Cross-correlation (time-lag-correlation) with pandas? - python

I have various time series, that I want to correlate - or rather, cross-correlate - with each other, to find out at which time lag the correlation factor is the greatest.
I found various questions and answers/links discussing how to do it with numpy, but those would mean that I have to turn my dataframes into numpy arrays. And since my time series often cover different periods, I am afraid that I will run into chaos.
Edit
The issue I am having with all the numpy/scipy methods, is that they seem to lack awareness of the timeseries nature of my data. When I correlate a time series that starts in say 1940 with one that starts in 1970, pandas corr knows this, whereas np.correlate just produces a 1020 entries (length of the longer series) array full of nan.
The various Q's on this subject indicate that there should be a way to solve the different length issue, but so far, I have seen no indication on how to use it for specific time periods. I just need to shift by 12 months in increments of 1, for seeing the time of maximum correlation within one year.
Edit2
Some minimal sample data:
import pandas as pd
import numpy as np
dfdates1 = pd.date_range('01/01/1980', '01/01/2000', freq = 'MS')
dfdata1 = (np.random.random_integers(-30,30,(len(dfdates1)))/10.0) #My real data is from measurements, but random between -3 and 3 is fitting
df1 = pd.DataFrame(dfdata1, index = dfdates1)
dfdates2 = pd.date_range('03/01/1990', '02/01/2013', freq = 'MS')
dfdata2 = (np.random.random_integers(-30,30,(len(dfdates2)))/10.0)
df2 = pd.DataFrame(dfdata2, index = dfdates2)
Due to various processing steps, those dfs end up changed into df that are indexed from 1940 to 2015. this should reproduce this:
bigdates = pd.date_range('01/01/1940', '01/01/2015', freq = 'MS')
big1 = pd.DataFrame(index = bigdates)
big2 = pd.DataFrame(index = bigdates)
big1 = pd.concat([big1, df1],axis = 1)
big2 = pd.concat([big2, df2],axis = 1)
This is what I get when I correlate with pandas and shift one dataset:
In [451]: corr_coeff_0 = big1[0].corr(big2[0])
In [452]: corr_coeff_0
Out[452]: 0.030543266378853299
In [453]: big2_shift = big2.shift(1)
In [454]: corr_coeff_1 = big1[0].corr(big2_shift[0])
In [455]: corr_coeff_1
Out[455]: 0.020788314779320523
And trying scipy:
In [456]: scicorr = scipy.signal.correlate(big1,big2,mode="full")
In [457]: scicorr
Out[457]:
array([[ nan],
[ nan],
[ nan],
...,
[ nan],
[ nan],
[ nan]])
which according to whos is
scicorr ndarray 1801x1: 1801 elems, type `float64`, 14408 bytes
But I'd just like to have 12 entries.
/Edit2
The idea I have come up with, is to implement a time-lag-correlation myself, like so:
corr_coeff_0 = df1['Data'].corr(df2['Data'])
df1_1month = df1.shift(1)
corr_coeff_1 = df1_1month['Data'].corr(df2['Data'])
df1_6month = df1.shift(6)
corr_coeff_6 = df1_6month['Data'].corr(df2['Data'])
...and so on
But this is probably slow, and I am probably trying to reinvent the wheel here. Edit The above approach seems to work, and I have put it into a loop, to go through all 12 months of a year, but I still would prefer a built in method.

As far as I can tell, there isn't a built in method that does exactly what you are asking. But if you look at the source code for the pandas Series method autocorr, you can see you've got the right idea:
def autocorr(self, lag=1):
"""
Lag-N autocorrelation
Parameters
----------
lag : int, default 1
Number of lags to apply before performing autocorrelation.
Returns
-------
autocorr : float
"""
return self.corr(self.shift(lag))
So a simple timelagged cross covariance function would be
def crosscorr(datax, datay, lag=0):
""" Lag-N cross correlation.
Parameters
----------
lag : int, default 0
datax, datay : pandas.Series objects of equal length
Returns
----------
crosscorr : float
"""
return datax.corr(datay.shift(lag))
Then if you wanted to look at the cross correlations at each month, you could do
xcov_monthly = [crosscorr(datax, datay, lag=i) for i in range(12)]

