(article_time, "article_name")
article_header.text = str(link.text)
article_link = ET.SubElement(article_time, "article_link")
article_link.text = str(link['href']).encode('utf-8')
try:
article_text = ET.SubElement(article_time, "article_text")
article_text.text = str(remove_stop_words(extract_article(link['href']))).encode('ascii', 'ignore')
except Exception:
pass
except Exception:
pass
tree = ET.ElementTree(articles)
tree.write("~/Documents/test.xml", "utf-8")
def extract_article(url):
paragraphs = SoupStrainer('p')
soup = BeautifulSoup(urllib2.urlopen(url), "lxml", parse_only=paragraphs)
return soup.text
def remove_stop_words(text):
text = nltk.word_tokenize(text)
filtered_words = [w for w in text if not w in stopwords.words('english')]
return ' '.join(filtered_words)
Note that I've removed the regular expression processing from extract_article() - looks like you can just get the whole text from the p tags.
I might have introduced some problems - please check if everything is correct.
Another solution would be to use lxml for everything from parsing (replace beautifulSoup) to creating the xml (replace xml.etree.ElementTree).
Another solution (definitely the fastest) would be to switch to Scrapy web-scraping web-framework.
It is simple and very fast. There are all kind of batteries, you can imagine, included. For example there are link extractors, XML exporters, database pipelines etc. Worth looking.
Hope that helps.
You want to pick the best parser.
We benchmark most of the parser / platform when building: http://serpapi.com
Here is a full article on Medium:
https://medium.com/#vikoky/fastest-html-parser-available-now-f677a68b81dd
I am very new to Python and I am in the process of learning on how scrape web pages (1 day in). The task I want to achieve is to loop through a list of 2000 companies and extract revenue data and the number of employees. I started by using scrapy, and I have managed to get the workflow to work for one company (not elegant, but at least I am trying)- but I cannot figure out how I can load the list of companies and loop through to carry out multiple searches. I have a feeling this is a fairly simple procedure.
So, my main question is - where in the spider class should I define the query array of companies to loop through? I do not know the exact URLs since each company has a unique ID and belongs to specific market - so I can not input them as start_urls.
Is Scrapy the right tool or should I have used mechanize - for this type of task?
Here is my current code.
from scrapy.spider import BaseSpider
from scrapy.selector import HtmlXPathSelector
from scrapy.http import FormRequest
from scrapy.http import Request
from tutorial.items import DmozItem
import json
class DmozSpider(BaseSpider):
name = "dmoz"
allowed_domains = ["proff.se"]
start_urls = ["http://www.proff.se"]
# Search on the website, currently I have just put in a static search term here, but I would like to loop over a list of companies.
def parse(self, response):
return FormRequest.from_response(response, formdata={'q': rebtel},callback=self.search_result)
# I fetch the url from the search result and convert it to correct Financial-url where the information is located.
def search_result(self,response):
sel = HtmlXPathSelector(response)
link = sel.xpath('//ul[#class="company-list two-columns"]/li/a/#href').extract()
finance_url=str(link[0]).replace("/foretag","http://www.proff.se/nyckeltal")
return Request(finance_url,callback=self.parse_finance)
# I Scraped the information of this particular company, this is hardcoded and will not
# work for other responses. I had some issues with the encoding characters
# initially since they were Swedish. I also tried to target the Json element direct by
# revenue = sel.xpath('#//*[#id="accountTable1"]/tbody/tr[3]/#data-chart').extract()
# but was not able to parse it (error - expected string or buffer - tried to convert it
# to a string by str() with no luck, something off with the formatting, which is messing the the data types.
def parse_finance(self, response):
sel = HtmlXPathSelector(response)
datachart = sel.xpath('//tr/#data-chart').extract()
employees=json.loads(datachart[36])
revenue = json.loads(datachart[0])
items = []
item = DmozItem()
item['company']=response.url.split("/")[-5]
item['market']=response.url.split("/")[-3]
item['employees']=employees
item['revenue']=revenue
items.append(item)
return item
The common approach is to do this with a command-line argument. Give the spider's __init__ method an argument:
class ProffSpider(BaseSpider):
name = "proff"
...
def __init__(self, query):
self.query = query
def parse(self, response):
return FormRequest.from_response(response,
formdata={'q': self.query},
callback=self.search_result
)
...
