I'm trying to create a scrollable multiplot based on the answer to this question:
Creating a scrollable multiplot with python's pylab
Lines created using ax.plot() are updating correctly, however I'm unable to figure out how to update artists created using xvlines() and fill_between().
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
from matplotlib.widgets import Slider
#create dataframes
dfs={}
for x in range(100):
col1=np.random.normal(10,0.5,30)
col2=(np.repeat([5,8,7],np.round(np.random.dirichlet(np.ones(3),size=1)*31)[0].tolist()))[:30]
col3=np.random.randint(4,size=30)
dfs[x]=pd.DataFrame({'col1':col1,'col2':col2,'col3':col3})
#create figure,axis,subplot
fig = plt.figure()
gs = gridspec.GridSpec(1,1,hspace=0,wspace=0,left=0.1,bottom=0.1)
ax = plt.subplot(gs[0])
ax.set_ylim([0,12])
#slider
frame=0
axframe = plt.axes([0.13, 0.02, 0.75, 0.03])
sframe = Slider(axframe, 'frame', 0, 99, valinit=0,valfmt='%d')
#plots
ln1,=ax.plot(dfs[0].index,dfs[0]['col1'])
ln2,=ax.plot(dfs[0].index,dfs[0]['col2'],c='black')
#artists
ax.fill_between(dfs[0].index,y1=dfs[0]['col2']-0.5,y2=dfs[0]['col2']+0.5,where=dfs[0]['col2']==5,facecolor='r',edgecolors='none',alpha=0.5)
ax.fill_between(dfs[0].index,y1=dfs[0]['col2']-0.5,y2=dfs[0]['col2']+0.5,where=dfs[0]['col2']==8,facecolor='b',edgecolors='none',alpha=0.5)
ax.fill_between(dfs[0].index,y1=dfs[0]['col2']-0.5,y2=dfs[0]['col2']+0.5,where=dfs[0]['col2']==7,facecolor='g',edgecolors='none',alpha=0.5)
ax.vlines(x=dfs[0]['col3'].index,ymin=0,ymax=dfs[0]['col3'],color='black')
#update plots
def update(val):
frame = np.floor(sframe.val)
ln1.set_ydata(dfs[frame]['col1'])
ln2.set_ydata(dfs[frame]['col2'])
ax.set_title('Frame ' + str(int(frame)))
plt.draw()
#connect callback to slider
sframe.on_changed(update)
plt.show()
This is what it looks like at the moment
I can't apply the same approach as for plot(), since the following produces an error message:
ln3,=ax.fill_between(dfs[0].index,y1=dfs[0]['col2']-0.5,y2=dfs[0]['col2']+0.5,where=dfs[0]['col2']==5,facecolor='r',edgecolors='none',alpha=0.5)
TypeError: 'PolyCollection' object is not iterable
This is what it's meant to look like on each frame
fill_between returns a PolyCollection, which expects a list (or several lists) of vertices upon creation. Unfortunately I haven't found a way to retrieve the vertices that where used to create the given PolyCollection, but in your case it is easy enough to create the PolyCollection directly (thereby avoiding the use of fill_between) and then update its vertices upon frame change.
