Quickselect implementation in Python has indeterminant results - python

I was studying algorithms and tried implementing quickSelect as explained here and asked here on StackOverflow.
I am curious as to why the code would return seemingly random result (instead of the expected k-th smallest element) when I wrote the code like this quickSelect(A2, k - len(A) - len(A2)) instead of like this quickSelect(A2, k - (len(A) - len(A2))). I've pasted the whole code and please feel free to uncomment/comment these two alternatives and run it. I thought the expressions like k - len(A) - len(A2) are evaluated BEFORE being passed into the next stack level?
import random
def quickSelect(A, k):
if not A:
return
pivot = random.choice(A)
A1 = []
A2 = []
for i in A:
if i < pivot:
A1.append(i)
else:
A2.append(i)
if k < len(A1):
return quickSelect(A1, k)
elif k > (len(A) - len(A2)):
# commented code below gives wrong results
# return quickSelect(A2, k - len(A) - len(A2))
return quickSelect(A2, k - (len(A) - len(A2)))
else:
return pivot
myList = [54,26,93,17,77,31,44,55,20]
# ordered array looks like this
# [17, 20, 26, 31, 44, 54, 55, 77, 93]
print(quickSelect(myList, 1))
print(quickSelect(myList, 2))
print(quickSelect(myList, 3))
print(quickSelect(myList, 4))
print(quickSelect(myList, 5))

Related

Middle partition in quicksort algorithm Python

I'm trying to implement quicksort algorithm which uses middle partitioning method. below is my code:
def middlepartition(A, p, r):
pvi = (p + r) // 2
pv = A[pvi]
while p < r:
while p < len(A) and A[p] <= pv:
p += 1
while A[r] > pv:
r -= 1
if p < r:
A[p], A[r] = A[r], A[p]
A[r], A[pvi] = A[pvi], A[r]
return r
def quicksort(A, p, r):
if p < r:
q = middlepartition(A, p, r)
quicksort(A, p, q - 1)
quicksort(A, q + 1, r)
A = [0, 1, 5, 23, 0, 2, 5, 56, 79, 3, 65]
quicksort(A, 0, len(A)-1)
print(A)
but somehow the code doesn't work fine and I'm really confused. the following is the output:
[0, 1, 2, 5, 23, 0, 3, 5, 56, 65, 79]
I seriously cant find the mistake...
This is your mistake:
A[r], A[pvi] = A[pvi], A[r]
(or at least a mistake - there could be other issues).
This bit of code occurs in variants of QuickSort that initially move (swap) the pivot element to the end of the array and then exclude that slot from the body of the partitioning loop. Once the partitioning loop is done, the initial pivot element is moved into place at the point where the pivot index has emerged.
That's not what you're doing here, though - when control reaches the above statement the pvi index points to a random element, so the swap messes you up. Just get rid of it - the partitioning loop will have already put the pivot element in the right place at that point.

