How do I estimate positions of two cameras in OpenCV? - python

I have two sets of corresponding points from two images. I have estimated the Essential matrix which encodes the transformation between the cameras:
E, mask = cv2.findEssentialMat(points1, points2, 1.0)
I've then extracted the rotation and translation components:
points, R, t, mask = cv2.recoverPose(E, points1, points2)
But how do I actually get the cameras matrices of the two cameras so I can use cv2.triangulatePoints to generate a little point cloud?

Here is what I did:
Input:
pts_l - set of n 2d points in left image. nx2 numpy float array
pts_r - set of n 2d points in right image. nx2 numpy float array
K_l - Left Camera matrix. 3x3 numpy float array
K_r - Right Camera matrix. 3x3 numpy float array
Code:
# Normalize for Esential Matrix calaculation
pts_l_norm = cv2.undistortPoints(np.expand_dims(pts_l, axis=1), cameraMatrix=K_l, distCoeffs=None)
pts_r_norm = cv2.undistortPoints(np.expand_dims(pts_r, axis=1), cameraMatrix=K_r, distCoeffs=None)
E, mask = cv2.findEssentialMat(pts_l_norm, pts_r_norm, focal=1.0, pp=(0., 0.), method=cv2.RANSAC, prob=0.999, threshold=3.0)
points, R, t, mask = cv2.recoverPose(E, pts_l_norm, pts_r_norm)
M_r = np.hstack((R, t))
M_l = np.hstack((np.eye(3, 3), np.zeros((3, 1))))
P_l = np.dot(K_l, M_l)
P_r = np.dot(K_r, M_r)
point_4d_hom = cv2.triangulatePoints(P_l, P_r, np.expand_dims(pts_l, axis=1), np.expand_dims(pts_r, axis=1))
point_4d = point_4d_hom / np.tile(point_4d_hom[-1, :], (4, 1))
point_3d = point_4d[:3, :].T
Output:
point_3d - nx3 numpy array

Related

Image texture with skimage

I'm trying to get texture properties from a GLCM I created using greycomatrix from skimage.feature. My input data is an image with multiple bands and I want the texture properties for each pixel (resulting in an image with the dimensions cols x rows x (properties *bands)), as it can be achieved using ENVI. But I'm too new to this to come to grips with greycomatrix and greycoprops. This is what I tried:
import numpy as np
from skimage import io
from skimage.feature import greycomatrix, greycoprops
array = io.imread('MYFILE.tif')
array = array.astype(np.int64)
props = ['contrast', 'dissimilarity', 'homogeneity', 'energy', 'correlation', 'ASM']
textures = np.zeros((array.shape[0], array.shape[1], array.shape[2] * len(props)), np.float32)
angles = [0, np.pi / 4, np.pi / 2, 3 * np.pi / 4]
bands = array.shape[2]
for b in range(bands):
glcm = greycomatrix(array[:, :, b], [1], angles, np.nanmax(array) + 1,
symmetric=True, normed=True)
for p, prop in enumerate(props):
textures[:, :, b] = greycoprops(glcm, prop)
Unfortunately, this gives me a 1 x 4 matrix per prop, which I guess is one value per angle FOR THE WHOLE IMAGE, but this is not what I want. I need it per pixel, like contrast for each single pixel, computed from its respective surroundings. What am I missing?
This snippet should get the job done:
import numpy as np
from skimage import io, util
from skimage.feature.texture import greycomatrix, greycoprops
img = io.imread('fourbandimg.tif')
rows, cols, bands = img.shape
radius = 5
side = 2*radius + 1
distances = [1]
angles = [0, np.pi/2]
props = ['contrast', 'dissimilarity', 'homogeneity']
dim = len(distances)*len(angles)*len(props)*bands
padded = np.pad(img, radius, mode='reflect')
windows = [util.view_as_windows(padded[:, :, band].copy(), (side, side))
for band in range(bands)]
feats = np.zeros(shape=(rows, cols, dim))
for row in range(rows):
for col in range(cols):
pixel_feats = []
for band in range(bands):
glcm = greycomatrix(windows[band][row, col, :, :],
distances=distances,
angles=angles)
pixel_feats.extend([greycoprops(glcm, prop).ravel()
for prop in props])
feats[row, col, :] = np.concatenate(pixel_feats)
The sample image has 128 rows, 128 columns and 4 bands (click here to download). At each image pixel a square local neighbourhood of size 11 is used to compute the grayscale matrices corresponding to the pixel to the right and the pixel above for each band. Then, contrast, dissimilarity and homogeneity are computed for those matrices. Thus we have 4 bands, 1 distance, 2 angles and 3 properties. Hence for each pixel the feature vector has 4 × 1 × 2 × 3 = 24 components.
Notice that in order to preserve the number of rows and columns the image has been padded using the image itself mirrored along the edge of the array. It this approach does not fit your needs you could simply ignore the outer frame of the image.
As a final caveat, the code could take a while to run.
Demo
In [193]: img.shape
Out[193]: (128, 128, 4)
In [194]: feats.shape
Out[194]: (128, 128, 24)
In [195]: feats[64, 64, :]
Out[195]:
array([ 1.51690000e+04, 9.50100000e+03, 1.02300000e+03,
8.53000000e+02, 1.25203577e+01, 9.38930575e+00,
2.54300000e+03, 1.47800000e+03, 3.89000000e+02,
3.10000000e+02, 2.95064854e+01, 3.38267222e+01,
2.18970000e+04, 1.71690000e+04, 1.21900000e+03,
1.06700000e+03, 1.09729371e+01, 1.11741654e+01,
2.54300000e+03, 1.47800000e+03, 3.89000000e+02,
3.10000000e+02, 2.95064854e+01, 3.38267222e+01])
In [196]: io.imshow(img)
Out[196]: <matplotlib.image.AxesImage at 0x2a74bc728d0>
Edit
You could cast your data to the type required by greycomatrix through NumPy's uint8 or scikit-images's img_as_ubyte.

