I'm attempting to make a plot emissions from a model, using Basemap and matplotlib.pyplot. I'm very new to python so was attempting to use someone else's example and adjust it for my data but finding numerous errors.
from mpl_toolkits.basemap import Basemap, cm
from netCDF4 import Dataset as NetCDFFile
import numpy as np
import matplotlib.pyplot as plt
# plot rainfall from NWS using special precipitation
# colormap used by the NWS, and included in basemap.
nc = NetCDFFile('file.nc')
pm25var = nc.variables['emis_all']
data = 0.01*pm25var[:]
latcorners = nc.variables['lat'][:]
loncorners = -nc.variables['lon'][:]
lon_0 = -nc.variables['true_lon'].getValue()
lat_0 = nc.variables['true_lat'].getValue()
# create figure and axes instances
fig = plt.figure(figsize=(8,8))
ax = fig.add_axes([0.1,0.1,0.8,0.8])
# create polar stereographic Basemap instance.
m = Basemap(projection='stere',lon_0=lon_0,lat_0=90.,lat_ts=lat_0,\
llcrnrlat=latcorners[0],urcrnrlat=latcorners[2],\
llcrnrlon=loncorners[0],urcrnrlon=loncorners[2],\
rsphere=6371200.,resolution='l',area_thresh=10000)
# draw coastlines, state and country boundaries, edge of map.
m.drawcoastlines()
m.drawstates()
m.drawcountries()
# draw parallels.
parallels = np.arange(0.,90,10.)
m.drawparallels(parallels,labels=[1,0,0,0],fontsize=10)
# draw meridians
meridians = np.arange(0.,60.,10.)
m.drawmeridians(meridians,labels=[0,0,0,1],fontsize=10)
ny = data.shape[0]; nx = data.shape[1]
lons, lats = m.makegrid(nx, ny) # get lat/lons of ny by nx evenly space grid.
x, y = m(lons, lats) # compute map proj coordinates.
# draw filled contours.
clevs = [0,1,2.5,5,7.5,10,15,20,30,40,50,70,100,150,200,250,300,400,500,600,750]
cs = m.contourf(x,y,data,clevs,cmap=cm.s3pcpn)
# add colorbar.
cbar = m.colorbar(cs,location='bottom',pad="5%")
cbar.set_label('mm')
# add title
plt.title(pm25var.long_name+' for period ending '+pm25var.dateofdata)
plt.show()
I keep getting "KeyError: 'true_lon'" and have no idea how to resolve it. The data has 3 keys (lat, lon and time). I have shown the details of the lon variable below.
>>>print dataset.variables['lon']
<type 'netCDF4._netCDF4.Variable'>
float64 lon(lon)
long_name: longitude
units: degrees_east
comment: centre of grid cell
unlimited dimensions:
current shape = (720,)
filling on, default _FillValue of 9.96920996839e+36 used
The data is global. The details of variable I'm trying to plot (emis_all) are below.
>>>print dataset.variables['emis_all']
<type 'netCDF4._netCDF4.Variable'>
float64 emis_all(time, lat, lon)
long_name: PM25 - Total
pollutant: PM25
sector: Total
units: kt/year
unlimited dimensions:
current shape = (11, 360, 720)
filling on, default _FillValue of 9.96920996839e+36 used
Any help/advice much appreciated. Like I said I am a beginner just trying to get started and practice making a few plots with my own data.
The error you get is because you don't have that variable in your netCDF file. You should start from "the beggining" and try to figure out which does each line of your code. Then, select what do you actually need. I've simplified your code, just try it out:
# read netcdf file
nc = NetCDFFile('file.nc')
emis = nc.variables['emis_all'][:]
lats = nc.variables['lat'][:]
lons = nc.variables['lon'][:]
nc.close()
data = emis[0,:,:] #emissions for the first hour only
# create figure and axes instances
fig = plt.figure(figsize=(8,8))
ax = fig.add_axes([0.1,0.1,0.8,0.8])
m = Basemap()
m.drawcoastlines()
m.drawstates()
m.drawcountries()
# draw parallels.
parallels = np.arange(0.,90,10.)
m.drawparallels(parallels,labels=[1,0,0,0],fontsize=10)
# draw meridians
meridians = np.arange(0.,60.,10.)
m.drawmeridians(meridians,labels=[0,0,0,1],fontsize=10)
x, y = m(lons, lats) # compute map proj coordinates.
