So I have the following example that plots a figure and an inset:
import matplotlib.pyplot as plt
import numpy as np
fig = plt.figure()
ax1 = fig.add_subplot(1, 1, 1)
x = np.arange(100).reshape((10, 10))
ax1.imshow(x)
ax2 = fig.add_axes([0.5, 0.5, 0.3, 0.3])
t = np.arange(0, 1, 0.01)
s = np.sin(t)
ax2.plot(t, s, linewidth=2)
This produces the following figure:
What I would like to have thought is the inset to be a little bit transparent (say alpha=0.5). I want something along the lines of what they do in the documentation for the legends in the matplotlib documentation:
http://matplotlib.org/users/recipes.html#transparent-fancy-legends
Is that possible? does anyone know how to do that?
All the best,
P.D. As mentioned in the comments the answer to this questions can be derived from the answer to the linked question. It is just a little bit different conceptually (figure vs axis) and far more straightforward here IMO.
Ok, so just after playing a little bit I discovered that this can be achieved by controlling the patch property or the axes.
Adding the following the above code produces the desired result:
ax2.patch.set_alpha(0.5)
This works because patch is just the figure (the Artist in matplotlib parlance) that represents the background as I understand from the documentation:
Documentation
Related
I want to plot a graph with one logarithmic axis using matplotlib.
I've been reading the docs, but can't figure out the syntax. I know that it's probably something simple like 'scale=linear' in the plot arguments, but I can't seem to get it right
Sample program:
import pylab
import matplotlib.pyplot as plt
a = [pow(10, i) for i in range(10)]
fig = plt.figure()
ax = fig.add_subplot(2, 1, 1)
line, = ax.plot(a, color='blue', lw=2)
pylab.show()
You can use the Axes.set_yscale method. That allows you to change the scale after the Axes object is created. That would also allow you to build a control to let the user pick the scale if you needed to.
The relevant line to add is:
ax.set_yscale('log')
You can use 'linear' to switch back to a linear scale. Here's what your code would look like:
import pylab
import matplotlib.pyplot as plt
a = [pow(10, i) for i in range(10)]
fig = plt.figure()
ax = fig.add_subplot(2, 1, 1)
line, = ax.plot(a, color='blue', lw=2)
ax.set_yscale('log')
pylab.show()
First of all, it's not very tidy to mix pylab and pyplot code. What's more, pyplot style is preferred over using pylab.
Here is a slightly cleaned up code, using only pyplot functions:
from matplotlib import pyplot
a = [ pow(10,i) for i in range(10) ]
pyplot.subplot(2,1,1)
pyplot.plot(a, color='blue', lw=2)
pyplot.yscale('log')
pyplot.show()
The relevant function is pyplot.yscale(). If you use the object-oriented version, replace it by the method Axes.set_yscale(). Remember that you can also change the scale of X axis, using pyplot.xscale() (or Axes.set_xscale()).
Check my question What is the difference between ‘log’ and ‘symlog’? to see a few examples of the graph scales that matplotlib offers.
if you want to change the base of logarithm, just add:
plt.yscale('log',base=2)
Before Matplotlib 3.3, you would have to use basex/basey as the bases of log
You simply need to use semilogy instead of plot:
from pylab import *
import matplotlib.pyplot as pyplot
a = [ pow(10,i) for i in range(10) ]
fig = pyplot.figure()
ax = fig.add_subplot(2,1,1)
line, = ax.semilogy(a, color='blue', lw=2)
show()
I know this is slightly off-topic, since some comments mentioned the ax.set_yscale('log') to be "nicest" solution I thought a rebuttal could be due. I would not recommend using ax.set_yscale('log') for histograms and bar plots. In my version (0.99.1.1) i run into some rendering problems - not sure how general this issue is. However both bar and hist has optional arguments to set the y-scale to log, which work fine.
references:
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.bar
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.hist
So if you are simply using the unsophisticated API, like I often am (I use it in ipython a lot), then this is simply
yscale('log')
plot(...)
Hope this helps someone looking for a simple answer! :).
I want to plot a graph with one logarithmic axis using matplotlib.