Interpolate between two images

I'm trying to interpolate between two images in Python.
Images are of shapes (188, 188)
I wish to interpolate the image 'in-between' these two images. Say Image_1 is at location z=0 and Image_2 is at location z=2. I want the interpolated image at location z=1.
I believe this answer (MATLAB) contains a similar problem and solution.
Creating intermediate slices in a 3D MRI volume with MATLAB
I've tried to convert this code to Python as follows:
from scipy.interpolate import interpn
from scipy.interpolate import griddata
# Construct 3D volume from images
# arr.shape = (2, 182, 182)
arr = np.r_['0,3', image_1, image_2]
slices,rows,cols = arr.shape
# Construct meshgrids
[X,Y,Z] = np.meshgrid(np.arange(cols), np.arange(rows), np.arange(slices));
[X2,Y2,Z2] = np.meshgrid(np.arange(cols), np.arange(rows), np.arange(slices*2));
# Run n-dim interpolation
Vi = interpn([X,Y,Z], arr, np.array([X1,Y1,Z1]).T)
However, this produces an error:
ValueError: The points in dimension 0 must be strictly ascending
I suspect I am not constructing my meshgrid(s) properly but am kind of lost on whether or not this approach is correct.
Any ideas?
---------- Edit -----------
Found some MATLAB code that appears to solve this problem:
Interpolating Between Two Planes in 3d space
I attempted to convert this to Python:
from scipy.ndimage.morphology import distance_transform_edt
from scipy.interpolate import interpn
def ndgrid(*args,**kwargs):
"""
Same as calling ``meshgrid`` with *indexing* = ``'ij'`` (see
``meshgrid`` for documentation).
"""
kwargs['indexing'] = 'ij'
return np.meshgrid(*args,**kwargs)
def bwperim(bw, n=4):
"""
perim = bwperim(bw, n=4)
Find the perimeter of objects in binary images.
A pixel is part of an object perimeter if its value is one and there
is at least one zero-valued pixel in its neighborhood.
By default the neighborhood of a pixel is 4 nearest pixels, but
if `n` is set to 8 the 8 nearest pixels will be considered.
Parameters
----------
bw : A black-and-white image
n : Connectivity. Must be 4 or 8 (default: 8)
Returns
-------
perim : A boolean image
From Mahotas: http://nullege.com/codes/search/mahotas.bwperim
"""
if n not in (4,8):
raise ValueError('mahotas.bwperim: n must be 4 or 8')
rows,cols = bw.shape
# Translate image by one pixel in all directions
north = np.zeros((rows,cols))
south = np.zeros((rows,cols))
west = np.zeros((rows,cols))
east = np.zeros((rows,cols))
north[:-1,:] = bw[1:,:]
south[1:,:] = bw[:-1,:]
west[:,:-1] = bw[:,1:]
east[:,1:] = bw[:,:-1]
idx = (north == bw) & \
(south == bw) & \
(west == bw) & \
(east == bw)
if n == 8:
north_east = np.zeros((rows, cols))
north_west = np.zeros((rows, cols))
south_east = np.zeros((rows, cols))
south_west = np.zeros((rows, cols))
north_east[:-1, 1:] = bw[1:, :-1]
north_west[:-1, :-1] = bw[1:, 1:]
south_east[1:, 1:] = bw[:-1, :-1]
south_west[1:, :-1] = bw[:-1, 1:]
idx &= (north_east == bw) & \
(south_east == bw) & \
(south_west == bw) & \
(north_west == bw)
return ~idx * bw
def signed_bwdist(im):
'''
Find perim and return masked image (signed/reversed)
'''
im = -bwdist(bwperim(im))*np.logical_not(im) + bwdist(bwperim(im))*im
return im
def bwdist(im):
'''
Find distance map of image
'''
dist_im = distance_transform_edt(1-im)
return dist_im
def interp_shape(top, bottom, num):
if num<0 and round(num) == num:
print("Error: number of slices to be interpolated must be integer>0")
top = signed_bwdist(top)
bottom = signed_bwdist(bottom)
r, c = top.shape
t = num+2
print("Rows - Cols - Slices")
print(r, c, t)
print("")
# rejoin top, bottom into a single array of shape (2, r, c)
# MATLAB: cat(3,bottom,top)
top_and_bottom = np.r_['0,3', top, bottom]
#top_and_bottom = np.rollaxis(top_and_bottom, 0, 3)
# create ndgrids
x,y,z = np.mgrid[0:r, 0:c, 0:t-1] # existing data
x1,y1,z1 = np.mgrid[0:r, 0:c, 0:t] # including new slice
print("Shape x y z:", x.shape, y.shape, z.shape)
print("Shape x1 y1 z1:", x1.shape, y1.shape, z1.shape)
print(top_and_bottom.shape, len(x), len(y), len(z))
# Do interpolation
out = interpn((x,y,z), top_and_bottom, (x1,y1,z1))
# MATLAB: out = out(:,:,2:end-1)>=0;
array_lim = out[-1]-1
out[out[:,:,2:out] >= 0] = 1
return out
I call this as follows:
new_image = interp_shape(image_1,image_2, 1)
Im pretty sure this is 80% of the way there but I still get this error when running:
ValueError: The points in dimension 0 must be strictly ascending
Again, I am probably not constructing my meshes correctly. I believe np.mgrid should produce the same result as MATLABs ndgrid though.
Is there a better way to construct the ndgrid equivalents?
I figured this out. Or at least a method that produces desirable results.
Based on: Interpolating Between Two Planes in 3d space
def signed_bwdist(im):
'''
Find perim and return masked image (signed/reversed)
'''
im = -bwdist(bwperim(im))*np.logical_not(im) + bwdist(bwperim(im))*im
return im
def bwdist(im):
'''
Find distance map of image
'''
dist_im = distance_transform_edt(1-im)
return dist_im
def interp_shape(top, bottom, precision):
'''
Interpolate between two contours
Input: top
[X,Y] - Image of top contour (mask)