# draw filled contours.
clevs = [0,1,2.5,5,7.5,10,15,20,30,40,50,70,100,150,200,250,300,400,500,600,750]
cs = m.contourf(x,y,data,clevs)
# add colorbar.
cbar = m.colorbar(cs,location='bottom',pad="5%")
cbar.set_label('mm')
# add title
plt.title('emissions')
plt.show()
some usefull comands:
print nc.variables will print you the list of variables of your netCDF file
emi.shape will return the shape of your array. In my example I chose only the 1st hour (or other time lapse) of the data. You can do everything you want with your array (like sum, mean), search for numpy module.
Related
I'm trying to plot data that contains lat, lon, and altitude as a 3d scatter plot in mpl. What I've found for documentation so far is either how to plot 2d geographic data using Basemap, OR how to plot 3d data using Axes3D, but not both. The specific coding issue I'm running into is how to set my lat/lon data to be interpreted as geographic lat and lon, but to keep my alt data as... well, altitude. I know Basemap contains the latlon setting:
"If latlon keyword is set to True, x,y are intrepreted as longitude
and latitude in degrees. Data and longitudes are automatically shifted
to match map projection region for cylindrical and pseudocylindrical
projections, and x,y are transformed to map projection coordinates."
However if I'm plotting in 3d, Axes3D doesn't support the latlon argument. The reason having geographic coordinates is so important is that I'm plotting the data over a basemap for visual reference.
My code:
import os
os.environ['PROJ_LIB'] = r'E:\Programs\Anaconda3\pkgs\proj4-5.2.0-ha925a31_1\Library\share'
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.basemap import Basemap
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
ax = fig.gca(projection='3d')
# Define lower left, uperright lontitude and lattitude respectively
extent = [-180, 180, -90, 90]
# Create a basemap instance that draws the Earth layer
#bm = Basemap(llcrnrlon=extent[0], llcrnrlat=extent[2],
# urcrnrlon=extent[1], urcrnrlat=extent[3],
# projection='cyl', resolution='l', fix_aspect=False, ax=ax)
bm = Basemap(llcrnrlon=-73,llcrnrlat=41,urcrnrlon=-69.5,urcrnrlat=43.5,projection='lcc', resolution='i', lat_0=42, lon_0=-71, ax=ax, fix_aspect=True)
# Add Basemap to the figure
ax.add_collection3d(bm.drawcoastlines(linewidth=0.35))
ax.add_collection3d(bm.drawstates(linewidth=0.25))
#ax.add_collection3d(bm.drawcounties(linewidth=0.15))
#ax.set_axis_off()
ax.view_init(azim=230, elev=50)
ax.set_xlabel('Longitude (°E)', labelpad=20)
ax.set_ylabel('Latitude (°N)', labelpad=20)
ax.set_zlabel('Altitude (ft)', labelpad=20)
# Add meridian and parallel gridlines
#lon_step = 5
#lat_step = 5
#meridians = np.arange(extent[0], extent[1] + lon_step, lon_step)
#parallels = np.arange(extent[2], extent[3] + lat_step, lat_step)
#ax.set_yticks(parallels)
#ax.set_yticklabels(parallels)
#ax.set_xticks(meridians)
#ax.set_xticklabels(meridians)
ax.set_zlim(0., 50000.)
#ax.set_xlim(-69., -73.)
#ax.set_ylim(40.,44.)
# empty array for place holder
lons = np.array([]) # longtitude
lats = np.array([]) # latitude
alt = np.array([]) # altitude
# Make sure your working directory is the directory contains this script and the data file.
#directory = os.fsencode('.')
