Python modulo result differs from wolfram alpha? - python

When I run my python 3 program:
exp = 211
p = 199
q = 337
d = (exp ** (-1)) % ((p - 1)*(q - 1))
results in 211^(-1).
But when I run the calculation in wolfram alpha I get the result I was expecting.
I did some test outputs and the variables exp, p and q in the program are all the integer values I used in wolfram alpha.
My goal is to derive a private key from a (weakly) encrypted integer.
If I test my wolfram alpha result, I can decrypt the encrypted message correctly.

Wolfram Alpha is computing the modular inverse. That is, it's finding the integer x such that
exp*x == 1 mod (p - 1)*(q - 1)
This is not the same as the modulo operator %. Here, Python is simply calculating the remainder when 1/exp is divided by (p - 1)*(q - 1) when given the expression in your question.
Copying the Python code from this answer, you can compute the desired value with Python too:
>>> modinv(exp, (p - 1)*(q - 1))
45403

Wolfram Alpha does not have well-defined syntax. It takes arbitrary text you provide and attempts to figure out what you meant by that input. In this case, it decided you were probably looking for a modular inverse, and it gave you one.
Python has well-defined syntax. In Python, the parser does not take the ** and the % together and guess that that combination makes the two operators have a meaning other than their usual meaning. The ** is computed the usual way, and then % is the modulo operator. If you want a modular inverse, you'll have to write one yourself.

I think the idea here is that wolfram alpha and python define the modulo operation differently depending on the fact that you are dealing with integers or real numbers.
In this case, Wolfram Alpha is using the modulo inverse because it detects the first number is 0 < x < 1
More information about the definition on real numbers here

Python evaluates immediately (211^(-1) gets computed as 0.004739... and not ekpt as 1/211) and the modular Euclidan remainder for x and y is conventinally defined as x-floor(x/y)*y if any of x,y is a rational number. If you do your calculation with some dedicated number theoretic program like e.g.: GP/Pari
ep = 211;p = 199;q = 337;(ep ^ (-1)) % ((p - 1)*(q - 1))
you will get the result you expected to get because a) it keeps fractions as fractions as long as possible and b) knows about modular arithmetic.
Is you like Python you may take a look at the programms an libraries offered at SciPy. SymPy might be what you are looking for.

Related

Why does numpy.std() use abs()?

I checked the numpy library and found the following definition for the standard deviation in numpy:
std = sqrt(mean(abs(x - x.mean())**2))
Why is the abs() function used? - Because mathematically the square of a number will be positive per definition.
So I thought:
abs(x - x.mean())**2 == (x - x.mean())**2
The square of a real number is always positive, but this is not true for complex numbers.
A very simple example: j**2=-1
A more complex (pun intended) example: (3-2j)**2=(5-12j)
From documentation:
Note that, for complex numbers, std takes the absolute value before squaring, so that the result is always real and nonnegative.
Note:
Python uses j for the imaginary unit, while mathematicians uses i.

Right matrix division in Scipy/NumPy? [duplicate]