Below a version of your code that does what you are after:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
from matplotlib.widgets import Slider
from matplotlib.collections import PolyCollection
#create dataframes
dfs={}
for x in range(100):
col1=np.random.normal(10,0.5,30)
col2=(np.repeat([5,8,7],np.round(np.random.dirichlet(np.ones(3),size=1)*31)[0].tolist()))[:30]
col3=np.random.randint(4,size=30)
dfs[x]=pd.DataFrame({'col1':col1,'col2':col2,'col3':col3})
#create figure,axis,subplot
fig = plt.figure()
gs = gridspec.GridSpec(1,1,hspace=0,wspace=0,left=0.1,bottom=0.1)
ax = plt.subplot(gs[0])
ax.set_ylim([0,12])
#slider
frame=0
axframe = plt.axes([0.13, 0.02, 0.75, 0.03])
sframe = Slider(axframe, 'frame', 0, 99, valinit=0,valfmt='%d')
#plots
ln1,=ax.plot(dfs[0].index,dfs[0]['col1'])
ln2,=ax.plot(dfs[0].index,dfs[0]['col2'],c='black')
##additional code to update the PolyCollections
val_r = 5
val_b = 8
val_g = 7
def update_collection(collection, value, frame = 0):
xs = np.array(dfs[frame].index)
ys = np.array(dfs[frame]['col2'])
##we need to catch the case where no points with y == value exist:
try:
minx = np.min(xs[ys == value])
maxx = np.max(xs[ys == value])
miny = value-0.5
maxy = value+0.5
verts = np.array([[minx,miny],[maxx,miny],[maxx,maxy],[minx,maxy]])
except ValueError:
verts = np.zeros((0,2))
finally:
collection.set_verts([verts])
#artists
##ax.fill_between(dfs[0].index,y1=dfs[0]['col2']-0.5,y2=dfs[0]['col2']+0.5,where=dfs[0]['col2']==5,facecolor='r',edgecolors='none',alpha=0.5)
reds = PolyCollection([],facecolors = ['r'], alpha = 0.5)
ax.add_collection(reds)
update_collection(reds,val_r)
##ax.fill_between(dfs[0].index,y1=dfs[0]['col2']-0.5,y2=dfs[0]['col2']+0.5,where=dfs[0]['col2']==8,facecolor='b',edgecolors='none',alpha=0.5)
blues = PolyCollection([],facecolors = ['b'], alpha = 0.5)
ax.add_collection(blues)
update_collection(blues, val_b)
##ax.fill_between(dfs[0].index,y1=dfs[0]['col2']-0.5,y2=dfs[0]['col2']+0.5,where=dfs[0]['col2']==7,facecolor='g',edgecolors='none',alpha=0.5)
greens = PolyCollection([],facecolors = ['g'], alpha = 0.5)
ax.add_collection(greens)
update_collection(greens, val_g)
ax.vlines(x=dfs[0]['col3'].index,ymin=0,ymax=dfs[0]['col3'],color='black')
#update plots
def update(val):
frame = np.floor(sframe.val)
ln1.set_ydata(dfs[frame]['col1'])
ln2.set_ydata(dfs[frame]['col2'])
ax.set_title('Frame ' + str(int(frame)))
##updating the PolyCollections:
update_collection(reds,val_r, frame)
update_collection(blues,val_b, frame)
update_collection(greens,val_g, frame)
plt.draw()
#connect callback to slider
sframe.on_changed(update)
plt.show()
Each of the three PolyCollections (reds, blues, and greens) has only four vertices (the edges of the rectangles), which are determined based on the given data (which is done in update_collections). The result looks like this:
Tested in Python 3.5
Your error
TypeError: 'PolyCollection' object is not iterable
can be avoided by removing the comma after l3:
l3 = ax.fill_between(xx, y1, y2, **kwargs)
The return value is a PolyCollection, you need to update its vertices during the update() function. An alternative to the other answer posted here is to make fill_between() give you a new PolyCollection, and then get its vertices and use them to update those of l3:
def update(val):
dummy_l3 = ax.fill_between(xx, y1, y2, **kwargs)
verts = [ path._vertices for path in dummy_l3.get_paths() ]
codes = [ path._codes for path in dummy_l3.get_paths() ]
dummy_l3.remove()
l3.set_verts_and_codes(verts, codes)
plt.draw()
The above code does not run for me; however, to refresh fill_between the following works for me
%matplotlib inline
import numpy as np
from IPython import display
import matplotlib.pyplot as plt
import time
hdisplay = display.display("", display_id=True)
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
x = np.linspace(0,1,100)
ax.set_title("Test")
ax.set_xlim()
y = np.random.random(size=(100))
dy = 0.1
l = ax.plot(x,y,":",color="red")
b = ax.fill_between( x, y-dy, y+dy, color="red", alpha=0.2 )
hdisplay.update(fig)
for i in range(5):
time.sleep(1)
ax.set_title("Test %ld" % i)
y = np.random.random(size=(100))
l[0].set_ydata( y )
b.remove()
b = ax.fill_between( x, y-dy, y+dy, color="red", alpha=0.2 )
plt.draw()
hdisplay.update(fig)
plt.close(fig)
Related
I am trying to animate a histogram using matplotlib and I want to show the different bars using a colormap, e.g:
I have this working when I clear the complete figure every frame and then redraw everything. But this is very slow, so I am trying out the example by matplotlib itself.