Problem implementing Merge Sort from pseudo code python

Im trying to implement merge sort in Python based on the following pseudo code. I know there are many implementations out there, but I have not been able to find one that followis this pattern with a for loop at the end as opposed to while loop(s). Also, setting the last values in the subarrays to infinity is something I haven't seen in other implementation. NOTE: The following pseudo code has 1 based index i.e. index starts at 1. So I think my biggest issue is getting the indexing right. Right now its just not sorting properly and its really hard to follow with the debugger. My implementation is at the bottom.
Current Output:
Input: [9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
Merge Sort: [0, 0, 0, 3, 0, 5, 5, 5, 8, 0]
def merge_sort(arr, p, r):
if p < r:
q = (p + (r - 1)) // 2
merge_sort(arr, p, q)
merge_sort(arr, q + 1, r)
merge(arr, p, q, r)
def merge(A, p, q, r):
n1 = q - p + 1
n2 = r - q
L = [0] * (n1 + 1)
R = [0] * (n2 + 1)
for i in range(0, n1):
L[i] = A[p + i]
for j in range(0, n2):
R[j] = A[q + 1 + j]
L[n1] = 10000000 #dont know how to do infinity for integers
R[n2] = 10000000 #dont know how to do infinity for integers
i = 0
j = 0
for k in range(p, r):
if L[i] <= R[j]:
A[k] = L[i]
i += 1
else:
A[k] = R[j]
j += 1
return A
First of all you need to make sure if the interval represented by p and r is open or closed at its endpoints. The pseudocode (for loops include last index) establishes that the interval is closed at both endpoints: [p, r].
With last observation in mind you can note that for k in range(p, r): doesn't check last number so the correct line is for k in range(p, r + 1):.
You can represent "infinity" in you problem by using the maximum element of A in the range [p, r] plus one. That will make the job done.
You not need to return the array A because all changes are being done through its reference.
Also, q = (p + (r - 1)) // 2 isn't wrong (because p < r) but correct equation is q = (p + r) // 2 as the interval you want middle integer value of two numbers.
Here is a rewrite of the algorithm with “modern” conventions, which are the following:
Indices are 0-based
The end of a range is not part of that range; in other words, intervals are closed on the left and open on the right.
This is the resulting code:
INF = float('inf')
def merge_sort(A, p=0, r=None):
if r is None:
r = len(A)
if r - p > 1:
q = (p + r) // 2
merge_sort(A, p, q)
merge_sort(A, q, r)
merge(A, p, q, r)
def merge(A, p, q, r):
L = A[p:q]; L.append(INF)
R = A[q:r]; R.append(INF)
i = 0
j = 0
for k in range(p, r):
if L[i] <= R[j]:
A[k] = L[i]
i += 1
else:
A[k] = R[j]
j += 1
A = [433, 17, 585, 699, 942, 483, 235, 736, 629, 609]
merge_sort(A)
print(A)
# → [17, 235, 433, 483, 585, 609, 629, 699, 736, 942]
Notes:
Python has a handy syntax for copying a subrange.
There is no int infinity in Python, but we can use the float one, because ints and floats can always be compared.
There is one difference between this algorithm and the original one, but it is irrelevant. Since the “midpoint” q does not belong to the left range, L is shorter than R when the sum of their lengths is odd. In the original algorithm, q belongs to L, and so L is the longer of the two in this case. This does not change the correctness of the algorithm, since it simply swaps the roles of L and R. If for some reason you need not to have this difference, then you must calculate q like this:
q = (p + r + 1) // 2
In mathematics, we represent all real numbers which are greater than or equal to i and smaller than j by [i, j). Notice the use of [ and ) brackets here. I have used i and j in the same way in my code to represent the region that I am dealing with currently.
ThThe region [i, j) of an array covers all indexes (integer values) of this array which are greater or equal to i and smaller than j. i and j are 0-based indexes. Ignore the first_array and second_array the time being.
Please notice, that i and j define the region of the array that I am dealing with currently.
Examples to understand this better
If your region spans over the whole array, then i should be 0 and j should be the length of array [0, length).
The region [i, i + 1) has only index i in it.
The region [i, i + 2) has index i and i + 1 in it.
def mergeSort(first_array, second_array, i, j):
if j > i + 1:
mid = (i + j + 1) // 2
mergeSort(second_array, first_array, i, mid)
mergeSort(second_array, first_array, mid, j)
merge(first_array, second_array, i, mid, j)
One can see that I have calculated middle point as mid = (i + j + 1) // 2 or one can also use mid = (i + j) // 2 both will work. I will divide the region of the array that I am currently dealing with into 2 smaller regions using this calculated mid value.
In line 4 of the code, MergeSort is called on the region [i, mid) and in line 5, MergeSort is called on the region [mid, j).
You can access the whole code here.

Two number Sum program in python O(N^2)