bottom
[X,Y] - Image of bottom contour (mask)
precision
float - % between the images to interpolate
Ex: num=0.5 - Interpolate the middle image between top and bottom image
Output: out
[X,Y] - Interpolated image at num (%) between top and bottom
'''
if precision>2:
print("Error: Precision must be between 0 and 1 (float)")
top = signed_bwdist(top)
bottom = signed_bwdist(bottom)
# row,cols definition
r, c = top.shape
# Reverse % indexing
precision = 1+precision
# rejoin top, bottom into a single array of shape (2, r, c)
top_and_bottom = np.stack((top, bottom))
# create ndgrids
points = (np.r_[0, 2], np.arange(r), np.arange(c))
xi = np.rollaxis(np.mgrid[:r, :c], 0, 3).reshape((r**2, 2))
xi = np.c_[np.full((r**2),precision), xi]
# Interpolate for new plane
out = interpn(points, top_and_bottom, xi)
out = out.reshape((r, c))
# Threshold distmap to values above 0
out = out > 0
return out
# Run interpolation
out = interp_shape(image_1,image_2, 0.5)
Example output:
I came across a similar problem where I needed to interpolate the shift between frames where the change did not merely constitute a translation but also changes to the shape itself . I solved this problem by :
Using center_of_mass from scipy.ndimage.measurements to calculate the center of the object we want to move in each frame
Defining a continuous parameter t where t=0 first and t=1 last frame
Interpolate the motion between two nearest frames (with regard to a specific t value) by shifting the image back/forward via shift from scipy.ndimage.interpolation and overlaying them.
Here is the code:
def inter(images,t):
#input:
# images: list of arrays/frames ordered according to motion
# t: parameter ranging from 0 to 1 corresponding to first and last frame
#returns: interpolated image
#direction of movement, assumed to be approx. linear
a=np.array(center_of_mass(images[0]))
b=np.array(center_of_mass(images[-1]))
#find index of two nearest frames
arr=np.array([center_of_mass(images[i]) for i in range(len(images))])
v=a+t*(b-a) #convert t into vector
idx1 = (np.linalg.norm((arr - v),axis=1)).argmin()
arr[idx1]=np.array([0,0]) #this is sloppy, should be changed if relevant values are near [0,0]
idx2 = (np.linalg.norm((arr - v),axis=1)).argmin()
if idx1>idx2:
b=np.array(center_of_mass(images[idx1])) #center of mass of nearest contour
a=np.array(center_of_mass(images[idx2])) #center of mass of second nearest contour
tstar=np.linalg.norm(v-a)/np.linalg.norm(b-a) #define parameter ranging from 0 to 1 for interpolation between two nearest frames
im1_shift=shift(images[idx2],(b-a)*tstar) #shift frame 1
im2_shift=shift(images[idx1],-(b-a)*(1-tstar)) #shift frame 2
return im1_shift+im2_shift #return average
if idx1<idx2:
b=np.array(center_of_mass(images[idx2]))
a=np.array(center_of_mass(images[idx1]))
tstar=np.linalg.norm(v-a)/np.linalg.norm(b-a)
im1_shift=shift(images[idx2],-(b-a)*(1-tstar))
im2_shift=shift(images[idx1],(b-a)*(tstar))
return im1_shift+im2_shift
Result example
I don't know the solution to your problem, but I don't think it's possible to do this with interpn.
I corrected the code that you tried, and used the following input images:
But the result is:
Here's the corrected code:
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from scipy import interpolate
n = 8
img1 = np.zeros((n, n))
img2 = np.zeros((n, n))
img1[2:4, 2:4] = 1
img2[4:6, 4:6] = 1
plt.figure()
plt.imshow(img1, cmap=cm.Greys)
plt.figure()
plt.imshow(img2, cmap=cm.Greys)
points = (np.r_[0, 2], np.arange(n), np.arange(n))
values = np.stack((img1, img2))
xi = np.rollaxis(np.mgrid[:n, :n], 0, 3).reshape((n**2, 2))
xi = np.c_[np.ones(n**2), xi]
values_x = interpolate.interpn(points, values, xi, method='linear')
values_x = values_x.reshape((n, n))
print(values_x)
plt.figure()
plt.imshow(values_x, cmap=cm.Greys)
plt.clim((0, 1))
plt.show()
I think the main difference between your code and mine is in the specification of xi. interpn tends to be somewhat confusing to use, and I've explained it in greater detail in an older answer. If you're curious about the mechanics of how I've specified xi, see this answer of mine explaining what I've done.
This result is not entirely surprising, because interpn just linearly interpolated between the two images: so the parts which had 1 in one image and 0 in the other simply became 0.5.
Over here, since one image is the translation of the other, it's clear that we want an image that's translated "in-between". But how would interpn interpolate two general images? If you had one small circle and one big circle, is it in any way clear that there should be a circle of intermediate size "between" them? What about interpolating between a dog and a cat? Or a dog and a building?
I think you are essentially trying to "draw lines" connecting the edges of the two images and then trying to figure out the image in between. This is similar to sampling a moving video at a half-frame. You might want to check out something like optical flow, which connects adjacent frames using vectors. I'm not aware if and what python packages/implementations are available though.

