Pandas keep column after multiple aggregations - python

I'm trying to do multiple aggragations over a pandas dataframe, the problem is that I want to keep the column over I aggregate
df3 = pd.DataFrame({'X' : ['A', 'B', 'A', 'B'], 'Y' : [1, 4, 3, 2]})
df3.groupby('X', as_index=False).agg('sum')
X Y
0 A 4
1 B 6
That's good but what I want is multiple aggregations like this
df3 = pd.DataFrame({'X' : ['A', 'B', 'A', 'B'], 'Y' : [1, 4, 3, 2]})
df3.groupby('X', as_index=False).agg(['sum', 'mean'])
It gives me
Y
sum mean
X
A 4 2
B 6 3
But I want this
X Y
sum mean
0 A 4 2
1 B 6 3

To move X from the index to a column use reset_index:
In [4]: df3 = pd.DataFrame({'X' : ['A', 'B', 'A', 'B'], 'Y' : [1, 4, 3, 2]})
In [5]: df3.groupby('X', as_index=False).agg(['sum', 'mean']).reset_index()
Out[5]:
X Y
sum mean
0 A 4 2
1 B 6 3

Related

Create and populate dataframe column simulating (excel) vlookup function

I am trying to create a new column in a dataframe and polulate it with a value from another data frame column which matches a common column from both data frames columns.
DF1 DF2
A B W B
——— ———
Y 2 X 2
N 4 F 4
Y 5 T 5
I though the following could do the tick.
df2[‘new_col’] = df1[‘A’] if df1[‘B’] == df2[‘B’] else “Not found”
So result should be:
DF2
W B new_col
X 2 Y -> Because DF1[‘B’] == 2 and value in same row is Y
F 4 N
T 5 Y
but I get the below error, I believe that is because dataframes are different sizes?
raise ValueError("Can only compare identically-labeled Series objects”)
Can you help me understand what am I doing wrong and what is the best way to achieve what I am after?
Thank you in advance.
UPDATE 1
Trying Corralien solution I still get the below:
ValueError: You are trying to merge on int64 and object columns. If you wish to proceed you should use pd.concat
This is the code I wrote
df1 = pd.DataFrame(np.array([['x', 2, 3], ['y', 5, 6], ['z', 8, 9]]),
columns=['One', 'b', 'Three'])
df2 = pd.DataFrame(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]),
columns=['a', 'b', 'c'])
df2.reset_index().merge(df1.reset_index(), on=['b'], how='left') \
.drop(columns='index').rename(columns={'One': 'new_col'})
UPDATE 2
Here is the second option, but it does not seem to add columns in df2.
df1 = pd.DataFrame(np.array([['x', 2, 3], ['y', 5, 6], ['z', 8, 9]]),
columns=['One', 'b', 'Three'])
df2 = pd.DataFrame(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]),
columns=['a', 'b', 'c'])
df2 = df2.set_index('b', append=True).join(df1.set_index('b', append=True)) \
.reset_index('b').rename(columns={'One': 'new_col'})
print(df2)
b a c new_col Three
0 2 1 3 NaN NaN
1 5 4 6 NaN NaN
2 8 7 9 NaN NaN
Why is the code above not working?
Your question is not clear because why is F associated with N and T with Y? Why not F with Y and T with N?
Using merge:
>>> df2.merge(df1, on='B', how='left')
W B A
0 X 2 Y
1 F 4 N # What you want
2 F 4 Y # Another solution
3 T 4 N # What you want
4 T 4 Y # Another solution
How do you decide on the right value? With row index?
Update
So you need to use the index position:
>>> df2.reset_index().merge(df1.reset_index(), on=['index', 'B'], how='left') \
.drop(columns='index').rename(columns={'A': 'new_col'})
W B new_col
0 X 2 Y
1 F 4 N
2 T 4 Y
In fact you can consider the column B as an additional index of each dataframe.
Using join
>>> df2.set_index('B', append=True).join(df1.set_index('B', append=True)) \
.reset_index('B').rename(columns={'A': 'new_col'})
B W new_col
0 2 X Y
1 4 F N
2 4 T Y
Setup:
df1 = pd.DataFrame([['x', 2, 3], ['y', 5, 6], ['z', 8, 9]],
columns=['One', 'b', 'Three'])
df2 = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]],
columns=['a', 'b', 'c'])