This works and is very fast, but unfortunately I have no idea on how to specify a colormap because it is using the patches.PathPatch object to draw the histogram now. I can only get it to work with the same single color for every individual bar.
How can I specify a gradient or colormap to achieve the desired result shown above?
Here is an example of a working animation with a single color which I am currently using.
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import matplotlib.path as path
import matplotlib.animation as animation
# Fixing random state for reproducibility
np.random.seed(19680801)
# histogram our data with numpy
data = np.random.randn(1000)
n, bins = np.histogram(data, 100)
# get the corners of the rectangles for the histogram
left = np.array(bins[:-1])
right = np.array(bins[1:])
bottom = np.zeros(len(left))
top = bottom + n
nrects = len(left)
nverts = nrects * (1 + 3 + 1)
verts = np.zeros((nverts, 2))
codes = np.ones(nverts, int) * path.Path.LINETO
codes[0::5] = path.Path.MOVETO
codes[4::5] = path.Path.CLOSEPOLY
verts[0::5, 0] = left
verts[0::5, 1] = bottom
verts[1::5, 0] = left
verts[1::5, 1] = top
verts[2::5, 0] = right
verts[2::5, 1] = top
verts[3::5, 0] = right
verts[3::5, 1] = bottom
patch = None
def animate(i):
# simulate new data coming in
data = np.random.randn(1000)
n, bins = np.histogram(data, 100)
top = bottom + n
verts[1::5, 1] = top
verts[2::5, 1] = top
return [patch, ]
fig, ax = plt.subplots()
barpath = path.Path(verts, codes)
patch = patches.PathPatch(
barpath, facecolor='green', edgecolor='yellow', alpha=0.5)
ax.add_patch(patch)
ax.set_xlim(left[0], right[-1])
ax.set_ylim(bottom.min(), top.max())
ani = animation.FuncAnimation(fig, animate, 100, repeat=False, blit=True)
plt.show()
I recommend u using BarContainer, you can change bar color individually. In your example, the path is single object, matplotlib seems not to support gradient color for a single patch (not sure though).
import numpy as np
import matplotlib.pyplot as plt
# Fixing random state for reproducibility
np.random.seed(19680801)
# histogram our data with numpy
data = np.random.randn(1000)
colors = plt.cm.coolwarm(np.linspace(0, 1, 100))
def animate(i):
data = np.random.randn(1000)
bc = ax.hist(data, 100)[2]
for i, e in enumerate(bc):
e.set_color(colors[i])
return bc
fig, ax = plt.subplots(1, 1, figsize=(7.2, 7.2))
ani = animation.FuncAnimation(fig, animate, 100, repeat=False, blit=True)
I need to do step by step some numerical calculation algorithms visually, as in the figure below: (gif)
Font
How can I do this animation with matplotlib? Is there any way to visually present these transitions? As transformation of matrices, sum, transposition, using a loop and it presenting the transitions etc.
My goal is not to use graphics but the same matrix representation. This is to facilitate the understanding of the algorithms.
Since matrices can be plotted easily with imshow, one could create such table with an imshow plot and adjust the data according to the current animation step.