# Import data to illustrate
lons, lats, alt = np.loadtxt('adsb-csv-2019-07-07_xzyonly_small.csv', delimiter=',', unpack=True, skiprows=1)
#alons, alats = map(lons, lats, latlon=True)
# scatter map based on lons, lats, alts
p = ax.scatter(lons, lats, alt, c=alt, cmap='jet')
# Add a colorbar to reference the intensity
#fig.colorbar(p, label='Aircraft Altitude')
plt.show()
This was adapted from code written by Phúc Lê.
Any help would be much appreciated!
I am trying to plot azimuth and altitude points in a polar chart in Python using matplolib, basemap and numpy.
winterAzi = 81.67440007, 75.55094006, 67.57616189, 55.73337697
winterAlt = 11.28088118, 25.0837551, 38.44986883, 50.8769649
#create instance of basemap, note we want a south polar projection to 90 = E
myMap = Basemap(projection='spstere',boundinglat=0,lon_0=180,resolution='l',round=True,suppress_ticks=True)
# set the grid up
gridX,gridY = 10.0,15.0
parallelGrid = np.arange(-90.0,90.0,gridX)
meridianGrid = np.arange(-180.0,180.0,gridY)
# draw parallel and meridian grid, not labels are off. We have to manually create these.
myMap.drawparallels(parallelGrid,labels=[False,False,False,False])
myMap.drawmeridians(meridianGrid,labels=[False,False,False,False],labelstyle='+/-',fmt='%i')
# we have to send our values through basemap to convert coordinates, note -winterAlt
winterX,winterY = myMap(winterAzi,-winterAlt)
# plot azimuth labels, with a North label.
ax = plt.gca()
ax.text(0.5,1.025,'N',transform=ax.transAxes,horizontalalignment='center',verticalalignment='bottom',size=25)
for para in np.arange(gridY,360,gridY):
x= (1.1*0.5*np.sin(np.deg2rad(para)))+0.5
y= (1.1*0.5*np.cos(np.deg2rad(para)))+0.5
ax.text(x,y,u'%i\N{DEGREE SIGN}'%para,transform=ax.transAxes,horizontalalignment='center',verticalalignment='center')
# plot the winter values
myMap.plot(winterX,winterY ,'bo')
plt.show()
However it is not plotting the data points at the beginning of the code!
How can I plot them?
You probably want to put the variables in a numpy array:
winterAzi = np.array([81.67440007, 75.55094006, 67.57616189, 55.73337697])
winterAlt = np.array([11.28088118, 25.0837551, 38.44986883, 50.8769649])
I want to use imshow (for example) to display some data inside the boundaries of a country (for the purposes of example I chose the USA) The simple example below illustrates what I want:
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import RegularPolygon
data = np.arange(100).reshape(10, 10)
fig = plt.figure()
ax = fig.add_subplot(111)
im = ax.imshow(data)
poly = RegularPolygon([ 0.5, 0.5], 6, 0.4, fc='none',
ec='k', transform=ax.transAxes)
im.set_clip_path(poly)
ax.add_patch(poly)
ax.axis('off')
plt.show()
The result is:
Now I want to do this but instead of a simple polygon, I want to use the complex shape of the USA. I have created some example data contained in the array of "Z" as can be seen in the code below. It is this data that I want to display, using a colourmap but only within the boundaries of mainland USA.
So far I have tried the following. I get a shape file from here contained in "nationp010g.shp.tar.gz" and I use the Basemap module in python to plot the USA. Note that this is the only method I have found which gives me the ability get a polygon of the area I need. If there are alternative methods I would also be interested in them. I then create a polygon called "mainpoly" which is almost the polygon I want coloured in blue:
Notice how only one body has been coloured, all other disjoint polygons remain white:
So the area coloured blue is almost what I want, note that there are unwanted borderlines near canada because the border actually goes through some lakes, but that is a minor problem. The real problem is, why doesn't my imshow data display inside the USA? Comparing my first and second example codes I can't see why I don't get a clipped imshow in my second example, the way I do in the first. Any help would be appreciated in understanding what I am missing.