And then start your spiders (maybe with Scrapyd):
$ scrapy crawl proff -a query="something"
$ scrapy crawl proff -a query="something else"
If you want to run a bunch of spiders at once by passing in the arguments from a file, you can create a new command to run multiple instances of a spider. This is just mixing the builtin crawl command with the example code for running multiple spiders with a single crawler:
your_project/settings.py
COMMANDS_MODULE = 'your_project_module.commands'
your_project/commands/__init__.py
# empty file
your_project/commands/crawl_many.py
import os
import csv
from scrapy.commands import ScrapyCommand
from scrapy.utils.python import without_none_values
from scrapy.exceptions import UsageError
class Command(ScrapyCommand):
requires_project = True
def syntax(self):
return '[options]'
def short_desc(self):
return 'Run many instances of a spider'
def add_options(self, parser):
ScrapyCommand.add_options(self, parser)
parser.add_option('-f', '--input-file', metavar='FILE', help='CSV file to load arguments from')
parser.add_option('-o', '--output', metavar='FILE', help='dump scraped items into FILE (use - for stdout)')
parser.add_option('-t', '--output-format', metavar='FORMAT', help='format to use for dumping items with -o')
def process_options(self, args, opts):
ScrapyCommand.process_options(self, args, opts)
if not opts.output:
return
if opts.output == '-':
self.settings.set('FEED_URI', 'stdout:', priority='cmdline')
else:
self.settings.set('FEED_URI', opts.output, priority='cmdline')
feed_exporters = without_none_values(self.settings.getwithbase('FEED_EXPORTERS'))
valid_output_formats = feed_exporters.keys()
if not opts.output_format:
opts.output_format = os.path.splitext(opts.output)[1].replace('.', '')
if opts.output_format not in valid_output_formats:
raise UsageError('Unrecognized output format "%s". Valid formats are: %s' % (opts.output_format, tuple(valid_output_formats)))
self.settings.set('FEED_FORMAT', opts.output_format, priority='cmdline')
def run(self, args, opts):
if args:
raise UsageError()
with open(opts.input_file, 'rb') as handle:
for spider_options in csv.DictReader(handle):
spider = spider_options.pop('spider')
self.crawler_process.crawl(spider, **spider_options)
self.crawler_process.start()
You can run it like so:
$ scrapy crawl_many -f crawl_options.csv -o output_file.jsonl
The format of the crawl options CSV is simple:
spider,query,arg2,arg3
proff,query1,value2,value3
proff,query2,foo,bar
proff,query3,baz,asd
The first thing I'd do is to create a list of companies and find a way to get the url of each one. After this crawling is easy. I have written a crawler to extract disease information from wikipedia from a list of diseases. See how it fits your use case.