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.ticker as mticker
import matplotlib.animation
#####################
# Array preparation
#####################
#input array
a = np.random.randint(50,150, size=(5,5))
# kernel
kernel = np.array([[ 0,-1, 0], [-1, 5,-1], [ 0,-1, 0]])
# visualization array (2 bigger in each direction)
va = np.zeros((a.shape[0]+2, a.shape[1]+2), dtype=int)
va[1:-1,1:-1] = a
#output array
res = np.zeros_like(a)
#colorarray
va_color = np.zeros((a.shape[0]+2, a.shape[1]+2))
va_color[1:-1,1:-1] = 0.5
#####################
# Create inital plot
#####################
fig = plt.figure(figsize=(8,4))
def add_axes_inches(fig, rect):
w,h = fig.get_size_inches()
return fig.add_axes([rect[0]/w, rect[1]/h, rect[2]/w, rect[3]/h])
axwidth = 3.
cellsize = axwidth/va.shape[1]
axheight = cellsize*va.shape[0]
ax_va = add_axes_inches(fig, [cellsize, cellsize, axwidth, axheight])
ax_kernel = add_axes_inches(fig, [cellsize*2+axwidth,
(2+res.shape[0])*cellsize-kernel.shape[0]*cellsize,
kernel.shape[1]*cellsize,
kernel.shape[0]*cellsize])
ax_res = add_axes_inches(fig, [cellsize*3+axwidth+kernel.shape[1]*cellsize,
2*cellsize,
res.shape[1]*cellsize,
res.shape[0]*cellsize])
ax_kernel.set_title("Kernel", size=12)
im_va = ax_va.imshow(va_color, vmin=0., vmax=1.3, cmap="Blues")
for i in range(va.shape[0]):
for j in range(va.shape[1]):
ax_va.text(j,i, va[i,j], va="center", ha="center")
ax_kernel.imshow(np.zeros_like(kernel), vmin=-1, vmax=1, cmap="Pastel1")
for i in range(kernel.shape[0]):
for j in range(kernel.shape[1]):
ax_kernel.text(j,i, kernel[i,j], va="center", ha="center")
im_res = ax_res.imshow(res, vmin=0, vmax=1.3, cmap="Greens")
res_texts = []
for i in range(res.shape[0]):
row = []
for j in range(res.shape[1]):
row.append(ax_res.text(j,i, "", va="center", ha="center"))
res_texts.append(row)
for ax in [ax_va, ax_kernel, ax_res]:
ax.tick_params(left=False, bottom=False, labelleft=False, labelbottom=False)
ax.yaxis.set_major_locator(mticker.IndexLocator(1,0))
ax.xaxis.set_major_locator(mticker.IndexLocator(1,0))
ax.grid(color="k")
###############
# Animation
###############
def init():
for row in res_texts:
for text in row:
text.set_text("")
def animate(ij):
i,j=ij
o = kernel.shape[1]//2
# calculate result
res_ij = (kernel*va[1+i-o:1+i+o+1, 1+j-o:1+j+o+1]).sum()
res_texts[i][j].set_text(res_ij)
# make colors
c = va_color.copy()
c[1+i-o:1+i+o+1, 1+j-o:1+j+o+1] = 1.
im_va.set_array(c)
r = res.copy()
r[i,j] = 1
im_res.set_array(r)
i,j = np.indices(res.shape)
ani = matplotlib.animation.FuncAnimation(fig, animate, init_func=init,
frames=zip(i.flat, j.flat), interval=400)
ani.save("algo.gif", writer="imagemagick")
plt.show()
This example sets up the animation inline in a Jupyter notebook. I suppose there's probably also a way to export as a gif, but I haven't looked into that so far.
Anyway, first thing to do is set up the table. I borrowed heavily from Export a Pandas dataframe as a table image for the render_mpl_table code.