There is a better approach: You can create a function that shifted your dataframe first before calling the corr().
Get this dataframe like an example:
d = {'prcp': [0.1,0.2,0.3,0.0], 'stp': [0.0,0.1,0.2,0.3]}
df = pd.DataFrame(data=d)
>>> df
prcp stp
0 0.1 0.0
1 0.2 0.1
2 0.3 0.2
3 0.0 0.3
Your function to shift others columns (except the target):
def df_shifted(df, target=None, lag=0):
if not lag and not target:
return df
new = {}
for c in df.columns:
if c == target:
new[c] = df[target]
else:
new[c] = df[c].shift(periods=lag)
return pd.DataFrame(data=new)
Supposing that your target is comparing the prcp (precipitation variable) with stp(atmospheric pressure)
If you do at the present will be:
>>> df.corr()
prcp stp
prcp 1.0 -0.2
stp -0.2 1.0
But if you shifted 1(one) period all other columns and keep the target (prcp):
df_new = df_shifted(df, 'prcp', lag=-1)
>>> print df_new
prcp stp
0 0.1 0.1
1 0.2 0.2
2 0.3 0.3
3 0.0 NaN
Note that now the column stp is shift one up position at period, so if you call the corr(), will be:
>>> df_new.corr()
prcp stp
prcp 1.0 1.0
stp 1.0 1.0
So, you can do with lag -1, -2, -n!!

To build up on Andre's answer - if you only care about (lagged) correlation to the target, but want to test various lags (e.g. to see which lag gives the highest correlations), you can do something like this:
lagged_correlation = pd.DataFrame.from_dict(
{x: [df[target].corr(df[x].shift(-t)) for t in range(max_lag)] for x in df.columns})
This way, each row corresponds to a different lag value, and each column corresponds to a different variable (one of them is the target itself, giving the autocorrelation).

Related

Pandas dataframe interpolation with logarithmically sampled time intervals

I have a pandas dataframe with columns 'Time' in minutes and 'Value' pulled in from a data logger. The data are logged in logarithmic time intervals, meaning that the first values are logged in fractional minutes then as time proceeds the time intervals get longer:
print(df)
Minutes Value
0 0.001 0.00100
1 0.005 0.04495
2 0.010 0.04495
3 0.015 0.09085
4 0.020 0.11368
.. ... ...
561 4275.150 269.17782
562 4285.150 266.90964
563 4295.150 268.35306
564 4305.150 269.42984
565 4315.150 268.37594
I would like to linearly interpolate the 'Value' at one minute intervals from 0 to 4315 minutes.
I have attempted a few different iterations of df.interpolate() however have not found success. Can someone please help me out? Thank you
I think it's possible that my question was very basic or I made a confusing question. Either way I just wrote a little loop to solve my problem and felt like I should share it. I am sure that this not the most efficient way of doing what I was asking and hopefully somebody could suggest better ways of accomplishing this. I am still very new a this whole thing.
First a few qualifying things:
The 'Value' data that I was talking about is called 'drawdown', which refers to a difference in water level from the initial starting water level inside a water well. It starts at 0.
This kind of data is often viewed in a semi-log plot and sometimes its easier to replace 0 with a very low number instead (i.e 0.0001) so that it plots easy in other programs.
This code takes a .csv file with column names 'Minutes' and 'Drawdown' and compares time values with a new reference dataframe of minutes from 0 through the end of the dataset. It references the 2 closest time values to the desired time value in the list and makes a weighted average of those values then creates a new csv of the integer minutes with drawdown.
Cheers!
# -*- coding: utf-8 -*-
"""
Created on Tue Sep 22 13:42:29 2020
#author: cmeyer
"""
import pandas as pd
import numpy as np
df=pd.read_csv('Read_in.csv')
length=len(df)-1
last=df.at[length,'Drawdown']
lengthpump=int(df.at[length,'Minutes'])
minutes=np.arange(0,lengthpump,1)
dfminutes=pd.DataFrame(minutes)
dfminutes.columns = ['Minutes']
for i in range(1, lengthpump, 1):
non_uni_minutes=df['Minutes']
uni_minutes=dfminutes.at[i,'Minutes']
close1=non_uni_minutes[np.argsort(np.abs(non_uni_minutes-uni_minutes))[0]]
close2=non_uni_minutes[np.argsort(np.abs(non_uni_minutes-uni_minutes))[1]]
index1 = np.where(non_uni_minutes == close1)
index1 = int(index1[0])
index2 = np.where(non_uni_minutes == close2)
index2 = int(index2[0])
num1=df.at[index1,'Drawdown']
num2=df.at[index2,'Drawdown']
weight1 = 1-abs((i-close1)/i)
weight2 = 1-abs((i-close2)/i)
Value = (weight1*num1+weight2*num2)/(weight1+weight2)
dfminutes.at[i,'Drawdown'] = Value
dfminutes.at[0,'Drawdown'] = 0.000001
dfminutes.at[0,'Minutes'] = 0.000001
dfminutes.to_csv('integer_minutes_drawdown.csv')
Here I implemented efficient solution using numpy.interp. I've coded a bit fancy way of reading-in data into pandas.DataFrame from string, you may use any simpler suitable way for your needs like pandas.read_csv(...).
Try next code here online!
import math
import pandas as pd, numpy as np
# Here is just fancy way of reading data, use any other method of reading instead
df = pd.DataFrame([map(float, line.split()) for line in """
0.001 0.00100
0.005 0.04495
0.010 0.04495
0.015 0.09085
0.020 0.11368
4275.150 269.17782
4285.150 266.90964
4295.150 268.35306
4305.150 269.42984
4315.150 268.37594
""".splitlines() if line.strip()], columns = ['Time', 'Value'])
a = df.values
# Create array of integer x = [0 1 2 3 ... LastTimeFloor].
x = np.arange(math.floor(a[-1, 0] + 1e-6) + 1)
# Linearly interpolate
y = np.interp(x, a[:, 0], a[:, 1])
df = pd.DataFrame({'Time': x, 'Value': y})
print(df)