I am used to write code in c++ but now I am trying to learn python. I came to know about the Python language and it is very popular among everyone. So I thought, let's give it a shot.
Currently I am preparing for companies interview questions and able to solve most of them in c++. Alongside which, I am trying to write the code for the same in Python. For the things which I am not familiar with, I do a google search or watch tutorials etc.
While I was writing code for my previously solved easy interview questions in python, I encountered a problem.
Code : Given an array of integers, return indices of the two numbers such that they add up to a specific target.
You may assume that each input would have exactly one solution, and you may not use the same element twice.
Given an array of integers, print the indices of the two numbers such that they add up to a specific target.
def twoNum(*arr, t):
cur = 0
x = 0
y = 0
for i in range (len(arr) - 1):
for j in range (len(arr) - 1):
if(i == j):
break
cur = arr[i] + arr[j]
if(t == cur):
x = arr[i]
y = arr[j]
break
if(t == cur):
break
print(f"{x} + {y} = {x+y} ")
arr = [3, 5, -4, 8, 11, 1, -1, 6]
target = 10
twoNum(arr, t=target)
So here is the problem: I have defined x, y in function and then used x = arr[i] and y = arr[j] and I m printing those values.
output coming is : is 0 + 0 = 10 (where target is 10)
This is I guess probably because I am using x = 0 and y = 0 initially in the function and it seems x and y values are not updating then I saw outline section in VSCode there I saw x and y are declared twice, once at the starting of the function and second in for loop.
Can anyone explain to me what is going on here?
For reference, here is an image of the code I wrote in C++
Change this:
def twoNum(*arr, t):
to this:
def twoNum(arr, t):
* is used to indicate that there will be a variable number of arguments, see this. It is not for pointers as in C++.
Basically what you are trying to do is to write C code in python.
I would instead try to focus first on how to write python code in a 'pythonic' way first. But for your question - sloving it your way using brute force in python:
In [173]: def two_num(arr, t):
...: for i in arr:
...: for j in arr[i + 1: ]:
...: if i + j == t:
...: print(f"{i} + {j} = {t}")
...: return
Here's a way to implement a brute force approach using a list comprehension:
arr = [1,3,5,7,9]
target = 6
i,j = next((i,j) for i,n in enumerate(arr[:-1]) for j,m in enumerate(arr[i+1:],i+1) if n+m==target)
output:
print(f"arr[{i}] + arr[{j}] = {arr[i]} + {arr[j]} = {target}")
# arr[0] + arr[2] = 1 + 5 = 6
Perhaps even more pythonic would be to use iterators:
from itertools import tee
iArr = enumerate(arr)
i,j = next((i,j) for i,n in iArr for j,m in tee(iArr,1)[0] if n+m==target)
When you get to implementing an O(n) solution, you should look into dictionaries:
d = { target-n:j for j,n in enumerate(arr) }
i,j = next( (i,d[m]) for i,m in enumerate(arr) if m in d and d[m] != i )

These Python functions don't have running times as expected

(I'm not sure if this question belongs here or CS forum. I kept it here because it has Python-specific code. Please migrate if needed!) I'm studying algorithms these days, using Python as my tool of choice. Today, I wanted to plot the running times three variations of a simple problem: Compute the prefix average of a given sequence (list).
Here are the three variations:
import timeit
seq = [20, 45, 45, 40, 12, 48, 67, 90, 0, 56, 12, 45, 67, 45, 34, 32, 20]
# Quadratic running time
def quad (S):
n = len(S)
A = [0] * n
for j in range(n):
total = 0
for i in range(j+1):
total += S[i]
A[j] = total / (j+1)
return A
# Use prev result
def prev (S):
n = len(S)
A = [0] * n
for j in range(n):
if j == 0:
A[j] = S[j]
else:
A[j] = (A[j-1]*j + S[j]) / (j+1)
return A
# Use Python's sum method
def summ (S):
n = len(S)
A = [0] * n
for j in range(n):
A[j] = sum(S[0:j+1])/(j+1)
return A
def plot_func (name):
for i in range(0, 1000000, 100000):
t = timeit.Timer('{}(seq)'.format(name), 'from __main__ import {}, seq'.format(name))
print(i, ',', t.timeit(number=i))
plot_func('quad')
plot_func('prev')
plot_func('summ')
So I'm collecting the running times of three algorithms and plotting them. My final data looked like this:
Input size Quadratic Prev Summ
(x100000)
1 4.92E-007 7.78E-007 3.47E-007
2 1.582717351 0.603501161 0.750457885
3 3.205707528 1.176623609 1.508853766
4 4.796092943 1.76059924 2.295842737
5 6.457349465 2.34945291 3.112500982
6 8.057410897 2.947556047 3.882303307
7 9.59740446 3.520847787 4.654968896
8 11.36328988 4.122617632 5.412608518
9 12.776150393 4.703240974 6.181500295
10 14.704703677 5.282404892 6.882074295
When plotted, these numbers result in:
Now, according to the textbook I'm following, the functions quad and summ are supposed to run in quadratic time, while prev will run in linear time. I can see that prev is significantly faster than quad and somewhat faster than summ, but all of these look like linear functions to me! Further, there is frighteningly little gap in summ and prev.
Could someone please explain what's wrong?
The asymptotic complexity of an algorithm means its dependence from input length. Here, you do not change the input size between runs, you just change the number of times to run each algorithm (as a parameter to timeit()):
for i in range(0, 1000000, 100000):
t = timeit.Timer('{}(seq)'.format(name), 'from __main__ import {}, seq'.format(name))
print(i, ',', t.timeit(number=i))
To get proper comparison, change the length of your sequence between runs.

