Matplotlib Basemap Coastal Coordinates - python

Is there a way to query basemap to extract all coastal coordinates?
Say user provides lat/lng and the function returns true/false if the coordinates are within 1km from the coast?

The best way to get the coordinates from drawcoastlines() is using its class attribute get_segments(). There is an example how you can get the distance from coast for a single point with longitude ans latitude in decimal degrees. You can adapt this function to use a unique map to calculate all points in a list. I hope it's help you.
from mpl_toolkits.basemap import Basemap
import matplotlib.pyplot as plt
import numpy as np
def distance_from_coast(lon,lat,resolution='l',degree_in_km=111.12):
plt.ioff()
m = Basemap(projection='robin',lon_0=0,resolution=resolution)
coast = m.drawcoastlines()
coordinates = np.vstack(coast.get_segments())
lons,lats = m(coordinates[:,0],coordinates[:,1],inverse=True)
dists = np.sqrt((lons-lon)**2+(lats-lat)**2)
if np.min(dists)*degree_in_km<1:
return True
else:
return False
Another way to get it:
from mpl_toolkits.basemap import Basemap
import matplotlib.pyplot as plt
import numpy as np
import os
def save_coastal_data(path,resolution='f'):
m = Basemap(projection='robin',lon_0=0,resolution=resolution)
coast = m.drawcoastlines()
coordinates = np.vstack(coast.get_segments())
lons,lats = m(coordinates[:,0],coordinates[:,1],inverse=True)
D = {'lons':lons,'lats':lats}
np.save(os.path.join(path,'coastal_basemap_data.npy'),D)
def distance_from_coast(lon,lat,fpath,degree_in_km=111.12):
D = np.load(fpath).tolist()
lons,lats = D['lons'],D['lats']
dists = np.sqrt((lons-lon)**2+(lats-lat)**2)
print np.min(dists)*degree_in_km
#Define path
path = 'path/to/directory'
#Run just one time to save the data. Will cost less time
save_coastal_data(path,resolution='h')
distance_from_coast(-117.2547,32.8049,
os.path.join(path,'coastal_basemap_data.npy'))
I've got 0.7 Km.

This is another possibilities that doesn't rely on the basemap projection and gives raw lon/lat coordinates. An advantage/disadvantage is, that the continent lines are not split at the map boundaries.
import matplotlib.pyplot as plt
from mpl_toolkits import basemap
import numpy as np
import os
def get_coastlines(npts_min=0):
# open data and meta data files
dirname_basemap = os.path.dirname(basemap.__file__)
path_points = os.path.join(dirname_basemap, 'data', 'gshhs_c.dat')
path_meta = os.path.join(dirname_basemap, 'data', 'gshhsmeta_c.dat')
# read points for each segment that is specified in meta_file
points_file = open(path_points, 'rb')
meta_file = open(path_meta,'r')
segments = []
for line in meta_file:
# kind=1 are continents, kind=2 are lakes
kind, area, npts, lim_south, lim_north, startbyte, numbytes,\
date_line_crossing = line.split()
points_file.seek(int(startbyte))
data = np.fromfile(points_file, '<f4', count = int(numbytes)/4)
data = data.reshape(int(npts), 2)
if npts_min < int(npts):
segments.append(data)
return segments
def main():
segments = get_coastlines()
fig, ax = plt.subplots(1, 1)
for seg in segments:
plt.plot(seg[:, 0], seg[:, 1])
plt.show()
if __name__ == "__main__":
main()