combine pandas apply results as multiple columns in a single dataframe

Summary
Suppose that you apply a function to a groupby object, so that every g.apply for every g in the df.groupby(...) gives you a series/dataframe. How do I combine these results into a single dataframe, but with the group names as columns?
Details
I have a dataframe event_df that looks like this:
index event note time
0 on C 0.5
1 on D 0.75
2 off C 1.0
...
I want to create a sampling of the event for every note, and the sampling is done at times as given by t_df:
index t
0 0
1 0.5
2 1.0
...
So that I'd get something like this.
t C D
0 off off
0.5 on off
1.0 off on
...
What I've done so far:
def get_t_note_series(notedata_row, t_arr):
"""Return the time index in the sampling that corresponds to the event."""
t_idx = np.argwhere(t_arr >= notedata_row['time']).flatten()[0]
return t_idx
def get_t_for_gb(group, **kwargs):
t_idxs = group.apply(get_t_note_series, args=(t_arr,), axis=1)
t_idxs.rename('t_arr_idx', inplace=True)
group_with_t = pd.concat([group, t_idxs], axis=1).set_index('t_arr_idx')
print(group_with_t)
return group_with_t
t_arr = np.arange(0,10,0.5)
t_df = pd.DataFrame({'t': t_arr}).rename_axis('t_arr_idx')
gb = event_df.groupby('note')
gb.apply(get_t_for_gb, **kwargs)
So what I get is a number of dataframes for each note, all of the same size (same as t_df):
t event
0 on
0.5 off
...
t event
0 off
0.5 on
...
How do I go from here to my desired dataframe, with each group corresponding to a column in a new dataframe, and the index being t?
EDIT: sorry, I didn't take into account below, that you rescale your time column and can't present a whole solution now because I have to leave, but I think, you could do the rescaling by using pandas.merge_asof with your two dataframes to get the nearest "rescaled" time and from the merged dataframe you could try the code below. I hope this is, what you wanted.
import pandas as pd
import io
sio= io.StringIO("""index event note time
0 on C 0.5
1 on D 0.75
2 off C 1.0""")
df= pd.read_csv(sio, sep='\s+', index_col=0)
df.groupby(['time', 'note']).agg({'event': 'first'}).unstack(-1).fillna('off')
Take the first row in each time-note group by agg({'event': 'first'}), then use the note-index column and transpose it, so the note values become columns. Then at the end fill all cells, for which no datapoints could be found with 'off' by fillna.
This outputs:
Out[28]:
event
note C D
time
0.50 on off
0.75 off on
1.00 off off
You might also want to try min or max in case on/off is not unambiguous for a combination of time/note (if there are more rows for the same time/note where some have on and some have off) and you prefer one of these values (say if there is one on, then no matter how many offs are there, you want an on etc.). If you want something like a mayority-vote, I would suggest to add a mayority vote column in the aggregated dataframe (before the unstack()).
Oh so I found it! All I had to do was to unstack the groupby results. Going back to generating the groupby result:
def get_t_note_series(notedata_row, t_arr):
"""Return the time index in the sampling that corresponds to the event."""
t_idx = np.argwhere(t_arr >= notedata_row['time']).flatten()[0]
return t_idx
def get_t_for_gb(group, **kwargs):
t_idxs = group.apply(get_t_note_series, args=(t_arr,), axis=1)
t_idxs.rename('t_arr_idx', inplace=True)
group_with_t = pd.concat([group, t_idxs], axis=1).set_index('t_arr_idx')
## print(group_with_t) ## unnecessary!
return group_with_t
t_arr = np.arange(0,10,0.5)
t_df = pd.DataFrame({'t': t_arr}).rename_axis('t_arr_idx')
gb = event_df.groupby('note')
result = gb.apply(get_t_for_gb, **kwargs)
At this point, result is a dataframe with note as an index:
>> print(result)
event
note t
C 0 off
0.5 on
1.0 off
....
D 0 off
0.5 off
1.0 on
....
Doing result = result.unstack('note') does the trick:
>> result = result.unstack('note')
>> print(result)
event
note C D
t
0 off off
0.5 on on
1.0 off off
....
D 0 off
0.5 off
1.0 on
....