Fibonacci numbers, with an one-liner in Python 3?

I know there is nothing wrong with writing with proper function structure, but I would like to know how can I find nth fibonacci number with most Pythonic way with a one-line.
I wrote that code, but It didn't seem to me best way:
>>> fib = lambda n:reduce(lambda x, y: (x[0]+x[1], x[0]), [(1,1)]*(n-2))[0]
>>> fib(8)
13
How could it be better and simplier?
fib = lambda n:reduce(lambda x,n:[x[1],x[0]+x[1]], range(n),[0,1])[0]
(this maintains a tuple mapped from [a,b] to [b,a+b], initialized to [0,1], iterated N times, then takes the first tuple element)
>>> fib(1000)
43466557686937456435688527675040625802564660517371780402481729089536555417949051
89040387984007925516929592259308032263477520968962323987332247116164299644090653
3187938298969649928516003704476137795166849228875L
(note that in this numbering, fib(0) = 0, fib(1) = 1, fib(2) = 1, fib(3) = 2, etc.)
(also note: reduce is a builtin in Python 2.7 but not in Python 3; you'd need to execute from functools import reduce in Python 3.)
A rarely seen trick is that a lambda function can refer to itself recursively:
fib = lambda n: n if n < 2 else fib(n-1) + fib(n-2)
By the way, it's rarely seen because it's confusing, and in this case it is also inefficient. It's much better to write it on multiple lines:
def fibs():
a = 0
b = 1
while True:
yield a
a, b = b, a + b
I recently learned about using matrix multiplication to generate Fibonacci numbers, which was pretty cool. You take a base matrix:
[1, 1]
[1, 0]
and multiply it by itself N times to get:
[F(N+1), F(N)]
[F(N), F(N-1)]
This morning, doodling in the steam on the shower wall, I realized that you could cut the running time in half by starting with the second matrix, and multiplying it by itself N/2 times, then using N to pick an index from the first row/column.
With a little squeezing, I got it down to one line:
import numpy
def mm_fib(n):
return (numpy.matrix([[2,1],[1,1]])**(n//2))[0,(n+1)%2]
>>> [mm_fib(i) for i in range(20)]
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181]
This is a closed expression for the Fibonacci series that uses integer arithmetic, and is quite efficient.
fib = lambda n:pow(2<<n,n+1,(4<<2*n)-(2<<n)-1)%(2<<n)
>> fib(1000)
4346655768693745643568852767504062580256466051737178
0402481729089536555417949051890403879840079255169295
9225930803226347752096896232398733224711616429964409
06533187938298969649928516003704476137795166849228875L
It computes the result in O(log n) arithmetic operations, each acting on integers with O(n) bits. Given that the result (the nth Fibonacci number) is O(n) bits, the method is quite reasonable.
It's based on genefib4 from http://fare.tunes.org/files/fun/fibonacci.lisp , which in turn was based on an a less efficient closed-form integer expression of mine (see: http://paulhankin.github.io/Fibonacci/)
If we consider the "most Pythonic way" to be elegant and effective then:
def fib(nr):
return int(((1 + math.sqrt(5)) / 2) ** nr / math.sqrt(5) + 0.5)
wins hands down. Why use a inefficient algorithm (and if you start using memoization we can forget about the oneliner) when you can solve the problem just fine in O(1) by approximation the result with the golden ratio? Though in reality I'd obviously write it in this form:
def fib(nr):
ratio = (1 + math.sqrt(5)) / 2
return int(ratio ** nr / math.sqrt(5) + 0.5)
More efficient and much easier to understand.
This is a non-recursive (anonymous) memoizing one liner
fib = lambda x,y=[1,1]:([(y.append(y[-1]+y[-2]),y[-1])[1] for i in range(1+x-len(y))],y[x])[1]
fib = lambda n, x=0, y=1 : x if not n else fib(n-1, y, x+y)
run time O(n), fib(0) = 0, fib(1) = 1, fib(2) = 1 ...