Most efficient way to index into a numpy array from a scipy CSR matrix?

I have a numpy ndarray X with shape (4000, 3), where each sample in X is a 3D coordinate (x,y,z).
I have a scipy csr matrix nn_rad_csr of shape (4000, 4000), which is the nearest neighbors graph generated from sklearn.neighbors.radius_neighbors_graph(X, 0.01, include_self=True).
nn_rad_csr.toarray()[i] is a shape (4000,) sparse vector with binary weights (0 or 1) associated with the edges in the nearest neighbors graph from node X[i].
For instance, if nn_rad_csr.toarray()[i][j] == 1 then X[j] is within the nearest neighbor radius of X[i], whereas a value of 0 means it is not a neighbor.
What I'd like to do is have a function radius_graph_conv(X, rad) which returns an array Y which is X, averaged by its neighbors' values. I'm not sure how to exploit the sparsity of a CSR matrix to efficiently perform radius_graph_conv. I have two naive implementations of graph conv below.
import numpy as np
from sklearn.neighbors import radius_neighbors_graph, KDTree
def radius_graph_conv(X, rad):
nn_rad_csr = radius_neighbors_graph(X, rad, include_self=True)
csr_indices = nn_rad_csr.indices
csr_indptr = nn_rad_csr.indptr
Y = np.copy(X)
for i in range(X.shape[0]):
j, k = csr_indptr[i], csr_indptr[i+1]
neighbor_idx = csr_indices[j:k]
rad_neighborhood = X[neighbor_idx] # ndim always 2
Y[i] = np.mean(rad_neighborhood, axis=0)
return Y
def radius_graph_conv_matmul(X, rad):
nn_rad_arr = radius_neighbors_graph(X, rad, include_self=True).toarray()
# np.sum(nn_rad_arr, axis=-1) is basically a count of neighbors
return np.matmul(nn_rad_arr / np.sum(nn_rad_arr, axis=-1), X)
Is there a better way to do this? With a knn graph, its a very simple function, since the number of neighbors is fixed and you can just index into X, but with a radius or density based nearest neighbors graph, you have to work with a CSR, (or an array of arrays if you are using a kd tree).
Here is the direct way of exploiting csr format. Your matmul solution probably does similar things under the hood. But we save one lookup (from the .data attribute) by also exploiting that it is an adjacency matrix; also, diffing .indptr should be more efficient than summing the equivalent amount of ones.
>>> import numpy as np
>>> from scipy import sparse
>>>
# create mock data
>>> A = np.random.random((100, 100)) < 0.1
>>> A = (A | A.T).view(np.uint8)
>>> AS = sparse.csr_matrix(A)
>>> X = np.random.random((100, 3))
>>>
# dense solution for reference
>>> Xa = A # X / A.sum(axis=-1, keepdims=True)
# sparse solution
>>> XaS = np.add.reduceat(X[AS.indices], AS.indptr[:-1], axis=0) / np.diff(AS.indptr)[:, None]
>>>
# check they are the same
>>> np.allclose(Xa, XaS)
True

scipy.ndimage.interpolation.zoom uses nearest-neighbor-like algorithm for scaling-down