daily data, resample every 3 days, calculate over trailing 5 days efficiently

consider the df
tidx = pd.date_range('2012-12-31', periods=11, freq='D')
df = pd.DataFrame(dict(A=np.arange(len(tidx))), tidx)
df
I want to calculate the sum over a trailing 5 days, every 3 days.
I expect something that looks like this
this was edited
what I had was incorrect. #ivan_pozdeev and #boud noticed this was a centered window and that was not my intention. Appologies for the confusion.
everyone's solutions capture much of what I was after.
criteria
I'm looking for smart efficient solutions that can be scaled to large data sets.
I'll be timing solutions and also considering elegance.
Solutions should also be generalizable for a variety of sample and look back frequencies.
from comments
I want a solution that generalizes to handle a look back of a specified frequency and grab anything that falls within that look back.
for the sample above, the look back is 5D and there may be 4 or 50 observations that fall within that look back.
I want the timestamp to be the last observed timestamp within the look back period.
the df you gave us is :
A
2012-12-31 0
2013-01-01 1
2013-01-02 2
2013-01-03 3
2013-01-04 4
2013-01-05 5
2013-01-06 6
2013-01-07 7
2013-01-08 8
2013-01-09 9
2013-01-10 10
you could create your rolling 5-day sum series and then resample it. I can't think of a more efficient way than this. overall this should be relatively time efficient.
df.rolling(5,min_periods=5).sum().dropna().resample('3D').first()
Out[36]:
A
2013-01-04 10.0000
2013-01-07 25.0000
2013-01-10 40.0000
Listed here are two three few NumPy based solutions using bin based summing covering basically three scenarios.
Scenario #1 : Multiple entries per date, but no missing dates
Approach #1 :
# For now hard-coded to use Window size of 5 and stride length of 3
def vectorized_app1(df):
# Extract the index names and values
vals = df.A.values
indx = df.index.values
# Extract IDs for bin based summing
mask = np.append(False,indx[1:] > indx[:-1])
date_id = mask.cumsum()
search_id = np.hstack((0,np.arange(2,date_id[-1],3),date_id[-1]+1))
shifts = np.searchsorted(date_id,search_id)
reps = shifts[1:] - shifts[:-1]
id_arr = np.repeat(np.arange(len(reps)),reps)
# Perform bin based summing and subtract the repeated ones
IDsums = np.bincount(id_arr,vals)
allsums = IDsums[:-1] + IDsums[1:]
allsums[1:] -= np.bincount(date_id,vals)[search_id[1:-2]]
# Convert to pandas dataframe if needed
out_index = indx[np.nonzero(mask)[0][3::3]] # Use last date of group
return pd.DataFrame(allsums,index=out_index,columns=['A'])
Approach #2 :
# For now hard-coded to use Window size of 5 and stride length of 3
def vectorized_app2(df):
# Extract the index names and values
indx = df.index.values
# Extract IDs for bin based summing
mask = np.append(False,indx[1:] > indx[:-1])
date_id = mask.cumsum()
# Generate IDs at which shifts are to happen for a (2,3,5,8..) patttern
# Pad with 0 and length of array at either ends as we use diff later on
shiftIDs = (np.arange(2,date_id[-1],3)[:,None] + np.arange(2)).ravel()
search_id = np.hstack((0,shiftIDs,date_id[-1]+1))
# Find the start of those shifting indices
# Generate ID based on shifts and do bin based summing of dataframe
shifts = np.searchsorted(date_id,search_id)
reps = shifts[1:] - shifts[:-1]
id_arr = np.repeat(np.arange(len(reps)),reps)
IDsums = np.bincount(id_arr,df.A.values)
# Sum each group of 3 elems with a stride of 2, make dataframe if needed
allsums = IDsums[:-1:2] + IDsums[1::2] + IDsums[2::2]
# Convert to pandas dataframe if needed
out_index = indx[np.nonzero(mask)[0][3::3]] # Use last date of group
return pd.DataFrame(allsums,index=out_index,columns=['A'])
Approach #3 :
def vectorized_app3(df, S=3, W=5):
dt = df.index.values
shifts = np.append(False,dt[1:] > dt[:-1])
c = np.bincount(shifts.cumsum(),df.A.values)
out = np.convolve(c,np.ones(W,dtype=int),'valid')[::S]
out_index = dt[np.nonzero(shifts)[0][W-2::S]]
return pd.DataFrame(out,index=out_index,columns=['A'])
We could replace the convolution part with direct sliced summation for a modified version of it -
def vectorized_app3_v2(df, S=3, W=5):
dt = df.index.values
shifts = np.append(False,dt[1:] > dt[:-1])
c = np.bincount(shifts.cumsum(),df.A.values)
f = c.size+S-W
out = c[:f:S].copy()
for i in range(1,W):
out += c[i:f+i:S]
out_index = dt[np.nonzero(shifts)[0][W-2::S]]
return pd.DataFrame(out,index=out_index,columns=['A'])
Scenario #2 : Multiple entries per date and missing dates
Approach #4 :
def vectorized_app4(df, S=3, W=5):
dt = df.index.values
indx = np.append(0,((dt[1:] - dt[:-1])//86400000000000).astype(int)).cumsum()
WL = ((indx[-1]+1)//S)
c = np.bincount(indx,df.A.values,minlength=S*WL+(W-S))
out = np.convolve(c,np.ones(W,dtype=int),'valid')[::S]
grp0_lastdate = dt[0] + np.timedelta64(W-1,'D')
freq_str = str(S)+'D'
grp_last_dt = pd.date_range(grp0_lastdate, periods=WL, freq=freq_str).values
out_index = dt[dt.searchsorted(grp_last_dt,'right')-1]
return pd.DataFrame(out,index=out_index,columns=['A'])