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.basemap import Basemap as Basemap
from matplotlib.patches import Polygon
# Lambert Conformal map of lower 48 states.
m = Basemap(llcrnrlon=-119,llcrnrlat=22,urcrnrlon=-64,urcrnrlat=49,
projection='lcc',lat_1=33,lat_2=45,lon_0=-95)
shp_info = m.readshapefile('nationp010g/nationp010g', 'borders', drawbounds=True) # draw country boundaries.
for nshape,seg in enumerate(m.borders):
if nshape == 1873: #This nshape denotes the large continental body of the USA, which we want
mainseg = seg
mainpoly = Polygon(mainseg,facecolor='blue',edgecolor='k')
nx, ny = 10, 10
lons, lats = m.makegrid(nx, ny) # get lat/lons of ny by nx evenly space grid.
x, y = m(lons, lats) # compute map proj coordinates.
Z = np.zeros((nx,ny))
Z[:] = np.NAN
for i in np.arange(len(x)):
for j in np.arange(len(y)):
Z[i,j] = x[0,i]
ax = plt.gca()
im = ax.imshow(Z, cmap = plt.get_cmap('coolwarm') )
im.set_clip_path(mainpoly)
ax.add_patch(mainpoly)
plt.show()
Update
I realise that the line
ax.add_patch(mainpoly)
does not even add the polygon shape to a plot. Am I not using it correctly? As far as I know mainpoly was calculated correctly using the Polygon() method. I checked that the coordinate inputs are a sensible:
plt.plot(mainseg[:,0], mainseg[:,1] ,'.')
which gives
I have also considered about this problem for so long.
And I found NCL language has the function to mask the data outside some border.
Here is the example:
http://i5.tietuku.com/bdb1a6c007b82645.png
The contourf plot only show within China border. Click here for the code.
I know python has a package called PyNCL which support all NCL code in Python framework.
But I really want to plot this kind of figure using basemap. If you have figured it out, please post on the internet. I'll learn at the first time.
Thanks!
Add 2016-01-16
In a way, I have figured it out.
This is my idea and code, and it's inspired from this question I have asked today.
My method:
1. Make the shapefile of the interesting area(like U.S) into shapely.polygon.
2. Test each value point within/out of the polygon.
3. If the value point is out of the study area, mask it as np.nan
Intro
* the polygon xxx was a city in China in ESRI shapefile format.
* fiona, shapely package were used here.
# generate the shapely.polygon
shape = fiona.open("xxx.shp")
pol = shape.next()
geom = shape(pol['geometry'])
poly_data = pol["geometry"]["coordinates"][0]
poly = Polygon(poly_data)
It shows like:
http://i4.tietuku.com/2012307faec02634.png
### test the value point
### generate the grid network which represented by the grid midpoints.
lon_med = np.linspace((xi[0:2].mean()),(xi[-2:].mean()),len(x_grid))
lat_med = np.linspace((yi[0:2].mean()),(yi[-2:].mean()),len(y_grid))
value_test_mean = dsu.mean(axis = 0)
value_mask = np.zeros(len(lon_med)*len(lat_med)).reshape(len(lat_med),len(lon_med))
for i in range(0,len(lat_med),1):
for j in range(0,len(lon_med),1):
points = np.array([lon_med[j],lat_med[i]])
mask = np.array([poly.contains(Point(points[0], points[1]))])
if mask == False:
value_mask[i,j] = np.nan
if mask == True:
value_mask[i,j] = value_test_mean[i,j]
# Mask the np.nan value
Z_mask = np.ma.masked_where(np.isnan(so2_mask),so2_mask)