While testing scipy's zoom function, I found that the results of scailng-down an array are similar to the nearest-neighbour algorithm, rather than averaging. This increases noise drastically, and is generally suboptimal for many application.
Is there an alternative that does not use nearest-neighbor-like algorithm and will properly average the array when downsizing? While coarsegraining works for integer scaling factors, I would need non-integer scaling factors as well.
Test case: create a random 100*M x 100*M array, for M = 2..20
Downscale the array by the factor of M three ways:
1) by taking the mean in MxM blocks
2) by using scipy's zoom with a scaling factor 1/M
3) by taking a first point within a
Resulting arrays have the same mean, the same shape, but scipy's array has the variance as high as the nearest-neighbor. Taking a different order for scipy.zoom does not really help.
import scipy.ndimage.interpolation
import numpy as np
import matplotlib.pyplot as plt
mean1, mean2, var1, var2, var3 = [],[],[],[],[]
values = range(1,20) # down-scaling factors
for M in values:
N = 100 # size of an array
a = np.random.random((N*M,N*M)) # large array
b = np.reshape(a, (N, M, N, M))
b = np.mean(np.mean(b, axis=3), axis=1)
assert b.shape == (N,N) #coarsegrained array
c = scipy.ndimage.interpolation.zoom(a, 1./M, order=3, prefilter = True)
assert c.shape == b.shape
d = a[::M, ::M] # picking one random point within MxM block
assert b.shape == d.shape
mean1.append(b.mean())
mean2.append(c.mean())
var1.append(b.var())
var2.append(c.var())
var3.append(d.var())
plt.plot(values, mean1, label = "Mean coarsegraining")
plt.plot(values, mean2, label = "mean scipy.zoom")
plt.plot(values, var1, label = "Variance coarsegraining")
plt.plot(values, var2, label = "Variance zoom")
plt.plot(values, var3, label = "Variance Neareset neighbor")
plt.xscale("log")
plt.yscale("log")
plt.legend(loc=0)
plt.show()
EDIT: Performance of scipy.ndimage.zoom on a real noisy image is also very poor
The original image is here http://wiz.mit.edu/lena_noisy.png
The code that produced it:
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
from scipy.ndimage.interpolation import zoom
im = Image.open("/home/magus/Downloads/lena_noisy.png")
im = np.array(im)
plt.subplot(131)
plt.title("Original")
plt.imshow(im, cmap="Greys_r")
plt.subplot(132)
im2 = zoom(im, 1 / 8.)
plt.title("Scipy zoom 8x")
plt.imshow(im2, cmap="Greys_r", interpolation="none")
im.shape = (64, 8, 64, 8)
im3 = np.mean(im, axis=3)
im3 = np.mean(im3, axis=1)
plt.subplot(133)
plt.imshow(im3, cmap="Greys_r", interpolation="none")
plt.title("averaging over 8x8 blocks")
plt.show()
Nobody posted a working answer, so I will post a solution I currently use. Not the most elegant, but works.
import numpy as np
import scipy.ndimage
def zoomArray(inArray, finalShape, sameSum=False,
zoomFunction=scipy.ndimage.zoom, **zoomKwargs):
"""
Normally, one can use scipy.ndimage.zoom to do array/image rescaling.
However, scipy.ndimage.zoom does not coarsegrain images well. It basically
takes nearest neighbor, rather than averaging all the pixels, when
coarsegraining arrays. This increases noise. Photoshop doesn't do that, and
performs some smart interpolation-averaging instead.
If you were to coarsegrain an array by an integer factor, e.g. 100x100 ->
25x25, you just need to do block-averaging, that's easy, and it reduces
noise. But what if you want to coarsegrain 100x100 -> 30x30?
Then my friend you are in trouble. But this function will help you. This
function will blow up your 100x100 array to a 120x120 array using
scipy.ndimage zoom Then it will coarsegrain a 120x120 array by
block-averaging in 4x4 chunks.
It will do it independently for each dimension, so if you want a 100x100
array to become a 60x120 array, it will blow up the first and the second
dimension to 120, and then block-average only the first dimension.
Parameters
----------
inArray: n-dimensional numpy array (1D also works)
finalShape: resulting shape of an array
sameSum: bool, preserve a sum of the array, rather than values.
by default, values are preserved
zoomFunction: by default, scipy.ndimage.zoom. You can plug your own.
zoomKwargs: a dict of options to pass to zoomFunction.
"""
inArray = np.asarray(inArray, dtype=np.double)
inShape = inArray.shape
assert len(inShape) == len(finalShape)
mults = [] # multipliers for the final coarsegraining
for i in range(len(inShape)):
if finalShape[i] < inShape[i]:
mults.append(int(np.ceil(inShape[i] / finalShape[i])))
else:
mults.append(1)
# shape to which to blow up
tempShape = tuple([i * j for i, j in zip(finalShape, mults)])
# stupid zoom doesn't accept the final shape. Carefully crafting the
# multipliers to make sure that it will work.
zoomMultipliers = np.array(tempShape) / np.array(inShape) + 0.0000001
assert zoomMultipliers.min() >= 1
# applying scipy.ndimage.zoom
rescaled = zoomFunction(inArray, zoomMultipliers, **zoomKwargs)
for ind, mult in enumerate(mults):
if mult != 1:
sh = list(rescaled.shape)
assert sh[ind] % mult == 0
newshape = sh[:ind] + [sh[ind] // mult, mult] + sh[ind + 1:]
rescaled.shape = newshape
rescaled = np.mean(rescaled, axis=ind + 1)
assert rescaled.shape == finalShape
if sameSum:
extraSize = np.prod(finalShape) / np.prod(inShape)
rescaled /= extraSize
return rescaled
myar = np.arange(16).reshape((4,4))
rescaled = zoomArray(myar, finalShape=(3, 5))
print(myar)
print(rescaled)
FWIW i found that order=1 at least preserves the mean a lot better than the default or order=3 (as expected really)