Scenario #3 : Consecutive dates and exactly one entry per date
Approach #5 :
def vectorized_app5(df, S=3, W=5):
vals = df.A.values
N = (df.shape[0]-W+2*S-1)//S
n = vals.strides[0]
out = np.lib.stride_tricks.as_strided(vals,shape=(N,W),\
strides=(S*n,n)).sum(1)
index_idx = (W-1)+S*np.arange(N)
out_index = df.index[index_idx]
return pd.DataFrame(out,index=out_index,columns=['A'])
Suggestions for creating test-data
Scenario #1 :
# Setup input for multiple dates, but no missing dates
S = 4 # Stride length (Could be edited)
W = 7 # Window length (Could be edited)
datasize = 3 # Decides datasize
tidx = pd.date_range('2012-12-31', periods=datasize*S + W-S, freq='D')
start_df = pd.DataFrame(dict(A=np.arange(len(tidx))), tidx)
reps = np.random.randint(1,4,(len(start_df)))
idx0 = np.repeat(start_df.index,reps)
df_data = np.random.randint(0,9,(len(idx0)))
df = pd.DataFrame(df_data,index=idx0,columns=['A'])
Scenario #2 :
To create setup for multiple dates and with missing dates, we could just edit the df_data creation step, like so -
df_data = np.random.randint(0,9,(len(idx0)))
Scenario #3 :
# Setup input for exactly one entry per date
S = 4 # Could be edited
W = 7
datasize = 3 # Decides datasize
tidx = pd.date_range('2012-12-31', periods=datasize*S + W-S, freq='D')
df = pd.DataFrame(dict(A=np.arange(len(tidx))), tidx)
If the dataframe is sorted by date, what we actually have is iterating over an array while calculating something.
Here's the algorithm that calculates sums all in one iteration over the array. To understand it, see a scan of my notes below. This is the base, unoptimized version intended to showcase the algorithm (optimized ones for Python and Cython follow), and list(<call>) takes ~500 ms for an array of 100k on my system (P4). Since Python ints and ranges are relatively slow, this should benefit tremendously from being transferred to C level.
from __future__ import division
import numpy as np
#The date column is unimportant for calculations.
# I leave extracting the numbers' column from the dataframe
# and adding a corresponding element from data column to each result
# as an exercise for the reader
data = np.random.randint(100,size=100000)
def calc_trailing_data_with_interval(data,n,k):
"""Iterate over `data', computing sums of `n' trailing elements
for each `k'th element.
#type data: ndarray
#param n: number of trailing elements to sum up
#param k: interval with which to calculate sums
"""
lim_index=len(data)-k+1
nsums = int(np.ceil(n/k))
sums = np.zeros(nsums,dtype=data.dtype)
M=n%k
Mp=k-M
index=0
currentsum=0
while index<lim_index:
for _ in range(Mp):
#np.take is awkward, requiring a full list of indices to take
for i in range(currentsum,currentsum+nsums-1):
sums[i%nsums]+=data[index]
index+=1
for _ in range(M):
sums+=data[index]
index+=1
yield sums[currentsum]
currentsum=(currentsum+1)%nsums
Note that it produces the first sum at kth element, not nth (this can be changed but by sacrificing elegance - a number of dummy iterations before the main loop - and is more elegantly done by prepending data with extra zeros and discarding a number of first sums)
It can easily be generalized to any operation by replacing sums[slice]+=data[index] with operation(sums[slice],data[index]) where operation is a parameter and should be a mutating operation (like ndarray.__iadd__).
parallelizing between any number or workers by splitting the data is as easy (if n>k, chunks after the first one should be fed extra elements at the start)
To deduce the algorithm, I wrote a sample for a case where a decent number of sums are calculated simultaneously in order to see patterns (click the image to see it full-size).
Optimized: pure Python
Caching range objects brings the time down to ~300ms. Surprisingly, numpy functionality is of no help: np.take is unusable, and replacing currentsum logic with static slices and np.roll is a regression. Even more surprisingly, the benefit of saving output to an np.empty as opposed to yield is nonexistent.
def calc_trailing_data_with_interval(data,n,k):
"""Iterate over `data', computing sums of `n' trailing elements
for each `k'th element.
#type data: ndarray
#param n: number of trailing elements to sum up
#param k: interval with which to calculate sums
"""
lim_index=len(data)-k+1
nsums = int(np.ceil(n/k))
sums = np.zeros(nsums,dtype=data.dtype)
M=n%k
Mp=k-M
RM=range(M) #cache for efficiency
RMp=range(Mp) #cache for efficiency
index=0
currentsum=0
currentsum_ranges=[range(currentsum,currentsum+nsums-1)
for currentsum in range(nsums)] #cache for efficiency
while index<lim_index:
for _ in RMp:
#np.take is unusable as it allocates another array rather than view
for i in currentsum_ranges[currentsum]:
sums[i%nsums]+=data[index]
index+=1
for _ in RM:
sums+=data[index]
index+=1
yield sums[currentsum]
currentsum=(currentsum+1)%nsums
Optimized: Cython
Statically typing everything in Cython instantly speeds things up to 150ms. And (optionally) assuming np.int as dtype to be able to work with data at C level brings the time down to as little as ~11ms. At this point, saving to an np.empty does make a difference, saving an unbelievable ~6.5ms, totalling ~5.5ms.