Related

Replacing values in a massive numpy array

Good evening all, I'm really struggling with my code. I've made a 1D spectrum from a fits file. I've extracted the numerical values for each point along the file, but there are vertical lines of overexposed pixel values. I want to replace all values above 3000 with 0. This is what I've done so far:
import astropy as ap
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
from astropy.io import fits
from pathlib import Path
from astropy.nddata import CCDData
from ccdproc import ImageFileCollection
import ccdproc as ccdp
from os import listdir, walk
import astropy.units as u
# this function converts the class astropy.io.fits.hdulist.HDUList to a numpy array as ccd data
fitsfile = fits.open("img/HLXSpectrum.fits")
def spec(fitsfile):
specList = fits.open("img/HLXSpectrum.fits", include_path=True)
imgList = []
for img in specList:
ccd = CCDData(fitsfile[0].data, unit="adu")
HLX = ccdp.trim_image(ccd, fits_section="[:2050, 480:840]")
imgList.append(ccd)
fitsfile.close()
specImg = CCDData(ccd, unit="adu")
return specImg
specImg = spec(fitsfile)
skyarray1 = specImg[180:220, 50:2045]
spectrum1 = np.array(skyarray1)
skyarray2 = specImg[220:260, 50:2045]
spectrum2 = np.array(skyarray2)
skyarray3 = specImg[140:180, 50:2045]
spectrum3 = np.array(skyarray3)
spectrumA = spectrum2 - spectrum3
spectrum = spectrumA - spectrum1
flux = []
pixel = []
fix = np.where(spectrum > 3000, spectrum, 0)
for i in range(len(fix[1])): # cropped img in x dimension
flux.append(np.sum(skyarray1[:, i]))
pixel.append(i)
plt.figure(figsize=(20, 16), dpi=800)
plt.plot(pixel, flux, color="red")
fig1 = plt.gcf()
plt.show()
# fig1.savefig("flux.png", dpi=800)
but no matter what I do, the image stays the same, even though the values in the arrays change. Why?
The problem comes down to what you're plotting here:
fix = np.where(spectrum > 3000, spectrum, 0)
for i in range(len(fix[1])): # cropped img in x dimension
flux.append(np.sum(skyarray1[:, i]))
pixel.append(i)
plt.figure(figsize=(20, 16), dpi=800)
plt.plot(pixel, flux, color="red")
fig1 = plt.gcf()
plt.show()
You're plotting flux, which is taking values from skyarray1, which has not been modified. I think you want to replace it with fix like this:
for i in range(len(fix[1])): # cropped img in x dimension
flux.append(np.sum(fix[:, i]))
pixel.append(i)