I'm Python newcomer, but did some measure for learning purposes. I've collected some fibo algorithm and took some measure.
from datetime import datetime
import matplotlib.pyplot as plt
from functools import wraps
from functools import reduce
from functools import lru_cache
import numpy
def time_it(f):
#wraps(f)
def wrapper(*args, **kwargs):
start_time = datetime.now()
f(*args, **kwargs)
end_time = datetime.now()
elapsed = end_time - start_time
elapsed = elapsed.microseconds
return elapsed
return wrapper
#time_it
def fibslow(n):
if n <= 1:
return n
else:
return fibslow(n-1) + fibslow(n-2)
#time_it
#lru_cache(maxsize=10)
def fibslow_2(n):
if n <= 1:
return n
else:
return fibslow_2(n-1) + fibslow_2(n-2)
#time_it
def fibfast(n):
if n <= 1:
return n
a, b = 0, 1
for i in range(1, n+1):
a, b = b, a + b
return a
#time_it
def fib_reduce(n):
return reduce(lambda x, n: [x[1], x[0]+x[1]], range(n), [0, 1])[0]
#time_it
def mm_fib(n):
return (numpy.matrix([[2, 1], [1, 1]])**(n//2))[0, (n+1) % 2]
#time_it
def fib_ia(n):
return pow(2 << n, n+1, (4 << 2 * n) - (2 << n)-1) % (2 << n)
if __name__ == '__main__':
X = range(1, 200)
# fibslow_times = [fibslow(i) for i in X]
fibslow_2_times = [fibslow_2(i) for i in X]
fibfast_times = [fibfast(i) for i in X]
fib_reduce_times = [fib_reduce(i) for i in X]
fib_mm_times = [mm_fib(i) for i in X]
fib_ia_times = [fib_ia(i) for i in X]
# print(fibslow_times)
# print(fibfast_times)
# print(fib_reduce_times)
plt.figure()
# plt.plot(X, fibslow_times, label='Slow Fib')
plt.plot(X, fibslow_2_times, label='Slow Fib w cache')
plt.plot(X, fibfast_times, label='Fast Fib')
plt.plot(X, fib_reduce_times, label='Reduce Fib')
plt.plot(X, fib_mm_times, label='Numpy Fib')
plt.plot(X, fib_ia_times, label='Fib ia')
plt.xlabel('n')
plt.ylabel('time (microseconds)')
plt.legend()
plt.show()
The result is usually the same.
Fiboslow_2 with recursion and cache, Fib integer arithmetic and Fibfast algorithms seems the best ones. Maybe my decorator not the best thing to measure performance, but for an overview it seemed good.
Another example, taking the cue from Mark Byers's answer:
fib = lambda n,a=0,b=1: a if n<=0 else fib(n-1,b,a+b)
I wanted to see if I could create an entire sequence, not just the final value.
The following will generate a list of length 100. It excludes the leading [0, 1] and works for both Python2 and Python3. No other lines besides the one!
(lambda i, x=[0,1]: [(x.append(x[y+1]+x[y]), x[y+1]+x[y])[1] for y in range(i)])(100)
Output
[1,
2,
3,
...
218922995834555169026,
354224848179261915075,
573147844013817084101]
Here's an implementation that doesn't use recursion, and only memoizes the last two values instead of the whole sequence history.
nthfib() below is the direct solution to the original problem (as long as imports are allowed)
It's less elegant than using the Reduce methods above, but, although slightly different that what was asked for, it gains the ability to to be used more efficiently as an infinite generator if one needs to output the sequence up to the nth number as well (re-writing slightly as fibgen() below).
from itertools import imap, islice, repeat
nthfib = lambda n: next(islice((lambda x=[0, 1]: imap((lambda x: (lambda setx=x.__setitem__, x0_temp=x[0]: (x[1], setx(0, x[1]), setx(1, x0_temp+x[1]))[0])()), repeat(x)))(), n-1, None))
>>> nthfib(1000)
43466557686937456435688527675040625802564660517371780402481729089536555417949051
89040387984007925516929592259308032263477520968962323987332247116164299644090653
3187938298969649928516003704476137795166849228875L
from itertools import imap, islice, repeat
fibgen = lambda:(lambda x=[0,1]: imap((lambda x: (lambda setx=x.__setitem__, x0_temp=x[0]: (x[1], setx(0, x[1]), setx(1, x0_temp+x[1]))[0])()), repeat(x)))()