How can an almost arbitrary plane in a 3D dataset be plotted by matplotlib?

There is an array containing 3D data of shape e.g. (64,64,64), how do you plot a plane given by a point and a normal (similar to hkl planes in crystallography), through this dataset?
Similar to what can be done in MayaVi by rotating a plane through the data.
The resulting plot will contain non-square planes in most cases.
Can those be done with matplotlib (some sort of non-rectangular patch)?
Edit: I almost solved this myself (see below) but still wonder how non-rectangular patches can be plotted in matplotlib...?
Edit: Due to discussions below I restated the question.
This is funny, a similar question I replied to just today. The way to go is: interpolation. You can use griddata from scipy.interpolate:
Griddata
This page features a very nice example, and the signature of the function is really close to your data.
You still have to somehow define the points on you plane for which you want to interpolate the data. I will have a look at this, my linear algebra lessons where a couple of years ago
I have the penultimate solution for this problem. Partially solved by using the second answer to Plot a plane based on a normal vector and a point in Matlab or matplotlib :
# coding: utf-8
import numpy as np
from matplotlib.pyplot import imshow,show
A=np.empty((64,64,64)) #This is the data array
def f(x,y):
return np.sin(x/(2*np.pi))+np.cos(y/(2*np.pi))
xx,yy= np.meshgrid(range(64), range(64))
for x in range(64):
A[:,:,x]=f(xx,yy)*np.cos(x/np.pi)
N=np.zeros((64,64))
"""This is the plane we cut from A.
It should be larger than 64, due to diagonal planes being larger.
Will be fixed."""
normal=np.array([-1,-1,1]) #Define cut plane here. Normal vector components restricted to integers
point=np.array([0,0,0])
d = -np.sum(point*normal)
def plane(x,y): # Get plane's z values
return (-normal[0]*x-normal[1]*y-d)/normal[2]
def getZZ(x,y): #Get z for all values x,y. If z>64 it's out of range
for i in x:
for j in y:
if plane(i,j)<64:
N[i,j]=A[i,j,plane(i,j)]
getZZ(range(64),range(64))
imshow(N, interpolation="Nearest")
show()
It's not the ultimate solution since the plot is not restricted to points having a z value, planes larger than 64 * 64 are not accounted for and the planes have to be defined at (0,0,0).
For the reduced requirements, I prepared a simple example
import numpy as np
import pylab as plt
data = np.arange((64**3))
data.resize((64,64,64))
def get_slice(volume, orientation, index):
orientation2slicefunc = {
"x" : lambda ar:ar[index,:,:],
"y" : lambda ar:ar[:,index,:],
"z" : lambda ar:ar[:,:,index]
}
return orientation2slicefunc[orientation](volume)
plt.subplot(221)
plt.imshow(get_slice(data, "x", 10), vmin=0, vmax=64**3)
plt.subplot(222)
plt.imshow(get_slice(data, "x", 39), vmin=0, vmax=64**3)
plt.subplot(223)
plt.imshow(get_slice(data, "y", 15), vmin=0, vmax=64**3)
plt.subplot(224)
plt.imshow(get_slice(data, "z", 25), vmin=0, vmax=64**3)
plt.show()
This leads to the following plot:
The main trick is dictionary mapping orienations to lambda-methods, which saves us from writing annoying if-then-else-blocks. Of course you can decide to give different names,
e.g., numbers, for the orientations.
Maybe this helps you.
Thorsten
P.S.: I didn't care about "IndexOutOfRange", for me it's o.k. to let this exception pop out since it is perfectly understandable in this context.
I had to do something similar for a MRI data enhancement:
Probably the code can be optimized but it works as it is.
My data is 3 dimension numpy array representing an MRI scanner. It has size [128,128,128] but the code can be modified to accept any dimensions. Also when the plane is outside the cube boundary you have to give the default values to the variable fill in the main function, in my case I choose: data_cube[0:5,0:5,0:5].mean()