Dynamic Visualisation of Global Plots

I have produced 17 global plots that show the decadal averages in maximum surface ozone from 1850-2015. Rather than plotting them individually, I wish to create an animation that cycles through them (almost like a gif), i.e. have the same coastlines, axes and colour bar throughout but change what is being plotted as the contour.
Any help on how to adapt my code to do this would be greatly appreciated - thank you in advance!!
import numpy as np
import netCDF4 as n4
import matplotlib.pyplot as plt
from matplotlib import colorbar, colors
import matplotlib.cm as cm
import cartopy as cart
import cartopy.crs as ccrs
from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER
import cartopy.feature as cfeature
nc = n4.Dataset('datafile.nc','r')
# daily maximum O3 VMR (units: mol mol-1)
sfo3max = nc.variables['sfo3max']
lon = nc.variables['lon'] # longitude
lat = nc.variables['lat'] # latitude
# (I manipulate the data to produce 17 arrays containing the decadal average O3 VMR which are
# listed below in sfo3max_avg)
sfo3max_avg = [sfo3max_1850_1860_avg, sfo3max_1860_1870_avg, sfo3max_1870_1880_avg,
sfo3max_1880_1890_avg, sfo3max_1890_1900_avg, sfo3max_1900_1910_avg,
sfo3max_1910_1920_avg, sfo3max_1920_1930_avg, sfo3max_1930_1940_avg,
sfo3max_1940_1950_avg, sfo3max_1950_1960_avg, sfo3max_1960_1970_avg,
sfo3max_1970_1980_avg, sfo3max_1980_1990_avg, sfo3max_1990_2000_avg,
sfo3max_2000_2010_avg, sfo3max_2010_2015_avg]
# find overall min & max values for colour bar in plots
min_sfo3max_avg = np.array([])
for i in sfo3max_avg:
sfo3max_avg_min = np.amin(i)
min_sfo3max_avg = np.append(min_sfo3max_avg, sfo3max_avg_min)
overall_min_sfo3max_avg = np.amin(min_sfo3max_avg)
max_sfo3max_avg = np.array([])
for i in sfo3max_avg:
sfo3max_avg_max = np.amax(i)
max_sfo3max_avg = np.append(max_sfo3max_avg, sfo3max_avg_max)
overall_max_sfo3max_avg = np.amax(max_sfo3max_avg)
# finally plot the 17 global plots of sfo3max_avg
for k in sfo3max_avg:
fig = plt.figure()
ax = plt.axes(projection=ccrs.PlateCarree())
ax.coastlines() # Adding coastlines
cs = ax.contourf(lon[:], lat[:], k[:], cmap='magma')
ax.set_title('Decadal Average of Maximum O3 Volume Mixing Ratio')
m = plt.cm.ScalarMappable(cmap=cm.magma)
m.set_array(i[:])
m.set_clim(overall_min_sfo3max_avg, overall_max_sfo3max_avg)
# Additional necessary information
cbar = plt.colorbar(m, boundaries=np.arange(overall_min_sfo3max_avg, overall_max_sfo3max_avg
+ 0.5e-08, 0.5e-08))
cbar.set_label('mol mol-1')
# Adding axis labels - latitude & longitude
gridl = ax.gridlines(color="black", linestyle="dotted", draw_labels=True)
gridl.xformatter=LONGITUDE_FORMATTER
gridl.yformatter=LATITUDE_FORMATTER
gridl.xlabels_top = False
gridl.ylabels_right = False
fig.set_size_inches(w=20,h=10)
plt.show() # show global plot
Several elements in your plotting can be kept out of the loop because they only need to be set up once. After you set up the plot elements you can update the plot and animate by looping over the list. This can be achieved by making use of matplotlib's interactive mode as shown in the code below:
import numpy as np
import netCDF4 as n4
import matplotlib
matplotlib.use("nbagg")
import matplotlib.pyplot as plt
from matplotlib import colorbar, colors
import matplotlib.cm as cm
import cartopy as cart
import cartopy.crs as ccrs
from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER
import cartopy.feature as cfeature
nc = n4.Dataset('datafile.nc','r')
# daily maximum O3 VMR (units: mol mol-1)
sfo3max = nc.variables['sfo3max']
lon = nc.variables['lon'] # longitude
lat = nc.variables['lat'] # latitude
# (I manipulate the data to produce 17 arrays containing the decadal average O3 VMR which are
# listed below in sfo3max_avg)
sfo3max_avg = [sfo3max_1850_1860_avg, sfo3max_1860_1870_avg, sfo3max_1870_1880_avg,
sfo3max_1880_1890_avg, sfo3max_1890_1900_avg, sfo3max_1900_1910_avg,
sfo3max_1910_1920_avg, sfo3max_1920_1930_avg, sfo3max_1930_1940_avg,
sfo3max_1940_1950_avg, sfo3max_1950_1960_avg, sfo3max_1960_1970_avg,
sfo3max_1970_1980_avg, sfo3max_1980_1990_avg, sfo3max_1990_2000_avg,
sfo3max_2000_2010_avg, sfo3max_2010_2015_avg]
# find overall min & max values for colour bar in plots
min_sfo3max_avg = np.array([])
for i in sfo3max_avg:
sfo3max_avg_min = np.amin(i)
min_sfo3max_avg = np.append(min_sfo3max_avg, sfo3max_avg_min)
overall_min_sfo3max_avg = np.amin(min_sfo3max_avg)
max_sfo3max_avg = np.array([])
for i in sfo3max_avg:
sfo3max_avg_max = np.amax(i)
max_sfo3max_avg = np.append(max_sfo3max_avg, sfo3max_avg_max)
overall_max_sfo3max_avg = np.amax(max_sfo3max_avg)
#setup the plot elements
fig = plt.figure()
fig.set_size_inches(w=20,h=10)
ax = plt.axes(projection=ccrs.PlateCarree())
ax.coastlines() # Adding coastlines
ax.set_title('Decadal Average of Maximum O3 Volume Mixing Ratio')
m = plt.cm.ScalarMappable(cmap=cm.magma)
m.set_array(i[:])
m.set_clim(overall_min_sfo3max_avg, overall_max_sfo3max_avg)
# Additional necessary information
cbar = plt.colorbar(m, boundaries=np.arange(overall_min_sfo3max_avg, overall_max_sfo3max_avg
+ 0.5e-08, 0.5e-08))
cbar.set_label('mol mol-1')
# plot here only the 1st item in your sfo3max_avg list.
cs = ax.contourf(lon[:], lat[:], sfo3max_avg[0][:], cmap='magma')
# Adding axis labels - latitude & longitude
gridl = ax.gridlines(color="black", linestyle="dotted", draw_labels=True)
gridl.xformatter=LONGITUDE_FORMATTER
gridl.yformatter=LATITUDE_FORMATTER
gridl.xlabels_top = False
gridl.ylabels_right = False
plt.ion() # set interactive mode
plt.show()
# finally plot the 17 global plots of sfo3max_avg
for k in sfo3max_avg:
cs = ax.contourf(lon[:], lat[:], k[:], cmap='magma')
plt.gcf().canvas.draw()
plt.pause(1) #control the interval between successive displays, currently set to 1 sec.