The (adapted) version for this problem is:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import animation
from IPython.display import HTML
import six
width = 8
data = pd.DataFrame([[0]*width,
[0, *np.random.randint(95,105,size=width-2), 0],
[0, *np.random.randint(95,105,size=width-2), 0],
[0, *np.random.randint(95,105,size=width-2), 0]])
def render_mpl_table(data, col_width=3.0, row_height=0.625, font_size=14,
row_color="w", edge_color="black", bbox=[0, 0, 1, 1],
ax=None, col_labels=data.columns,
highlight_color="mediumpurple",
highlights=[], **kwargs):
if ax is None:
size = (np.array(data.shape[::-1]) + np.array([0, 1])) *
np.array([col_width, row_height])
fig, ax = plt.subplots(figsize=size)
ax.axis('off')
mpl_table = ax.table(cellText=data.values, bbox=bbox, colLabels=col_labels,
**kwargs)
mpl_table.auto_set_font_size(False)
mpl_table.set_fontsize(font_size)
for k, cell in six.iteritems(mpl_table._cells):
cell.set_edgecolor(edge_color)
if k in highlights:
cell.set_facecolor(highlight_color)
elif data.iat[k] > 0:
cell.set_facecolor("lightblue")
else:
cell.set_facecolor(row_color)
return fig, ax, mpl_table
fig, ax, mpl_table = render_mpl_table(data, col_width=2.0, col_labels=None,
highlights=[(0,2),(0,3),(1,2),(1,3)])
In this case, the cells to highlight in a different color are given by an array of tuples that specify the row and column.
For the animation, we need to set up a function that draws the table with different highlights:
def update_table(i, *args, **kwargs):
r = i//(width-1)
c = i%(width-1)
highlights=[(r,c),(r,c+1),(r+1,c),(r+1,c+1)]
for k, cell in six.iteritems(mpl_table._cells):
cell.set_edgecolor("black")
if k in highlights:
cell.set_facecolor("mediumpurple")
elif data.iat[k] > 0:
cell.set_facecolor("lightblue")
else:
cell.set_facecolor("white")
return (mpl_table,)
This forcibly updates the colors for all cells in the table. The highlights array is computed based on the current frame. The width and height of the table are kind of hard-coded in this example, but that shouldn't be super hard to change based on the shape of your input data.
We create an animation based on the existing fig and update function:
a = animation.FuncAnimation(fig, update_table, (width-1)*3,
interval=750, blit=True)
And lastly we show it inline in our notebook:
HTML(a.to_jshtml())
I put this together in a notebook on github, see https://github.com/gurudave/so_examples/blob/master/mpl_animation.ipynb
Hope that's enough to get you going in the right direction!
Consider the following code which implements ArtistAnimation to animate two different subplots within the same figure object.
import numpy as np
import itertools
import matplotlib.pyplot as plt
import matplotlib.mlab as ml
import matplotlib.animation as animation
def f(x,y,a):
return ((x/a)**2+y**2)
avals = np.linspace(0.1,1,10)
xaxis = np.linspace(-2,2,9)
yaxis = np.linspace(-2,2,9)
xy = itertools.product(xaxis,yaxis)
xy = list(map(list,xy))
xy = np.array(xy)
x = xy[:,0]
y = xy[:,1]
fig, [ax1,ax2] = plt.subplots(2)
ims = []
for a in avals:
xi = np.linspace(min(x), max(x), len(x))
yi = np.linspace(min(y), max(y), len(y))
zi = ml.griddata(x, y, f(x, y, a), xi, yi, interp='linear') # turn it into grid data, this is what imshow takes
title = plt.text(35,-4,str(a), horizontalalignment = 'center')
im1 = ax1.imshow(zi, animated = True, vmin = 0, vmax = 400)
im2 = ax2.imshow(zi, animated=True, vmin=0, vmax=400)
ims.append([im1,im2, title])
ani = animation.ArtistAnimation(fig, ims, interval = 1000, blit = False)
plt.show()
In this case the number of items in im1 and im2 are the same, and the frame rate for each subplot is identical.