def calc_trailing_data_with_interval(np.ndarray data,int n,int k):
"""Iterate over `data', computing sums of `n' trailing elements
for each `k'th element.
#type data: 1-d ndarray
#param n: number of trailing elements to sum up
#param k: interval with which to calculate sums
"""
if not data.ndim==1: raise TypeError("One-dimensional array required")
cdef int lim_index=data.size-k+1
cdef np.ndarray result = np.empty(data.size//k,dtype=data.dtype)
cdef int rindex = 0
cdef int nsums = int(np.ceil(float(n)/k))
cdef np.ndarray sums = np.zeros(nsums,dtype=data.dtype)
#optional speedup for dtype=np.int
cdef bint use_int_buffer = data.dtype==np.int and data.flags.c_contiguous
cdef int[:] cdata = data
cdef int[:] csums = sums
cdef int[:] cresult = result
cdef int M=n%k
cdef int Mp=k-M
cdef int index=0
cdef int currentsum=0
cdef int _,i
while index<lim_index:
for _ in range(Mp):
#np.take is unusable as it allocates another array rather than view
for i in range(currentsum,currentsum+nsums-1):
if use_int_buffer: csums[i%nsums]+=cdata[index] #optional speedup
else: sums[i%nsums]+=data[index]
index+=1
for _ in range(M):
if use_int_buffer:
for i in range(nsums): csums[i]+=cdata[index] #optional speedup
else: sums+=data[index]
index+=1
if use_int_buffer: cresult[rindex]=csums[currentsum] #optional speedup
else: result[rindex]=sums[currentsum]
currentsum=(currentsum+1)%nsums
rindex+=1
return result
For regularly-spaced dates only
Here are two methods, first a pandas way and second a numpy function.
>>> n=5 # trailing periods for rolling sum
>>> k=3 # frequency of rolling sum calc
>>> df.rolling(n).sum()[-1::-k][::-1]
A
2013-01-01 NaN
2013-01-04 10.0
2013-01-07 25.0
2013-01-10 40.0
And here's a numpy function (adapted from Jaime's numpy moving_average):
def rolling_sum(a, n=5, k=3):
ret = np.cumsum(a.values)
ret[n:] = ret[n:] - ret[:-n]
return pd.DataFrame( ret[n-1:][-1::-k][::-1],
index=a[n-1:][-1::-k][::-1].index )
rolling_sum(df,n=6,k=4) # default n=5, k=3
For irregularly-spaced dates (or regularly-spaced)
Simply precede with:
df.resample('D').sum().fillna(0)
For example, the above methods become:
df.resample('D').sum().fillna(0).rolling(n).sum()[-1::-k][::-1]
and
rolling_sum( df.resample('D').sum().fillna(0) )
Note that dealing with irregularly-spaced dates can be done simply and elegantly in pandas as this is a strength of pandas over almost anything else out there. But you can likely find a numpy (or numba or cython) approach that will trade off some simplicity for an increase in speed. Whether this is a good tradeoff will depend on your data size and performance requirements, of course.
For the irregularly spaced dates, I tested on the following example data and it seemed to work correctly. This will produce a mix of missing, single, and multiple entries per date:
np.random.seed(12345)
per = 11
tidx = np.random.choice( pd.date_range('2012-12-31', periods=per, freq='D'), per )
df = pd.DataFrame(dict(A=np.arange(len(tidx))), tidx).sort_index()
this isn't quite perfect yet, but I've gotta go make fake blood for a haloween party tonight... you should be able to see what I was getting at through the comments. One of the biggest speedups is finding the window edges with np.searchsorted. it doesn't quite work yet, but I'd bet it's just some index offsets that need tweaking
import pandas as pd
import numpy as np
tidx = pd.date_range('2012-12-31', periods=11, freq='D')
df = pd.DataFrame(dict(A=np.arange(len(tidx))), tidx)
sample_freq = 3 #days
sample_width = 5 #days
sample_freq *= 86400 #seconds per day
sample_width *= 86400 #seconds per day
times = df.index.astype(np.int64)//10**9 #array of timestamps (unix time)
cumsum = np.cumsum(df.A).as_matrix() #array of cumulative sums (could eliminate extra summation with large overlap)
mat = np.array([times, cumsum]) #could eliminate temporary times and cumsum vars
def yieldstep(mat, freq):
normtime = ((mat[0] - mat[0,0]) / freq).astype(int) #integer numbers indicating sample number
for i in range(max(normtime)+1):
yield np.searchsorted(normtime, i) #yield beginning of window index
def sumwindow(mat,i , width): #i is the start of the window returned by yieldstep
normtime = ((mat[0,i:] - mat[0,i])/ width).astype(int) #same as before, but we norm to window width
j = np.searchsorted(normtime, i, side='right')-1 #find the right side of the window
#return rightmost timestamp of window in seconds from unix epoch and sum of window
return mat[0,j], mat[1,j] - mat[1,i] #sum of window is just end - start because we did a cumsum earlier
windowed_sums = np.array([sumwindow(mat, i, sample_width) for i in yieldstep(mat, sample_freq)])
Looks like a rolling centered window where you pick up data every n days:
def rolleach(df, ndays, window):
return df.rolling(window, center=True).sum()[ndays-1::ndays]
rolleach(df, 3, 5)
Out[95]:
A
2013-01-02 10.0
2013-01-05 25.0
2013-01-08 40.0