def create_normal_vector(x, y,z):
normal = np.asarray([x,y,z])
normal = normal/np.sqrt(sum(normal**2))
return normal
def get_plane_equation_parameters(normal,point):
a,b,c = normal
d = np.dot(normal,point)
return a,b,c,d #ax+by+cz=d
def get_point_plane_proximity(plane,point):
#just aproximation
return np.dot(plane[0:-1],point) - plane[-1]
def get_corner_interesections(plane, cube_dim = 128): #to reduce the search space
#dimension is 128,128,128
corners_list = []
only_x = np.zeros(4)
min_prox_x = 9999
min_prox_y = 9999
min_prox_z = 9999
min_prox_yz = 9999
for i in range(cube_dim):
temp_min_prox_x=abs(get_point_plane_proximity(plane,np.asarray([i,0,0])))
# print("pseudo distance x: {0}, point: [{1},0,0]".format(temp_min_prox_x,i))
if temp_min_prox_x < min_prox_x:
min_prox_x = temp_min_prox_x
corner_intersection_x = np.asarray([i,0,0])
only_x[0]= i
temp_min_prox_y=abs(get_point_plane_proximity(plane,np.asarray([i,cube_dim,0])))
# print("pseudo distance y: {0}, point: [{1},{2},0]".format(temp_min_prox_y,i,cube_dim))
if temp_min_prox_y < min_prox_y:
min_prox_y = temp_min_prox_y
corner_intersection_y = np.asarray([i,cube_dim,0])
only_x[1]= i
temp_min_prox_z=abs(get_point_plane_proximity(plane,np.asarray([i,0,cube_dim])))
#print("pseudo distance z: {0}, point: [{1},0,{2}]".format(temp_min_prox_z,i,cube_dim))
if temp_min_prox_z < min_prox_z:
min_prox_z = temp_min_prox_z
corner_intersection_z = np.asarray([i,0,cube_dim])
only_x[2]= i
temp_min_prox_yz=abs(get_point_plane_proximity(plane,np.asarray([i,cube_dim,cube_dim])))
#print("pseudo distance z: {0}, point: [{1},{2},{2}]".format(temp_min_prox_yz,i,cube_dim))
if temp_min_prox_yz < min_prox_yz:
min_prox_yz = temp_min_prox_yz
corner_intersection_yz = np.asarray([i,cube_dim,cube_dim])
only_x[3]= i
corners_list.append(corner_intersection_x)
corners_list.append(corner_intersection_y)
corners_list.append(corner_intersection_z)
corners_list.append(corner_intersection_yz)
corners_list.append(only_x.min())
corners_list.append(only_x.max())
return corners_list
def get_points_intersection(plane,min_x,max_x,data_cube,shape=128):
fill = data_cube[0:5,0:5,0:5].mean() #this can be a parameter
extended_data_cube = np.ones([shape+2,shape,shape])*fill
extended_data_cube[1:shape+1,:,:] = data_cube
diag_image = np.zeros([shape,shape])
min_x_value = 999999
for i in range(shape):
for j in range(shape):
for k in range(int(min_x),int(max_x)+1):
current_value = abs(get_point_plane_proximity(plane,np.asarray([k,i,j])))
#print("current_value:{0}, val: [{1},{2},{3}]".format(current_value,k,i,j))
if current_value < min_x_value:
diag_image[i,j] = extended_data_cube[k,i,j]
min_x_value = current_value
min_x_value = 999999
return diag_image
The way it works is the following:
you create a normal vector:
for example [5,0,3]
normal1=create_normal_vector(5, 0,3) #this is only to normalize
then you create a point:
(my cube data shape is [128,128,128])
point = [64,64,64]
You calculate the plane equation parameters, [a,b,c,d] where ax+by+cz=d
plane1=get_plane_equation_parameters(normal1,point)
then to reduce the search space you can calculate the intersection of the plane with the cube:
corners1 = get_corner_interesections(plane1,128)
where corners1 = [intersection [x,0,0],intersection [x,128,0],intersection [x,0,128],intersection [x,128,128], min intersection [x,y,z], max intersection [x,y,z]]
With all these you can calculate the intersection between the cube and the plane:
image1 = get_points_intersection(plane1,corners1[-2],corners1[-1],data_cube)