Now, imagine I have 2 lists with different numbers of items, and that I wish ArtistAnimate to go through the frames in the same total time. Initially I thought of manipulating the interval keyword in the ArtistAnimation call but this implies that you can set different intervals for different artists, which I don't think is possible.
Anyway, I think the basic idea is pretty clear len(im1) is not equal to len(im2), but the animation needs to go through them all in the same amount of time.
Is there any way to do this please? Thanks
EDIT
While I try out the answer provided below, I should add that I would rather use ArtistAnimation due to the structure of my data. If there are no alternatives I will revert to the solution below.
Yes that is possible, kinda, using Funcanimation and encapsulating your data inside func.
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
arr1 = np.random.rand(300,3,4)
arr2 = np.random.rand(200,5,6)
fig, (ax1, ax2) = plt.subplots(1,2)
img1 = ax1.imshow(arr1[0])
img2 = ax2.imshow(arr2[0])
# set relative display rates
r1 = 2
r2 = 3
def animate(ii):
if ii % r1:
img1.set_data(arr1[ii/r1])
if ii % r2:
img2.set_data(arr2[ii/r2])
return img1, img2
ani = animation.FuncAnimation(fig, func=animate, frames=np.arange(0, 600))
plt.show()
Sorry in advance if this is a little long winded but if I cut it down too much the problem is lost. I am trying to make a module on top of pandas and matplotlib which will give me the ability to make profile plots and profile matrices analogous to scatter_matrix. I am pretty sure my problem comes down to what object I need to return from Profile() so that I can handle Axes manipulation in Profile_Matrix(). Then the question is what to return form Profile_Matrix() so I can edit subplots.
My module (ProfileModule.py) borrows a lot from https://github.com/pydata/pandas/blob/master/pandas/tools/plotting.py and looks like:
import pandas as pd
from pandas import Series, DataFrame
import numpy as np
import matplotlib.pyplot as plt
def Profile(x,y,nbins,xmin,xmax):
df = DataFrame({'x' : x , 'y' : y})
binedges = xmin + ((xmax-xmin)/nbins) * np.arange(nbins+1)
df['bin'] = np.digitize(df['x'],binedges)
bincenters = xmin + ((xmax-xmin)/nbins)*np.arange(nbins) + ((xmax-xmin)/(2*nbins))
ProfileFrame = DataFrame({'bincenters' : bincenters, 'N' : df['bin'].value_counts(sort=False)},index=range(1,nbins+1))
bins = ProfileFrame.index.values
for bin in bins:
ProfileFrame.ix[bin,'ymean'] = df.ix[df['bin']==bin,'y'].mean()
ProfileFrame.ix[bin,'yStandDev'] = df.ix[df['bin']==bin,'y'].std()
ProfileFrame.ix[bin,'yMeanError'] = ProfileFrame.ix[bin,'yStandDev'] / np.sqrt(ProfileFrame.ix[bin,'N'])
fig = plt.figure();
ax = ProfilePlot.add_subplot(1, 1, 1)
plt.errorbar(ProfileFrame['bincenters'], ProfileFrame['ymean'], yerr=ProfileFrame['yMeanError'], xerr=(xmax-xmin)/(2*nbins), fmt=None)
return ax
#or should I "return fig"
def Profile_Matrix(frame):
import pandas.core.common as com
import pandas.tools.plotting as plots
from pandas.compat import lrange
from matplotlib.artist import setp
range_padding=0.05
df = frame._get_numeric_data()
n = df.columns.size
fig, axes = plots._subplots(nrows=n, ncols=n, squeeze=False)
# no gaps between subplots
fig.subplots_adjust(wspace=0, hspace=0)
mask = com.notnull(df)
boundaries_list = []
for a in df.columns:
values = df[a].values[mask[a].values]
rmin_, rmax_ = np.min(values), np.max(values)
rdelta_ext = (rmax_ - rmin_) * range_padding / 2.