Plotting a masked Antarctica with a shapefile or geopandas

I'm trying to plot data around the Antarctica while masking the continent. While I'm using basemap and it has an option to easily mask continents using map.fillcontinents(), the continent considered by basemap includes the ice shelves, which I do not want to mask.
I tried using geopandas from a code I found on the Internet. This works, except the coastline produces an undesired line in what I assume is the beginning/end of the polygon for the Antarctica:
import numpy as np
from mpl_toolkits.basemap import Basemap
import matplotlib.pyplot as plt
from matplotlib.collections import PatchCollection
import geopandas as gpd
import shapely
from descartes import PolygonPatch
lats = np.arange(-90,-59,1)
lons = np.arange(0,361,1)
X, Y = np.meshgrid(lons, lats)
data = np.random.rand(len(lats),len(lons))
world = gpd.read_file(gpd.datasets.get_path('naturalearth_lowres'))
fig=plt.figure(dpi=150)
ax = fig.add_subplot(111)
m = Basemap(projection='spstere',boundinglat=-60,lon_0=180,resolution='i',round=True)
xi, yi = m(X,Y)
cf = m.contourf(xi,yi,data)
patches = []
selection = world[world.name == 'Antarctica']
for poly in selection.geometry:
if poly.geom_type == 'Polygon':
mpoly = shapely.ops.transform(m, poly)
patches.append(PolygonPatch(mpoly))
elif poly.geom_type == 'MultiPolygon':
for subpoly in poly:
mpoly = shapely.ops.transform(m, poly)
patches.append(PolygonPatch(mpoly))
else:
print(poly, 'blah')
ax.add_collection(PatchCollection(patches, match_original=True,color='w',edgecolor='k'))
The same line appears when I try to use other shapefiles, such as the land one that is available to download for free from Natural Earth Data. So I edited this shapefile in QGIS to remove the borders of the Antarctica. The problem now is that I don't know how to mask everything that's inside the shapefile (and couldn't find how to do it either). I also tried combining the previous code with geopandas by setting the linewidth=0, and adding on top the shapefile I created. The problem is that they are not exactly the same:
Any suggestion on how to mask using a shapefile, or with geopandas but without the line?
Edit: Using Thomas Khün's previous answer with my edited shapefile produces a well masked Antarctica/continents, but the coastline goes outside the round edges of the map:
I uploaded here the edited shapefile I used, but it's the Natural Earth Data 50m land shapefile without the line.
Here an example of how to achieve what you want. I basically followed the Basemap example how to deal with shapefiles and added a bit of shapely magic to restrict the outlines to the map boundaries. Note that I first tried to extract the map outline from ax.patches, but that somehow didn't work, so I defined a circle which has a radius of boundinglat and transformed it using the Basemap coordinate transformation functionality.
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.basemap import Basemap
from matplotlib.collections import PatchCollection
from matplotlib.patches import Polygon
import shapely
from shapely.geometry import Polygon as sPolygon
boundinglat = -40
lats = np.arange(-90,boundinglat+1,1)
lons = np.arange(0,361,1)
X, Y = np.meshgrid(lons, lats)
data = np.random.rand(len(lats),len(lons))
fig, ax = plt.subplots(nrows=1, ncols=1, dpi=150)
m = Basemap(
ax = ax,
projection='spstere',boundinglat=boundinglat,lon_0=180,
resolution='i',round=True
)
xi, yi = m(X,Y)
cf = m.contourf(xi,yi,data)
#adjust the path to the shapefile here:
result = m.readshapefile(
'shapefiles/AntarcticaWGS84_contorno', 'antarctica',
zorder = 10, color = 'k', drawbounds = False)
#defining the outline of the map as shapely Polygon:
rim = [np.linspace(0,360,100),np.ones(100)*boundinglat,]
outline = sPolygon(np.asarray(m(rim[0],rim[1])).T)
#following Basemap tutorial for shapefiles
patches = []
for info, shape in zip(m.antarctica_info, m.antarctica):
#instead of a matplotlib Polygon, create first a shapely Polygon
poly = sPolygon(shape)
#check if the Polygon, or parts of it are inside the map:
if poly.intersects(outline):
#if yes, cut and insert
intersect = poly.intersection(outline)
verts = np.array(intersect.exterior.coords.xy)
patches.append(Polygon(verts.T, True))
ax.add_collection(PatchCollection(
patches, facecolor= 'w', edgecolor='k', linewidths=1., zorder=2
))
plt.show()
The result looks like this:
Hope this helps.
For anyone still trying to figure out a simple way to mask a grid from a shapefile, here is a gallery example from the python package Antarctic-Plots which makes this simple.
from antarctic_plots import maps, fetch, utils
import pyogrio
# fetch a grid and shapefile
grid = fetch.bedmachine(layer='surface')
shape = fetch.groundingline()
# subset the grounding line from the coastline
gdf = pyogrio.read_dataframe(shape)
groundingline = gdf[gdf.Id_text == "Grounded ice or land"]
# plot the grid
fig = maps.plot_grd(grid)
# plot the shapefile
fig.plot(groundingline, pen='1p,red')
fig.show()
# mask the inside region
masked_inside = utils.mask_from_shp(
shapefile=groundingline, xr_grid=grid, masked=True)
masked_inside.plot()
# mask the outside region
masked_outside = utils.mask_from_shp(
shapefile=groundingline, xr_grid=grid, masked=True, invert=False)
masked_outside.plot()