I have this line of MATLAB code:
a/b
I am using these inputs:
a = [1,2,3,4,5,6,7,8,9,1,2,3,4,5,6,7,8,9]
b = ones(25, 18)
This is the result (a 1x25 matrix):
[5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
What is MATLAB doing? I am trying to duplicate this behavior in Python, and the mrdivide documentation in MATLAB was unhelpful. Where does the 5 come from, and why are the rest of the values 0?
I have tried this with other inputs and receive similar results, usually just a different first element and zeros filling the remainder of the matrix. In Python when I use linalg.lstsq(b.T,a.T), all of the values in the first matrix returned (i.e. not the singular one) are 0.2. I have already tried right division in Python and it gives something completely off with the wrong dimensions.
I understand what a least square approximation is, I just need to know what mrdivide is doing.
Related:
Array division- translating from MATLAB to Python
MRDIVIDE or the / operator actually solves the xb = a linear system, as opposed to MLDIVIDE or the \ operator which will solve the system bx = a.
To solve a system xb = a with a non-symmetric, non-invertible matrix b, you can either rely on mridivide(), which is done via factorization of b with Gauss elimination, or pinv(), which is done via Singular Value Decomposition, and zero-ing of the singular values below a (default) tolerance level.
Here is the difference (for the case of mldivide): What is the difference between PINV and MLDIVIDE when I solve A*x=b?
When the system is overdetermined, both algorithms provide the
same answer. When the system is underdetermined, PINV will return the
solution x, that has the minimum norm (min NORM(x)). MLDIVIDE will
pick the solution with least number of non-zero elements.
In your example:
% solve xb = a
a = [1,2,3,4,5,6,7,8,9,1,2,3,4,5,6,7,8,9];
b = ones(25, 18);
the system is underdetermined, and the two different solutions will be:
x1 = a/b; % MRDIVIDE: sparsest solution (min L0 norm)
x2 = a*pinv(b); % PINV: minimum norm solution (min L2)
>> x1 = a/b
Warning: Rank deficient, rank = 1, tol = 2.3551e-014.
ans =
5.0000 0 0 ... 0
>> x2 = a*pinv(b)
ans =
0.2 0.2 0.2 ... 0.2
In both cases the approximation error of xb-a is non-negligible (non-exact solution) and the same, i.e. norm(x1*b-a) and norm(x2*b-a) will return the same result.
What is MATLAB doing?
A great break-down of the algorithms (and checks on properties) invoked by the '\' operator, depending upon the structure of matrix b is given in this post in scicomp.stackexchange.com. I am assuming similar options apply for the / operator.
For your example, MATLAB is most probably doing a Gaussian elimination, giving the sparsest solution amongst a infinitude (that's where the 5 comes from).
What is Python doing?
Python, in linalg.lstsq uses pseudo-inverse/SVD, as demonstrated above (that's why you get a vector of 0.2's). In effect, the following will both give you the same result as MATLAB's pinv():
from numpy import *
a = array([1,2,3,4,5,6,7,8,9,1,2,3,4,5,6,7,8,9])
b = ones((25, 18))
# xb = a: solve b.T x.T = a.T instead
x2 = linalg.lstsq(b.T, a.T)[0]
x2 = dot(a, linalg.pinv(b))
TL;DR: A/B = np.linalg.solve(B.conj().T, A.conj().T).conj().T
I did not find the earlier answers to create a satisfactory substitute, so I dug into Matlab's reference documents for mrdivide further and found the solution. I cannot explain the actual mathematics here or take credit for coming up with the answer. I'm just following Matlab's explanation. Additionally, I wanted to post the actual detail from Matlab to give credit. If it's a copyright issue, someone tell me and I'll remove the actual text.
%/ Slash or right matrix divide.
% A/B is the matrix division of B into A, which is roughly the
% same as A*INV(B) , except it is computed in a different way.
% More precisely, A/B = (B'\A')'. See MLDIVIDE for details.
%
% C = MRDIVIDE(A,B) is called for the syntax 'A / B' when A or B is an
% object.
%
% See also MLDIVIDE, RDIVIDE, LDIVIDE.
% Copyright 1984-2005 The MathWorks, Inc.
Note that the ' symbol indicates the complex conjugate transpose. In python using numpy, that requires .conj().T chained together.
Per this handy "cheat sheet" of numpy for matlab users, linalg.lstsq(b,a) -- linalg is numpy.linalg.linalg, a light-weight version of the full scipy.linalg.
a/b finds the least square solution to the system of linear equations bx = a
if b is invertible, this is a*inv(b), but if it isn't, the it is the x which minimises norm(bx-a)
You can read more about least squares on wikipedia.
according to matlab documentation, mrdivide will return at most k non-zero values, where k is the computed rank of b. my guess is that matlab in your case solves the least squares problem given by replacing b by b(:1) (which has the same rank). In this case the moore-penrose inverse b2 = b(1,:); inv(b2*b2')*b2*a' is defined and gives the same answer

Reversing pow function - finding the power [duplicate]