boundaries_list.append((rmin_ - rdelta_ext, rmax_+ rdelta_ext))
for i, a in zip(lrange(n), df.columns):
for j, b in zip(lrange(n), df.columns):
ax = axes[i, j]
common = (mask[a] & mask[b]).values
nbins = 100
(xmin,xmax) = boundaries_list[i]
ax=Profile(df[b][common],df[a][common],nbins,xmin,xmax)
#Profile(df[b][common].values,df[a][common].values,nbins,xmin,xmax)
ax.set_xlabel('')
ax.set_ylabel('')
plots._label_axis(ax, kind='x', label=b, position='bottom', rotate=True)
plots._label_axis(ax, kind='y', label=a, position='left')
if j!= 0:
ax.yaxis.set_visible(False)
if i != n-1:
ax.xaxis.set_visible(False)
for ax in axes.flat:
setp(ax.get_xticklabels(), fontsize=8)
setp(ax.get_yticklabels(), fontsize=8)
return axes
This will run with something like:
import pandas as pd
from pandas import Series, DataFrame
import numpy as np
import matplotlib.pyplot as plt
import ProfileModule as pm
x = np.random.uniform(0, 100, size=1000)
y = x *x + 50*x*np.random.randn(1000)
z = x *y + 50*y*np.random.randn(1000)
nbins = 25
xmax = 100
xmin = 0
ProfilePlot = pm.Profile(x,y,nbins,xmin,xmax)
plt.title("Look this works!")
#This does not work as expected
frame = DataFrame({'z' : z,'x' : x , 'y' : y})
ProfileMatrix = pm.Profile_Matrix(frame)
plt.show()
This would hopefully produce a simple profile plot and a 3x3 profile matrix but it does not. I have tried various different methods to get this to work but I imagine it is not worth explaining them all.
I should mention I am using Enthought Canopy Express on Windows 7. Sorry for the long post and thanks again for any help with the code. This is my first week using Python.
You should pass around Axes objects and break your functions up to operate on a single axes at a time. You are close, but just change
import numpy as np
import matplotlib.pyplot as plt
def _profile(ax, x, y):
ln, = ax.plot(x, y)
# return the Artist created
return ln
def profile_matrix(n, m):
fig, ax_array = plt.subplots(n, m, sharex=True, sharey=True)
for ax in np.ravel(ax_array):
_profile(ax, np.arange(50), np.random.rand(50))
profile_matrix(3, 3)
I have a bar graph which retrieves its y values from a dict. Instead of showing several graphs with all the different values and me having to close every single one, I need it to update values on the same graph. Is there a solution for this?
Here is an example of how you can animate a bar plot.
You call plt.bar only once, save the return value rects, and then call rect.set_height to modify the bar plot.
Calling fig.canvas.draw() updates the figure.
import matplotlib
matplotlib.use('TKAgg')
import matplotlib.pyplot as plt
import numpy as np
def animated_barplot():
# http://www.scipy.org/Cookbook/Matplotlib/Animations
mu, sigma = 100, 15
N = 4
x = mu + sigma*np.random.randn(N)
rects = plt.bar(range(N), x, align = 'center')
for i in range(50):
x = mu + sigma*np.random.randn(N)
for rect, h in zip(rects, x):
rect.set_height(h)
fig.canvas.draw()
fig = plt.figure()
win = fig.canvas.manager.window
win.after(100, animated_barplot)
plt.show()
I've simplified the above excellent solution to its essentials, with more details at my blogpost:
import numpy as np
import matplotlib.pyplot as plt
numBins = 100
numEvents = 100000
file = 'datafile_100bins_100000events.histogram'
histogramSeries = np.loadtext(file)
fig, ax = plt.subplots()
rects = ax.bar(range(numBins), np.ones(numBins)*40) # 40 is upper bound of y-axis
for i in range(numEvents):
for rect,h in zip(rects,histogramSeries[i,:]):
rect.set_height(h)
fig.canvas.draw()
plt.pause(0.001)