>>> list(islice(fibgen(),12))
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144]
def fib(n):
x =[0,1]
for i in range(n):
x=[x[1],x[0]+x[1]]
return x[0]
take the cue from Jason S, i think my version have a better understanding.
Starting Python 3.8, and the introduction of assignment expressions (PEP 572) (:= operator), we can use and update a variable within a list comprehension:
fib = lambda n,x=(0,1):[x := (x[1], sum(x)) for i in range(n+1)][-1][0]
This:
Initiates the duo n-1 and n-2 as a tuple x=(0, 1)
As part of a list comprehension looping n times, x is updated via an assignment expression (x := (x[1], sum(x))) to the new n-1 and n-2 values
Finally, we return from the last iteration, the first part of the x
To solve this problem I got inspired by a similar question here in Stackoverflow Single Statement Fibonacci, and I got this single line function that can output a list of fibonacci sequence. Though, this is a Python 2 script, not tested on Python 3:
(lambda n, fib=[0,1]: fib[:n]+[fib.append(fib[-1] + fib[-2]) or fib[-1] for i in range(n-len(fib))])(10)
assign this lambda function to a variable to reuse it:
fib = (lambda n, fib=[0,1]: fib[:n]+[fib.append(fib[-1] + fib[-2]) or fib[-1] for i in range(n-len(fib))])
fib(10)
output is a list of fibonacci sequence:
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34]
I don't know if this is the most pythonic method but this is the best i could come up with:->
Fibonacci = lambda x,y=[1,1]:[1]*x if (x<2) else ([y.append(y[q-1] + y[q-2]) for q in range(2,x)],y)[1]
The above code doesn't use recursion, just a list to store the values.
My 2 cents
# One Liner
def nthfibonacci(n):
return long(((((1+5**.5)/2)**n)-(((1-5**.5)/2)**n))/5**.5)
OR
# Steps
def nthfibonacci(nth):
sq5 = 5**.5
phi1 = (1+sq5)/2
phi2 = -1 * (phi1 -1)
n1 = phi1**(nth+1)
n2 = phi2**(nth+1)
return long((n1 - n2)/sq5)
Why not use a list comprehension?
from math import sqrt, floor
[floor(((1+sqrt(5))**n-(1-sqrt(5))**n)/(2**n*sqrt(5))) for n in range(100)]
Without math imports, but less pretty:
[int(((1+(5**0.5))**n-(1-(5**0.5))**n)/(2**n*(5**0.5))) for n in range(100)]
import math
sqrt_five = math.sqrt(5)
phi = (1 + sqrt_five) / 2
fib = lambda n : int(round(pow(phi, n) / sqrt_five))
print([fib(i) for i in range(1, 26)])
single line lambda fibonacci but with some extra variables
Similar:
def fibonacci(n):
f=[1]+[0]
for i in range(n):
f=[sum(f)] + f[:-1]
print f[1]
A simple Fibonacci number generator using recursion
fib = lambda x: 1-x if x < 2 else fib(x-1)+fib(x-2)
print fib(100)
This takes forever to calculate fib(100) in my computer.
There is also closed form of Fibonacci numbers.
fib = lambda n: int(1/sqrt(5)*((1+sqrt(5))**n-(1-sqrt(5))**n)/2**n)
print fib(50)
This works nearly up to 72 numbers due to precision problem.
Lambda with logical operators
fibonacci_oneline = lambda n = 10, out = []: [ out.append(i) or i if i <= 1 else out.append(out[-1] + out[-2]) or out[-1] for i in range(n)]
here is how i do it ,however the function returns None for the list comprehension line part to allow me to insert a loop inside ..
so basically what it does is appending new elements of the fib seq inside of a list which is over two elements
>>f=lambda list,x :print('The list must be of 2 or more') if len(list)<2 else [list.append(list[-1]+list[-2]) for i in range(x)]
>>a=[1,2]
>>f(a,7)
You can generate once a list with some values and use as needed:
fib_fix = []
fib = lambda x: 1 if x <=2 else fib_fix[x-3] if x-2 <= len(fib_fix) else (fib_fix.append(fib(x-2) + fib(x-1)) or fib_fix[-1])
fib_x = lambda x: [fib(n) for n in range(1,x+1)]
fib_100 = fib_x(100)
than for example:
a = fib_fix[76]

Categories

Resources