Some examples:
normal is [1,0,0] point is [64,64,64]
normal is [5,1,0],[5,1,1],[5,0,1] point is [64,64,64]:
normal is [5,3,0],[5,3,3],[5,0,3] point is [64,64,64]:
normal is [5,-5,0],[5,-5,-5],[5,0,-5] point is [64,64,64]:
Thank you.
The other answers here do not appear to be very efficient with explicit loops over pixels or using scipy.interpolate.griddata, which is designed for unstructured input data. Here is an efficient (vectorized) and generic solution.
There is a pure numpy implementation (for nearest-neighbor "interpolation") and one for linear interpolation, which delegates the interpolation to scipy.ndimage.map_coordinates. (The latter function probably didn't exist in 2013, when this question was asked.)
import numpy as np
from scipy.ndimage import map_coordinates
def slice_datacube(cube, center, eXY, mXY, fill=np.nan, interp=True):
"""Get a 2D slice from a 3-D array.
Copyright: Han-Kwang Nienhuys, 2020.
License: any of CC-BY-SA, CC-BY, BSD, GPL, LGPL
Reference: https://stackoverflow.com/a/62733930/6228891
Parameters:
- cube: 3D array, assumed shape (nx, ny, nz).
- center: shape (3,) with coordinates of center.
can be float.
- eXY: unit vectors, shape (2, 3) - for X and Y axes of the slice.
(unit vectors must be orthogonal; normalization is optional).
- mXY: size tuple of output array (mX, mY) - int.
- fill: value to use for out-of-range points.
- interp: whether to interpolate (rather than using 'nearest')
Return:
- slice: array, shape (mX, mY).
"""
center = np.array(center, dtype=float)
assert center.shape == (3,)
eXY = np.array(eXY)/np.linalg.norm(eXY, axis=1)[:, np.newaxis]
if not np.isclose(eXY[0] # eXY[1], 0, atol=1e-6):
raise ValueError(f'eX and eY not orthogonal.')
# R: rotation matrix: data_coords = center + R # slice_coords
eZ = np.cross(eXY[0], eXY[1])
R = np.array([eXY[0], eXY[1], eZ], dtype=np.float32).T
# setup slice points P with coordinates (X, Y, 0)
mX, mY = int(mXY[0]), int(mXY[1])
Xs = np.arange(0.5-mX/2, 0.5+mX/2)
Ys = np.arange(0.5-mY/2, 0.5+mY/2)
PP = np.zeros((3, mX, mY), dtype=np.float32)
PP[0, :, :] = Xs.reshape(mX, 1)
PP[1, :, :] = Ys.reshape(1, mY)
# Transform to data coordinates (x, y, z) - idx.shape == (3, mX, mY)
if interp:
idx = np.einsum('il,ljk->ijk', R, PP) + center.reshape(3, 1, 1)
slice = map_coordinates(cube, idx, order=1, mode='constant', cval=fill)
else:
idx = np.einsum('il,ljk->ijk', R, PP) + (0.5 + center.reshape(3, 1, 1))
idx = idx.astype(np.int16)
# Find out which coordinates are out of range - shape (mX, mY)
badpoints = np.any([
idx[0, :, :] < 0,
idx[0, :, :] >= cube.shape[0],
idx[1, :, :] < 0,
idx[1, :, :] >= cube.shape[1],
idx[2, :, :] < 0,
idx[2, :, :] >= cube.shape[2],
], axis=0)
idx[:, badpoints] = 0
slice = cube[idx[0], idx[1], idx[2]]
slice[badpoints] = fill
return slice
# Demonstration
nx, ny, nz = 50, 70, 100
cube = np.full((nx, ny, nz), np.float32(1))
cube[nx//4:nx*3//4, :, :] += 1
cube[:, ny//2:ny*3//4, :] += 3
cube[:, :, nz//4:nz//2] += 7
cube[nx//3-2:nx//3+2, ny//2-2:ny//2+2, :] = 0 # black dot
Rz, Rx = np.pi/6, np.pi/4 # rotation angles around z and x
cz, sz = np.cos(Rz), np.sin(Rz)
cx, sx = np.cos(Rx), np.sin(Rx)
Rmz = np.array([[cz, -sz, 0], [sz, cz, 0], [0, 0, 1]])
Rmx = np.array([[1, 0, 0], [0, cx, -sx], [0, sx, cx]])
eXY = (Rmx # Rmz).T[:2]
slice = slice_datacube(
cube,
center=[nx/3, ny/2, nz*0.7],
eXY=eXY,
mXY=[80, 90],
fill=np.nan,
interp=False
)
import matplotlib.pyplot as plt
plt.close('all')
plt.imshow(slice.T) # imshow expects shape (mY, mX)
plt.colorbar()
Output (for interp=False):
For this test case (50x70x100 datacube, 80x90 slice size) the run time is 376 µs (interp=False) and 550 µs (interp=True) on my laptop.

Categories

Resources