# plot!
fig=plt.figure(figsize=(6,4))
ax=plt.subplot()
map = Basemap(llcrnrlon=x_map1,llcrnrlat=y_map1,urcrnrlon=x_map2,urcrnrlat=y_map2)
map.drawparallels(np.arange(y_map1+0.1035,y_map2,0.2),labels= [1,0,0,1],size=14,linewidth=0,color= '#FFFFFF')
lon_grid = np.linspace(x_map1,x_map2,len(x_grid))
lat_grid = np.linspace(y_map1,y_map2,len(y_grid))
xx,yy = np.meshgrid(lon_grid,lat_grid)
pcol =plt.pcolor(xx,yy,Z_mask,cmap = plt.cm.Spectral_r ,alpha =0.75,zorder =2)
result
http://i4.tietuku.com/c6620c5b6730a5f0.png
http://i4.tietuku.com/a22ad484fee627b9.png
original result
http://i4.tietuku.com/011584fbc36222c9.png
I am trying to use streamplot function to plot wind field with basemap, projection "ortho". My test code is mainly based on this example:
Plotting wind vectors and wind barbs
Here is my code:
import numpy as np
import matplotlib.pyplot as plt
import datetime
from mpl_toolkits.basemap import Basemap, shiftgrid
from Scientific.IO.NetCDF import NetCDFFile as Dataset
# specify date to plot.
yyyy=1993; mm=03; dd=14; hh=00
date = datetime.datetime(yyyy,mm,dd,hh)
# set OpenDAP server URL.
URLbase="http://nomads.ncdc.noaa.gov/thredds/dodsC/modeldata/cmd_pgbh/"
URL=URLbase+"%04i/%04i%02i/%04i%02i%02i/pgbh00.gdas.%04i%02i%02i%02i.grb2" %\
(yyyy,yyyy,mm,yyyy,mm,dd,yyyy,mm,dd,hh)
data = Dataset(URL)
#data = netcdf.netcdf_file(URL)
# read lats,lons
# reverse latitudes so they go from south to north.
latitudes = data.variables['lat'][:][::-1]
longitudes = data.variables['lon'][:].tolist()
# get wind data
uin = data.variables['U-component_of_wind_height_above_ground'][:].squeeze()
vin = data.variables['V-component_of_wind_height_above_ground'][:].squeeze()
# add cyclic points manually (could use addcyclic function)
u = np.zeros((uin.shape[0],uin.shape[1]+1),np.float64)
u[:,0:-1] = uin[::-1]; u[:,-1] = uin[::-1,0]
v = np.zeros((vin.shape[0],vin.shape[1]+1),np.float64)
v[:,0:-1] = vin[::-1]; v[:,-1] = vin[::-1,0]
longitudes.append(360.); longitudes = np.array(longitudes)
# make 2-d grid of lons, lats
lons, lats = np.meshgrid(longitudes,latitudes)
# make orthographic basemap.
m = Basemap(resolution='c',projection='ortho',lat_0=60.,lon_0=-60.)
# create figure, add axes
fig1 = plt.figure(figsize=(8,10))
ax = fig1.add_axes([0.1,0.1,0.8,0.8])
# define parallels and meridians to draw.
parallels = np.arange(-80.,90,20.)
meridians = np.arange(0.,360.,20.)
# first, shift grid so it goes from -180 to 180 (instead of 0 to 360
# in longitude). Otherwise, interpolation is messed up.
ugrid,newlons = shiftgrid(180.,u,longitudes,start=False)
vgrid,newlons = shiftgrid(180.,v,longitudes,start=False)
# now plot.
lonn, latt = np.meshgrid(newlons, latitudes)
x, y = m(lonn, latt)
st = plt.streamplot(x, y, ugrid, vgrid, color='r', latlon='True')
# draw coastlines, parallels, meridians.
m.drawcoastlines(linewidth=1.5)
m.drawparallels(parallels)
m.drawmeridians(meridians)
# set plot title
ax.set_title('SLP and Wind Vectors '+str(date))
plt.show()
After running the code, I got a blank map with a red smear in the lower left corner (please see the figure). After zoom this smear out, I can see the wind stream in a flat projection (not in "ortho" projection) So I guess this is the problem of data projection on the map. I did tried function transform_vector but it does not solve the problem Can anybody tell me, what did I do wrong, please! Thank you.