Optimizing Python code - overhead due to pandas.core.series.Series.__getitem__

I have pandas data object - data - that is stored as Series of Series. The first series is indexed on ID1 and the second on ID2.
ID1 ID2
1 10259 0.063979
14166 0.120145
14167 0.177417
14244 0.277926
14245 0.436048
15021 0.624367
15260 0.770925
15433 0.918439
15763 1.000000
...
1453 812690 0.752274
813000 0.755041
813209 0.756425
814045 0.778434
814474 0.910647
814475 1.000000
Length: 19726, dtype: float64
I have a function that uses values from this object for further data processing. Here is the function:
#Function
def getData(ID1, randomDraw):
dataID2 = data[ID1]
value = dataID2.index[np.searchsorted(dataID2, randomDraw, side='left').iloc[0]]
return value
I use np.vectorize to apply this function on a DataFrame - dataFrame - that has about 22 million rows.
dataFrame['ID2'] = np.vectorize(getData)(dataFrame['ID1'], dataFrame['RAND'])
where ID1 and RAND are columns with values that are feeding into the function.
The code takes about 6 hours to process everything. A similar implementation in Java takes only about 6 minutes to get through 22 million rows of data.
On running a profiler on my program I find that the most expensive call is the indexing into data and the second most expensive is searchsorted.
Function Name: pandas.core.series.Series.__getitem__
Elapsed inclusive time percentage: 54.44
Function Name: numpy.core.fromnumeric.searchsorted
Elapsed inclusive time percentage: 25.49
Using data.loc[ID1] to get data makes the program even slower. How can I make this faster? I understand that Python cannot achieve the same efficiency as Java but 6 hours compared to 6 minutes seems too much of a difference. Maybe I should be using a different data structure/ functions? I am using Python 2.7 and PTVS IDE.
Adding a minimum working example:
import numpy as np
import pandas as pd
np.random.seed = 0
#Creating a dummy data object - Series within Series
alt = pd.Series(np.array([ 0.25, 0.50, 0.75, 1.00]), index=np.arange(1,5))
data = pd.Series([alt]*1500, index=np.arange(1,1501))
#Creating dataFrame -
nRows = 200000
d = {'ID1': np.random.randint(1500, size=nRows) + 1
,'RAND': np.random.uniform(low=0.0, high=1.0, size=nRows)}
dataFrame = pd.DataFrame(d)
#Function
def getData(ID1, randomDraw):
dataID2 = data[ID1]
value = dataID2.index[np.searchsorted(dataID2, randomDraw, side='left').iloc[0]]
return value
dataFrame['ID2'] = np.vectorize(getData)(dataFrame['ID1'], dataFrame['RAND'])
You may get a better performance with this code:
>>> def getData(ts):
... dataID2 = data[ts.name]
... i = np.searchsorted(dataID2.values, ts.values, side='left')
... return dataID2.index[i]
...
>>> dataFrame['ID2'] = dataFrame.groupby('ID1')['RAND'].transform(getData)