python plot line with changing color depending on x-value

I am producing the probability distribution function of my variable, which is temperature:
and I am going to produce several plots with temperature PDF evolution.
For this reason, I would like to link the color of the plot (rainbow-style) with the value of the peak of the temperature distribution.
In this way, it is easy to associate the average value of the temperature just by looking at the color.
Here's the code I have written for producing plots of the PDF evolution:
from netCDF4 import Dataset
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.basemap import Basemap
import seaborn as sns
from scipy.stats import gaussian_kde
my_file = 'tas/tas.nc'
fh = Dataset(my_file, mode='r')
lons = (fh.variables['rlon'][:])
lats = (fh.variables['rlat'][:])
t = (fh.variables['tas'][:])-273
step = len(t[:,0,0])
t_units = fh.variables['tas'].units
fh.close()
len_lon = len(t[0,0,:])
len_lat = len(t[0,:,0])
len_tot = len_lat*len_lon
temperature = np.zeros(len_tot)
for i in range(step):
temperature=t[i,:,:]
temperature_array = temperature.ravel()
density = gaussian_kde(temperature_array)
xs = np.linspace(-80,50,200)
density.covariance_factor = lambda : .25
density._compute_covariance()
plt.title(str(1999+i))
plt.xlabel("Temperature (C)")
plt.ylabel("Frequency")
plt.plot(xs,density(xs))
plt.savefig('temp_'+str(i))
Because the question is lacking a working snippet, I had to come up with some sample data. This creates three datasets, where each one is colored with a specific color between blue (cold) and red (hot) according to their maximum value.
import matplotlib.pyplot as plt
import random
from colour import Color
nrange = 20
mydata1 = random.sample(range(nrange), 3)
mydata2 = random.sample(range(nrange), 3)
mydata3 = random.sample(range(nrange), 3)
colorlist = list(Color('blue').range_to(Color('red'), nrange))
# print(mydata1) print(mydata2) print(mydata3)
plt.plot(mydata1, color='{}'.format(colorlist[max(mydata1)]))
plt.plot(mydata2, color='{}'.format(colorlist[max(mydata2)]))
plt.plot(mydata3, color='{}'.format(colorlist[max(mydata3)]))
plt.show()