Given positive integers b, c, m where (b < m) is True it is to find a positive integer e such that
(b**e % m == c) is True
where ** is exponentiation (e.g. in Ruby, Python or ^ in some other languages) and % is modulo operation. What is the most effective algorithm (with the lowest big-O complexity) to solve it?
Example:
Given b=5; c=8; m=13 this algorithm must find e=7 because 5**7%13 = 8
From the % operator I'm assuming that you are working with integers.
You are trying to solve the Discrete Logarithm problem. A reasonable algorithm is Baby step, giant step, although there are many others, none of which are particularly fast.
The difficulty of finding a fast solution to the discrete logarithm problem is a fundamental part of some popular cryptographic algorithms, so if you find a better solution than any of those on Wikipedia please let me know!
This isn't a simple problem at all. It is called calculating the discrete logarithm and it is the inverse operation to a modular exponentation.
There is no efficient algorithm known. That is, if N denotes the number of bits in m, all known algorithms run in O(2^(N^C)) where C>0.
Python 3 Solution:
Thankfully, SymPy has implemented this for you!
SymPy is a Python library for symbolic mathematics. It aims to become a full-featured computer algebra system (CAS) while keeping the code as simple as possible in order to be comprehensible and easily extensible. SymPy is written entirely in Python.
This is the documentation on the discrete_log function. Use this to import it:
from sympy.ntheory import discrete_log
Their example computes \log_7(15) (mod 41):
>>> discrete_log(41, 15, 7)
3
Because of the (state-of-the-art, mind you) algorithms it employs to solve it, you'll get O(\sqrt{n}) on most inputs you try. It's considerably faster when your prime modulus has the property where p - 1 factors into a lot of small primes.
Consider a prime on the order of 100 bits: (~ 2^{100}). With \sqrt{n} complexity, that's still 2^{50} iterations. That being said, don't reinvent the wheel. This does a pretty good job. I might also add that it was almost 4x times more memory efficient than Mathematica's MultiplicativeOrder function when I ran with large-ish inputs (44 MiB vs. 173 MiB).
Since a duplicate of this question was asked under the Python tag, here is a Python implementation of baby step, giant step, which, as #MarkBeyers points out, is a reasonable approach (as long as the modulus isn't too large):
def baby_steps_giant_steps(a,b,p,N = None):
if not N: N = 1 + int(math.sqrt(p))
#initialize baby_steps table
baby_steps = {}
baby_step = 1
for r in range(N+1):
baby_steps[baby_step] = r
baby_step = baby_step * a % p
#now take the giant steps
giant_stride = pow(a,(p-2)*N,p)
giant_step = b
for q in range(N+1):
if giant_step in baby_steps:
return q*N + baby_steps[giant_step]
else:
giant_step = giant_step * giant_stride % p
return "No Match"
In the above implementation, an explicit N can be passed to fish for a small exponent even if p is cryptographically large. It will find the exponent as long as the exponent is smaller than N**2. When N is omitted, the exponent will always be found, but not necessarily in your lifetime or with your machine's memory if p is too large.
For example, if
p = 70606432933607
a = 100001
b = 54696545758787
then 'pow(a,b,p)' evaluates to 67385023448517
and
>>> baby_steps_giant_steps(a,67385023448517,p)
54696545758787
This took about 5 seconds on my machine. For the exponent and the modulus of those sizes, I estimate (based on timing experiments) that brute force would have taken several months.
Discrete logarithm is a hard problem
Computing discrete logarithms is believed to be difficult. No
efficient general method for computing discrete logarithms on
conventional computers is known.
I will add here a simple bruteforce algorithm which tries every possible value from 1 to m and outputs a solution if it was found. Note that there may be more than one solution to the problem or zero solutions at all. This algorithm will return you the smallest possible value or -1 if it does not exist.
def bruteLog(b, c, m):
s = 1
for i in xrange(m):
s = (s * b) % m
if s == c:
return i + 1
return -1
print bruteLog(5, 8, 13)
and here you can see that 3 is in fact the solution:
print 5**3 % 13
There is a better algorithm, but because it is often asked to be implemented in programming competitions, I will just give you a link to explanation.
as said the general problem is hard. however a prcatical way to find e if and only if you know e is going to be small (like in your example) would be just to try each e from 1.
btw e==3 is the first solution to your example, and you can obviously find that in 3 steps, compare to solving the non discrete version, and naively looking for integer solutions i.e.
e = log(c + n*m)/log(b) where n is a non-negative integer
which finds e==3 in 9 steps

Why does this Python code give me the wrong answer?