pandas groupby - return min() along with time where min() occurs

My data is organized in multi-index dataframes. I am trying to groupby the "Sweep" index and return both the min (or max) in a specific time range, along with the time at which that time occurs.
Data looks like:
Time Primary Secondary BL LED
Sweep
Sweep1 0 0.00000 -28173.828125 -0.416565 -0.000305
1 0.00005 -27050.781250 -0.416260 0.000305
2 0.00010 -27490.234375 -0.415955 -0.002441
3 0.00015 -28222.656250 -0.416260 0.000305
4 0.00020 -28759.765625 -0.414429 -0.002136
Getting the min or max is very straightforward.
def find_groupby_peak(voltage_df, start_time, end_time, peak="min"):
boolean_vr = (voltage_df.Time >= start_time) & (voltage_df.Time <=end_time)
df_subset = voltage_df[boolean_vr]
grouped = df_subset.groupby(level="Sweep")
if peak == "min":
peak = grouped.Primary.min()
elif peak == "max":
peak = grouped.max()
return peak
Which gives (partial output):
Sweep
Sweep1 -92333.984375
Sweep10 -86523.437500
Sweep11 -85205.078125
Sweep12 -87109.375000
Sweep13 -77929.687500
But I need to time where those peaks occur as well. I know I could iterate over the output and find where in the original dataset those values occur, but that seems like a rather brute-force way to do it. I also could write a different function to apply to the grouped object that returns both the max and the time where that max occurs (at least in theory - haven't tried to do this, but I assume it's pretty straightforward).
Other than those two options, is there a simpler way to pass the outputs from grouped.Primary.min() (i.e. the peak values) to return where in Time those values occur?
You could consider using the transform function with groupby. If you had data that look a bit like this:
import pandas as pd
sweep = ["sweep1", "sweep1", "sweep1", "sweep1",
"sweep2", "sweep2", "sweep2", "sweep2",
"sweep3", "sweep3", "sweep3", "sweep3",
"sweep4", "sweep4", "sweep4", "sweep4"]
Time = [0.009845, 0.002186, 0.006001, 0.00265,
0.003832, 0.005627, 0.002625, 0.004159,
0.00388, 0.008107, 0.00813, 0.004813,
0.003205, 0.003225, 0.00413, 0.001202]
Primary = [-2832.013203, -2478.839133, -2100.671551, -2057.188346,
-2605.402055, -2030.195497, -2300.209967, -2504.817095,
-2865.320903, -2456.0049, -2542.132906, -2405.657053,
-2780.140743, -2351.743053, -2232.340363, -2820.27356]
s_count = [ 0, 1, 2, 3,
0, 1, 2, 3,
0, 1, 2, 3,
0, 1, 2, 3]
df = pd.DataFrame({ 'Time' : Time,
'Primary' : Primary}, index = [sweep, s_count])
Then you could write a very simple transform function that will return for each group of data (grouped by the sweep index), the row at which the minimum value of 'Primary' is located. This you would do with simple boolean slicing. That would look like this:
def trans_function(df):
return df[df.Primary == min(df.Primary)]
Then to use this function simply call it inside the transform method:
df.groupby(level = 0).transform(trans_function)
And that gives me the following output:
Primary Time
sweep1 0 -2832.013203 0.009845
sweep2 0 -2605.402055 0.003832
sweep3 0 -2865.320903 0.003880
sweep4 3 -2820.273560 0.001202
Obviously you could incorporate that into you function that is acting on some subset of the data if that is what you require.
As an alternative you could index the group by using the argmin() function. I tried to do this with transform but it was just returning the entire dataframe. I'm not sure why that should be, it does however work with apply:
def trans_function2(df):
return df.loc[df['Primary'].argmin()]
df.groupby(level = 0).apply(trans_function2)
That again gives me:
Primary Time
sweep1 -2832.013203 0.009845
sweep2 -2605.402055 0.003832
sweep3 -2865.320903 0.003880
sweep4 -2820.273560 0.001202
I'm not totally sure why this function does not work with transform - perhaps someone will enlighten us.
I do not know if this will work with your multi-index frame, but it is worth a try; working with:
>>> df
tag tick val
z C 2014-09-07 32
y C 2014-09-08 67
x A 2014-09-09 49
w A 2014-09-10 80
v B 2014-09-11 51
u B 2014-09-12 25
t C 2014-09-13 22
s B 2014-09-14 8
r A 2014-09-15 76
q C 2014-09-16 4
find the indexer using idxmax and then use .loc:
>>> i = df.groupby('tag')['val'].idxmax()
>>> df.loc[i]
tag tick val
w A 2014-09-10 80
v B 2014-09-11 51
y C 2014-09-08 67

Categories

Resources