import requests
from bs4 import BeautifulSoup
import sys
import re
import nltk
from nltk.corpus import stopwords
import pandas as pd
from subprocess import Popen, check_call
from multiprocessing import Pool
#nltk.download()
def crawlwiki(keywords):
print (keywords)
columns = ['Category', 'Text']
page=1
print ('Fetching for {}....'.format(keywords))
url = 'https://en.wikipedia.org/wiki/'
for i in range(len(keywords)):
url = url + keywords[i]
url = url + '%20'
url = url[0:(len(url)-3)]
output_obj = {}
#curr_page = url+str(page)
while True:
try:
page_source = requests.get(url)
except:
#What you should do if internet connection fails
break
plain_text = page_source.text
bs_obj = BeautifulSoup(plain_text, "lxml")
'''toc_links = bs_obj.findAll('div', {'class': 'toc-links'})
base_url = 'http://www.webmd.com'
for div in toc_links:
links = div.findAll('a')
for a in links:
output_obj[a.text] = base_url + a.get('href')
print (base_url + a.get('href'))
data = bs_obj.findAll('div', {'class':'search-text-container'})
for div in data:
links = div.findAll('a')
for a in links:
output_obj[a.text] = a.get('href')
print (a.get('href'))'''
"""
Mapping:
1 : Signs and symptoms
2 : Diagnosis
3 : Prognosis
4 : Treatment
"""
symptom_text = re.findall ( '<h2><span class="mw-headline" id="Signs_and_symptoms">Signs and symptoms</span>(.*?)<h2>', plain_text, re.DOTALL)
str1 = ''.join(symptom_text)
symptoms_object = BeautifulSoup(str1, "lxml")
#paragraphs = re.findall('<p>(.*?)<p>', str1, re.DOTALL)
symptom_data = symptoms_object.findAll('p')
symptom_paragraphs = ""
for p in symptom_data:
symptom_paragraphs += p.text
symptom_paragraphs = re.sub(r"/?\[\d+]" , '', symptom_paragraphs, re.DOTALL)
df_1 = pd.DataFrame(data=[['1', symptom_paragraphs]], columns=columns)
diagnosis_text = re.findall ( '<h2><span class="mw-headline" id="Diagnosis">Diagnosis</span>(.*?)<h2>', plain_text, re.DOTALL)
str1 = ''.join(diagnosis_text)
diagnosis_object = BeautifulSoup(str1, "lxml")
#paragraphs = re.findall('<p>(.*?)<p>', str1, re.DOTALL)
diagnosis_data = diagnosis_object.findAll('p')
diagnosis_paragraphs = ""
for p in diagnosis_data:
diagnosis_paragraphs += p.text
diagnosis_paragraphs = re.sub(r"/?\[\d+]" , '', diagnosis_paragraphs, re.DOTALL)
df_2 = pd.DataFrame(data=[['2', diagnosis_paragraphs]], columns=columns)
prognosis_text = re.findall ( '<h2><span class="mw-headline" id="Prognosis">Prognosis</span>(.*?)<h2>', plain_text, re.DOTALL)
str1 = ''.join(prognosis_text)
prognosis_object = BeautifulSoup(str1, "lxml")
#paragraphs = re.findall('<p>(.*?)<p>', str1, re.DOTALL)
prognosis_data = prognosis_object.findAll('p')
prognosis_paragraphs = ""
for p in prognosis_data:
prognosis_paragraphs += p.text
prognosis_paragraphs = re.sub(r"/?\[\d+]" , '', prognosis_paragraphs, re.DOTALL)
df_3 = pd.DataFrame(data=[['3', prognosis_paragraphs]], columns=columns)
treatment_text = re.findall ( '<h2><span class="mw-headline" id="Treatment">Treatment</span>(.*?)<h2>', plain_text, re.DOTALL)
str1 = ''.join(treatment_text)
treatment_object = BeautifulSoup(str1, "lxml")
#paragraphs = re.findall('<p>(.*?)<p>', str1, re.DOTALL)
treatment_data = treatment_object.findAll('p')
treatment_paragraphs = ""
for p in treatment_data:
treatment_paragraphs += p.text
treatment_paragraphs = re.sub(r"/?\[\d+]" , '', treatment_paragraphs, re.DOTALL)
df_4 = pd.DataFrame(data=[['4', treatment_paragraphs]], columns=columns)
df = pd.DataFrame(columns = columns)
df = df.append(df_1.append(df_2.append(df_3.append(df_4))))
return df
print('Fetch completed....')
def main():
disease_df = pd.read_csv("disease.txt", sep="\n", header=None)
columns = ['Category', 'Text']
df_data = pd.DataFrame(columns=columns)
size = disease_df.size
print("Initializing....")
p = Pool(5)
df_data = p.map(crawlwiki, disease_df.values.tolist())
"""for index, row in disease_df.iterrows():
print('Iteration {0} out of {1}.....'.format(index+1, size))
df = crawlwiki(row, columns)
df_data = df_data.append(df)"""
df_data.to_csv("TagDataset.csv", index=False)
if __name__ == '__main__':
main()