I wrote a simple Python code to solve a certain Hydraulic formula (The Manning's equation):
import math
def mannings(units,A,P,S,n):
if units=='SI':
k=1.0
elif units=='US':
k=1.49
R=A/P
V=(k/n)*(math.pow(R,(2/3)))*(math.sqrt(S))
Q=A*V
return R,V,Q
In the code above, the velocity V is calculated from the k, n, R and S. The velocity is then used to calculate the discharge Q by multiplying with Area A. The user inputs the unit convention, the A, P, S and n. k is decided on the basis of unit convention.
When I run the function using mannings('US',1.0618,2.7916,0.02,0.015), I get (0.38035535176959456, 14.047854719572745, 14.916012141242343). The R value matches the R calculated in a spreadsheet, but the V and Q are way off. The actual V should be 7.374638178
and the Q should be 7.830634155.
It'd be great if someone can tell me what's going wrong here. This is a pretty straightforward formula and I was guessing it should work easily.
Your problem is that 2/3 is an integer division and therefore evaluates to 0. You want 2.0/3 to force a floating-point division. Or else include from __future__ import division at the top of your file to use the Python 3-style division in Python 2.x.
Assuming you don't use the __future__ solution, you will also want to write your R = A / P as e.g. R = float(A) / P because otherwise, if A and P are both integers, R will also be an integer.

Python - how to compute all nth roots of a number?

Is it possible to calculate n complex roots of a given number using Python? I've shortly checked it, and it looks like Python gives me wrong/incomplete answers:
(-27.0j)**(1.0/3.0) produces (2.598076211353316-1.4999999999999998j)
but proper roots should be 3 complex numbers, because every non-zero number has n different complex number nth roots. Is it possible in Python?
I don't think standard Python will do this unless you write a function for it, but you can do it with Numpy:
http://docs.scipy.org/doc/numpy/reference/generated/numpy.roots.html
There are many multi-valued complex functions - functions that can have more than one value corresponding to any point in their domain. For example: roots, logarithms, inverse trigonometric functions...
The reason these functions can have multiple values is usually because they are the inverse of a function that has multiple values in the domain map to the same value.
When doing calculations with such functions, it would be impractical to always return all possible values. For the inverse trigonometric functions, there are infinitely many possible values.
Usually the different function values can be expressed as a function of an integer parameter k. For example, the values of log z with z = r*(cos t + i*sin t is log r + i*(t + k*2*pi) with k any integer. For the nth root, it is r**(1/n)*exp(i*(t+k*2*pi)/n with k=0..n-1 inclusive.
Because returning all possible values is impractical, mathematical functions in Python and almost all other common programming languages return what's called the 'principal value' of the function. (reference) The principal value is usually the function value with k=0. Whatever choice is made, it should be stated clearly in the documentation.
So to get all the complex roots of a complex number, you just evaluate the function for all relevant values of k:
def roots(z, n):
nthRootOfr = abs(z)**(1.0/n)
t = phase(z)
return map(lambda k: nthRootOfr*exp((t+2*k*pi)*1j/n), range(n))
(You'll need to import the cmath module to make this work.) This gives:
>>> roots(-27j,3)
[(2.59808-1.5j), (1.83691e-16+3j), (-2.59808-1.5j)]
If you want to get all roots on clean python you can create simple function to do this:
import math
def root(num, r):
base = num ** (1.0/r)
roots = [base]
for i in range(1, r):
roots.append(complex(base * math.cos(2*math.pi * i / r), base * math.sin(2*math.pi * i / r)))
return roots

Categories

Resources