A new map after updating code:
You are plotting lat/lon coordinates on a map with an orthographic projection. Normally you can fix this by changing your plotting command to:
m.streamplot(mapx, mapy, ugrid, vgrid, color='r', latlon=True)
But your coordinate arrays don't have the same dimensions, that needs to be fixed as well.
I'm making wind vector barb plots using the matplotlib barb function and basemap in python.
I have a list of vectors (wind observations) at arbitrary latitudes and longitudes, i.e. not on a regular grid.
I need to rotate the vectors onto the map projection before plotting or the barbs point in the wrong direction. What is the best way to do this?
e.g.
import numpy
from mpl_toolkits.basemap import Basemap
import matplotlib.pyplot as plt
# Define locations of my vectors
lat = numpy.array([50.1,46.2,51.6,52.2,54.4])
lon = numpy.array([-3.3,-1.0,-5.2,-1.2,0.2])
# Define some east-west vectors to illustrate the problem
u = numpy.array([5,5,5,5,5])
v = numpy.array([0,0,0,0,0])
# Set up map projection
m = Basemap(llcrnrlon=-15.,llcrnrlat=46.,urcrnrlon=15.,urcrnrlat=59.,
projection='lcc',lat_1=40.,lat_2=50.,lon_0=-50.,
resolution ='l')
# Calculate positions of vectors on map projection
x,y = m(lon,lat)
# Draw barbs
m.barbs(x,y,u,v, length=7, color='red')
# Draw some grid lines for reference
parallels = numpy.arange(-80.,90,20.)
meridians = numpy.arange(0.,360.,20.)
m.drawparallels(parallels)
m.drawmeridians(meridians)
m.drawcoastlines(linewidth=0.5)
plt.show()
Note that in the plot, the vectors do not point east-west.
I have tried using the rotate_vector and transform_vector routines, but these only work for gridded vector data.
Is there a routine to rotate the vectors onto the map projection for an arbitrary list of lat,lon u,v pairs?
Any help would be much appreciated!
For people with gridded data who stumpled upon this question
Rather use the built-in function rotate_vector, you can find it here:
http://matplotlib.org/basemap/api/basemap_api.html
Your problem is that you're specifying your u and v in lat, long. At the same time, you're specifying your x and y in map coordinates. barbs seems to expect both of them in map coordinates, rather than a mix.
The simplest way is to just calculate the endpoints to get the components. (My description makes no sense, so here's what I had in mind:)
x, y = m(lon, lat)
x1, y1 = m(lon+u, lat+v)
u_map, v_map = x1-x, y1-y
You'll then need to rescale the magnitudes, as well. As a full example:
import numpy
from mpl_toolkits.basemap import Basemap
import matplotlib.pyplot as plt
# Define locations of my vectors
lat = numpy.array([50.1,46.2,51.6,52.2,54.4])
lon = numpy.array([-3.3,-1.0,-5.2,-1.2,0.2])
# Define some east-west vectors to illustrate the problem
u = numpy.array([5,5,5,5,5])
v = numpy.array([0,0,0,0,0])
# Set up map projection
m = Basemap(llcrnrlon=-15.,llcrnrlat=46.,urcrnrlon=15.,urcrnrlat=59.,
projection='lcc',lat_1=40.,lat_2=50.,lon_0=-50.,
resolution ='l')
# Calculate positions of vectors on map projection
x,y = m(lon,lat)
# Calculate the orientation of the vectors
x1, y1 = m(lon+u, lat+v)
u_map, v_map = x1-x, y1-y
# Rescale the magnitudes of the vectors...
mag_scale = np.hypot(u_map, v_map) / np.hypot(u, v)
u_map /= mag_scale
v_map /= mag_scale
# Draw barbs
m.barbs(x,y,u_map,v_map, length=7, color='red')
# Draw some grid lines for reference
parallels = numpy.arange(-80.,90,20.)
meridians = numpy.arange(0.,360.,20.)
m.drawparallels(parallels)
m.drawmeridians(meridians)
m.drawcoastlines(linewidth=0.5)
plt.show()