I've been reading the docs, but can't figure out the syntax. I know that it's probably something simple like 'scale=linear' in the plot arguments, but I can't seem to get it right
Sample program:
import pylab
import matplotlib.pyplot as plt
a = [pow(10, i) for i in range(10)]
fig = plt.figure()
ax = fig.add_subplot(2, 1, 1)
line, = ax.plot(a, color='blue', lw=2)
pylab.show()
You can use the Axes.set_yscale method. That allows you to change the scale after the Axes object is created. That would also allow you to build a control to let the user pick the scale if you needed to.
The relevant line to add is:
ax.set_yscale('log')
You can use 'linear' to switch back to a linear scale. Here's what your code would look like:
import pylab
import matplotlib.pyplot as plt
a = [pow(10, i) for i in range(10)]
fig = plt.figure()
ax = fig.add_subplot(2, 1, 1)
line, = ax.plot(a, color='blue', lw=2)
ax.set_yscale('log')
pylab.show()
First of all, it's not very tidy to mix pylab and pyplot code. What's more, pyplot style is preferred over using pylab.
Here is a slightly cleaned up code, using only pyplot functions:
from matplotlib import pyplot
a = [ pow(10,i) for i in range(10) ]
pyplot.subplot(2,1,1)
pyplot.plot(a, color='blue', lw=2)
pyplot.yscale('log')
pyplot.show()
The relevant function is pyplot.yscale(). If you use the object-oriented version, replace it by the method Axes.set_yscale(). Remember that you can also change the scale of X axis, using pyplot.xscale() (or Axes.set_xscale()).
Check my question What is the difference between ‘log’ and ‘symlog’? to see a few examples of the graph scales that matplotlib offers.
if you want to change the base of logarithm, just add:
plt.yscale('log',base=2)
Before Matplotlib 3.3, you would have to use basex/basey as the bases of log
You simply need to use semilogy instead of plot:
from pylab import *
import matplotlib.pyplot as pyplot
a = [ pow(10,i) for i in range(10) ]
fig = pyplot.figure()
ax = fig.add_subplot(2,1,1)
line, = ax.semilogy(a, color='blue', lw=2)
show()
I know this is slightly off-topic, since some comments mentioned the ax.set_yscale('log') to be "nicest" solution I thought a rebuttal could be due. I would not recommend using ax.set_yscale('log') for histograms and bar plots. In my version (0.99.1.1) i run into some rendering problems - not sure how general this issue is. However both bar and hist has optional arguments to set the y-scale to log, which work fine.
references:
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.bar
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.hist
So if you are simply using the unsophisticated API, like I often am (I use it in ipython a lot), then this is simply
yscale('log')
plot(...)
Hope this helps someone looking for a simple answer! :).
I'd like to plot two scatter plots into the same Axes and turn the upper one's data points transparent such that the other plot shines through. However, I want the whole upper plot to have a homogeneous transparency level, such that superimposed markers of the upper plot do not add up their opacity as they would do if I simply set alpha=0.5.
In other words, I'd like both scatter plots to be rendered first and being set to one constant transparency level. Technically this should be possible for both raster and vector graphics (as SVG supports layer transparency, afaik), but either would be fine for me.
Here is some example code that displays what I do not want to achieve. ;)
import numpy as np
import matplotlib.pyplot as plt
fig = plt.figure(1, figsize=(6,4), dpi=160)
ax = fig.gca()
s1 = ax.scatter(np.random.randn(1000), np.random.randn(1000), color="b", edgecolors="none")
s2 = ax.scatter(np.random.randn(1000), np.random.randn(1000), color="g", edgecolors="none")
s2.set_alpha(0.5) # sadly the same as setting `alpha=0.5`
fig.show() # or display(fig)
I'd like the green markers around (2,2) to not be darker where they superimpose, for example. Is this possible with matplotlib?