shapefile and matplotlib: plot polygon collection of shapefile coordinates

I'm trying to plot filled polygons of countries on the world map with matplotlib in python.
I've got a shapefile with country boundary coordinates of every country. Now, I want to convert these coordinates (for each country) into a polygon with matplotlib. Without using Basemap. Unfortunately, the parts are crossing or overlapping. Is there a workarund, maybe using the distance from point to point.. or reordering them ?
Ha!
I found out, how.. I completely neglected, the sf.shapes[i].parts information! Then it comes down to:
# -- import --
import shapefile
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from matplotlib.patches import Polygon
from matplotlib.collections import PatchCollection
# -- input --
sf = shapefile.Reader("./shapefiles/world_countries_boundary_file_world_2002")
recs = sf.records()
shapes = sf.shapes()
Nshp = len(shapes)
cns = []
for nshp in xrange(Nshp):
cns.append(recs[nshp][1])
cns = array(cns)
cm = get_cmap('Dark2')
cccol = cm(1.*arange(Nshp)/Nshp)
# -- plot --
fig = plt.figure()
ax = fig.add_subplot(111)
for nshp in xrange(Nshp):
ptchs = []
pts = array(shapes[nshp].points)
prt = shapes[nshp].parts
par = list(prt) + [pts.shape[0]]
for pij in xrange(len(prt)):
ptchs.append(Polygon(pts[par[pij]:par[pij+1]]))
ax.add_collection(PatchCollection(ptchs,facecolor=cccol[nshp,:],edgecolor='k', linewidths=.1))
ax.set_xlim(-180,+180)
ax.set_ylim(-90,90)
fig.savefig('test.png')
Then it will look like this:
Here is another piece of code I used to plot polygon shapefiles. It uses GDAL/OGR to read shapefile and plots correctly donut shape polygons:
from osgeo import ogr
import numpy as np
import matplotlib.path as mpath
import matplotlib.patches as mpatches
import matplotlib.pyplot as plt
# Extract first layer of features from shapefile using OGR
ds = ogr.Open('world_countries_boundary_file_world_2002.shp')
nlay = ds.GetLayerCount()
lyr = ds.GetLayer(0)
# Get extent and calculate buffer size
ext = lyr.GetExtent()
xoff = (ext[1]-ext[0])/50
yoff = (ext[3]-ext[2])/50
# Prepare figure
fig = plt.figure()
ax = fig.add_subplot(111)
ax.set_xlim(ext[0]-xoff,ext[1]+xoff)
ax.set_ylim(ext[2]-yoff,ext[3]+yoff)
paths = []
lyr.ResetReading()
# Read all features in layer and store as paths
for feat in lyr:
geom = feat.geometry()
codes = []
all_x = []
all_y = []
for i in range(geom.GetGeometryCount()):
# Read ring geometry and create path
r = geom.GetGeometryRef(i)
x = [r.GetX(j) for j in range(r.GetPointCount())]
y = [r.GetY(j) for j in range(r.GetPointCount())]
# skip boundary between individual rings
codes += [mpath.Path.MOVETO] + \
(len(x)-1)*[mpath.Path.LINETO]
all_x += x
all_y += y
path = mpath.Path(np.column_stack((all_x,all_y)), codes)
paths.append(path)
# Add paths as patches to axes
for path in paths:
patch = mpatches.PathPatch(path, \
facecolor='blue', edgecolor='black')
ax.add_patch(patch)
ax.set_aspect(1.0)
plt.show()
from fiona import collection
import matplotlib.pyplot as plt
from descartes import PolygonPatch
from matplotlib.collections import PatchCollection
from itertools import imap
from matplotlib.cm import get_cmap
cm = get_cmap('Dark2')
figure, axes = plt.subplots(1)
source_path = "./shapefiles/world_countries_boundary_file_world_2002"
with collection(source_path, 'r') as source:
patches = imap(PolygonPatch, (record['geometry'] for record in source)
axes.add_collection( PatchCollection ( patches, cmap=cm, linewidths=0.1 ) )
axes.set_xlim(-180,+180)
axes.set_ylim(-90,90)
plt.show()
Note this assumes polygons, MultiPolygons can be handles in a similar manner with
map(PolygonPatch, MultiPolygon(record['geometry']))
Regarding to #hannesk's answer, you should add the following imports: from numpy import array and import matplotlib and replace the line cm = get_cmap('Dark2') by cm = matplotlib.cm.get_cmap('Dark2')
(I'm not so famous to add a comment to the noticed post.)

Categories

Resources