Thanks for your time! :)
After searching some more, I found related questions and two solutions, of which at least one kind of works for me:
As I hoped one can render one layer and then afterwards blend them together like this:
import numpy as np
import matplotlib.pyplot as plt
fig = plt.figure(1, figsize=(6,4), dpi=160)
ax1 = fig.gca()
s1 = ax1.scatter(np.random.randn(1000), np.random.randn(1000), color="#3355ff", edgecolors="none")
ax1.set_xlim(-3.5,3.5)
ax1.set_ylim(-3.5,3.5)
ax1.patch.set_facecolor("none")
ax1.patch.set_edgecolor("none")
fig.canvas.draw()
w, h = fig.canvas.get_width_height()
img1 = np.frombuffer(fig.canvas.buffer_rgba(), np.uint8).reshape(h, w, -1).copy()
ax1.clear()
s2 = ax1.scatter(np.random.randn(1000), np.random.randn(1000), color="#11aa44", edgecolors="none")
ax1.set_xlim(-3.5,3.5)
ax1.set_ylim(-3.5,3.5)
ax1.patch.set_facecolor("none")
ax1.patch.set_edgecolor("none")
fig.canvas.draw()
img2 = np.frombuffer(fig.canvas.buffer_rgba(), np.uint8).reshape(h, w, -1).copy()
fig.clf()
plt.imshow(np.minimum(img1,img2))
plt.subplots_adjust(0, 0, 1, 1)
plt.axis("off")
plt.show()
I may have to come up with better methods than just taking the np.minimum of both layers to keep more color options (and probably save the axes and labels to a third layer).
I did not try mplcairo as suggested in the other linked answer as it has too many dependencies for my use case (my solution should be portable).
I am still happy for additional input. :)
The following code generates a description of my dataset, plus a histogram, one on top of the other...
get_ipython().magic(u'matplotlib inline')
import matplotlib.pyplot as plt
import seaborn as sns
sns.distplot(dfx.hits, bins=20)
dfx.hits.describe()
(And not in the order that I'd expect.)
Here's the result:
But I want these figures side by side. Is this possible?
James' suggestion to use subplots is helpful, but it's not as detailed as the answer provided at this question:
How to Display Dataframe next to Plot in Jupyter Notebook
Charles Parr's answer there helped me write this code:
fig = plt.figure(figsize=(10,4))
ax1 = fig.add_subplot(121)
ax1.hist(dfx.hits, bins=20, color='black')
ax1.set_title('hits x users histogram')
dfxx = dfx.hits.describe().to_frame().round(2)
ax2 = fig.add_subplot(122)
font_size=12
bbox=[0, 0, 1, 1]
ax2.axis('off')
mpl_table = ax2.table(cellText = dfxx.values, rowLabels = dfxx.index, bbox=bbox, colLabels=dfxx.columns)
mpl_table.auto_set_font_size(False)
mpl_table.set_fontsize(font_size)
Which generated side-by-side subplots of a histogram and a description:
You're going to want to use matplotlib's built-in sub-plotting to make a (2,1) plot and place the first plot at (0,0) and the second at (1,0).
You can find the official documentation here which isn't great.
I'd recommend checking out the guide at python-course.eu here:
Also the reason its out of order is because you're not calling plt.show() or the seaborn equivalent and hence ipython is spitting the graph out last as it is called without being assigned somewhere else.
Similar to if you had:
import matplotlib.pyplot as plt
plt.plot(range(10),range(10))
print("hello")
The output is:
>>hello
>>'Some Graph here'
I'm trying to make a square plot (using imshow), i.e. aspect ratio of 1:1, but I can't. None of these work:
import matplotlib.pyplot as plt
ax = fig.add_subplot(111,aspect='equal')
ax = fig.add_subplot(111,aspect=1.0)
ax.set_aspect('equal')
plt.axes().set_aspect('equal')
It seems like the calls are just being ignored (a problem I often seem to have with matplotlib).
Third times the charm. My guess is that this is a bug and Zhenya's answer suggests it's fixed in the latest version. I have version 0.99.1.1 and I've created the following solution:
import matplotlib.pyplot as plt
import numpy as np
def forceAspect(ax,aspect=1):
im = ax.get_images()
extent = im[0].get_extent()
ax.set_aspect(abs((extent[1]-extent[0])/(extent[3]-extent[2]))/aspect)
data = np.random.rand(10,20)
fig = plt.figure()
ax = fig.add_subplot(111)
ax.imshow(data)
ax.set_xlabel('xlabel')
ax.set_aspect(2)
fig.savefig('equal.png')
ax.set_aspect('auto')
fig.savefig('auto.png')
forceAspect(ax,aspect=1)
fig.savefig('force.png')
This is 'force.png':
Below are my unsuccessful, yet hopefully informative attempts.
Second Answer:
My 'original answer' below is overkill, as it does something similar to axes.set_aspect(). I think you want to use axes.set_aspect('auto'). I don't understand why this is the case, but it produces a square image plot for me, for example this script:
import matplotlib.pyplot as plt
import numpy as np
data = np.random.rand(10,20)
fig = plt.figure()
ax = fig.add_subplot(111)
ax.imshow(data)
ax.set_aspect('equal')
fig.savefig('equal.png')
ax.set_aspect('auto')
fig.savefig('auto.png')
Produces an image plot with 'equal' aspect ratio:
and one with 'auto' aspect ratio:
The code provided below in the 'original answer' provides a starting off point for an explicitly controlled aspect ratio, but it seems to be ignored once an imshow is called.
Original Answer:
Here's an example of a routine that will adjust the subplot parameters so that you get the desired aspect ratio:
import matplotlib.pyplot as plt
def adjustFigAspect(fig,aspect=1):
'''
Adjust the subplot parameters so that the figure has the correct
aspect ratio.
'''
xsize,ysize = fig.get_size_inches()
minsize = min(xsize,ysize)
xlim = .4*minsize/xsize
ylim = .4*minsize/ysize
if aspect < 1:
xlim *= aspect
else:
ylim /= aspect
fig.subplots_adjust(left=.5-xlim,
right=.5+xlim,
bottom=.5-ylim,
top=.5+ylim)
fig = plt.figure()
adjustFigAspect(fig,aspect=.5)
ax = fig.add_subplot(111)
ax.plot(range(10),range(10))
fig.savefig('axAspect.png')
This produces a figure like so:
I can imagine if your having multiple subplots within the figure, you would want to include the number of y and x subplots as keyword parameters (defaulting to 1 each) to the routine provided. Then using those numbers and the hspace and wspace keywords, you can make all the subplots have the correct aspect ratio.
A simple option using plt.gca() to get current axes and set aspect
plt.gca().set_aspect('equal')
in place of your last line
What is the matplotlib version you are running? I have recently had to upgrade to 1.1.0, and with it, add_subplot(111,aspect='equal') works for me.
After many years of success with the answers above, I have found this not to work again - but I did find a working solution for subplots at
https://jdhao.github.io/2017/06/03/change-aspect-ratio-in-mpl
With full credit of course to the author above (who can perhaps rather post here), the relevant lines are:
ratio = 1.0
xleft, xright = ax.get_xlim()
ybottom, ytop = ax.get_ylim()
ax.set_aspect(abs((xright-xleft)/(ybottom-ytop))*ratio)
The link also has a crystal clear explanation of the different coordinate systems used by matplotlib.
Thanks for all great answers received - especially #Yann's which will remain the winner.
you should try with figaspect. It works for me. From the docs:
Create a figure with specified aspect ratio. If arg is a number, use that aspect ratio. > If arg is an array, figaspect will
determine the width and height for a figure that would fit array
preserving aspect ratio. The figure width, height in inches are
returned. Be sure to create an axes with equal with and height, eg
Example usage:
# make a figure twice as tall as it is wide
w, h = figaspect(2.)
fig = Figure(figsize=(w,h))
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])
ax.imshow(A, **kwargs)
# make a figure with the proper aspect for an array
A = rand(5,3)
w, h = figaspect(A)
fig = Figure(figsize=(w,h))
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])
ax.imshow(A, **kwargs)
Edit: I am not sure of what you are looking for. The above code changes the canvas (the plot size). If you want to change the size of the matplotlib window, of the figure, then use:
In [68]: f = figure(figsize=(5,1))
this does produce a window of 5x1 (wxh).
This answer is based on Yann's answer. It will set the aspect ratio for linear or log-log plots. I've used additional information from https://stackoverflow.com/a/16290035/2966723 to test if the axes are log-scale.
def forceAspect(ax,aspect=1):
#aspect is width/height
scale_str = ax.get_yaxis().get_scale()
xmin,xmax = ax.get_xlim()
ymin,ymax = ax.get_ylim()
if scale_str=='linear':
asp = abs((xmax-xmin)/(ymax-ymin))/aspect
elif scale_str=='log':
asp = abs((scipy.log(xmax)-scipy.log(xmin))/(scipy.log(ymax)-scipy.log(ymin)))/aspect
ax.set_aspect(asp)
Obviously you can use any version of log you want, I've used scipy, but numpy or math should be fine.
In my case, the following setting works best:
plt.figure(figsize=(16,9))
where (16,9) is your plot aspect ratio.