column is not getting dropped

Why column A is not getting dropped in train,valid,test data frames?
import pandas as pd
train = pd.DataFrame({'A': [0, 1, 2, 3, 4],'B': [5, 6, 7, 8, 9],'C': ['a', 'b', 'c', 'd', 'e']})
test = pd.DataFrame({'A': [0, 1, 2, 3, 4],'B': [5, 6, 7, 8, 9],'C': ['a', 'b', 'c', 'd', 'e']})
valid = pd.DataFrame({'A': [0, 1, 2, 3, 4],'B': [5, 6, 7, 8, 9],'C': ['a', 'b', 'c', 'd', 'e']})
for df in [train,valid,test]:
df = df.drop(['A'],axis=1)
print('A' in train.columns)
print('A' in test.columns)
print('A' in valid.columns)
#True
#True
#True
You can use inplace=True parameter, because DataFrame.drop function working also inplace:
for df in [train,valid,test]:
df.drop(['A'],axis=1, inplace=True)
print('A' in train.columns)
False
print('A' in test.columns)
False
print('A' in valid.columns)
False
Reason why is not removed column is df is not assign back, so DataFrames are not changed.
Another idea is create list of DataFrames and assign each changed DataFrame back:
L = [train,valid,test]
for i in range(len(L)):
L[i] = L[i].drop(['A'],axis=1)
print (L)
[ B C
0 5 a
1 6 b
2 7 c
3 8 d
4 9 e, B C
0 5 a
1 6 b
2 7 c
3 8 d
4 9 e, B C
0 5 a
1 6 b
2 7 c
3 8 d
4 9 e]

Sum the values in a pandas column based on the items in another column

how can I sum the values in column 'two' based on the items in column 'one' in pandas dataframe:
df = pd.DataFrame({'One': ['A', 'B', 'A', 'B'], 'Two': [1, 5, 3, 4]})
out[1]:
One Two
0 A 1
1 B 5
2 A 3
3 B 4
Expected output should be:
A 4
B 9
You need to group by the first column and sum on the second.
df.groupby('One', as_index=False).sum()
One Two
0 A 4
1 B 9
The trick is use pandas built-in functions .groupby(COLUMN_NAME) and then .sum() that new pandas object
import pandas as pd
df = pd.DataFrame({'One': ['A', 'B', 'A', 'B'], 'Two': [1, 5, 3, 4]})
groups = df.groupby('One').sum()
print(groups.head())

Assign new column using a set of sub-columns

I have a dataframe with a column 'name' of the form ['A','B','C',A','B','B'....] and a set of arrays: one corresponding to 'A', say array_A = [0, 1, 2 ...] and array_B = [3, 1, 0 ...], array_C etc...
I want to create a new column 'value' by assigning array_A where the row name in the dataframe is 'A', and similarly for 'B' and 'C'.
The function df['value']=np.where(df['name']=='A',array_A, df['value']) won't do it because it would overwrite the values for other names or have dimensionality issues.
For example:
arrays = {'A': np.array([0, 1, 2]),
'B': np.array([3, 1])}
Desired output:
df = pd.DataFrame({'name': ['A', 'B', 'A', 'A', 'B']})
name value
0 A 0
1 B 3
2 A 1
3 A 2
4 B 1
You can use a for loop with a dictionary:
arrays = {'A': np.array([0, 1, 2]),
'B': np.array([3, 1])}
df = pd.DataFrame({'name': ['A', 'B', 'A', 'A', 'B']})
for k, v in arrays.items():
df.loc[df['name'] == k, 'value'] = v
df['value'] = df['value'].astype(int)
print(df)
name value
0 A 0
1 B 3
2 A 1
3 A 2
4 B 1

Selecting from multi-level groupby in pandas

Lets say I have two dataframes: df with columns ('a', 'b', 'c') and tf with columns ('a', 'b'). I do a group-combine on the two common columns in df:
grouped_sum = df.groupby(('a', 'b')).sum()
How can I "add" the column c to tf according to grouped_sum, i.e.
tf[i]['c'] = grouped_sum[tf[i]['a'], tf[i]['b']]
for all rows i of the second data frame? For a groupby with a single level it works simply by indexing the group with the corresponding column of tf.
If you groupby with as_index=False you can merge with tf:
In [11]: tf = pd.DataFrame([[1, 2], [3, 4]], columns=list('ab'))
In [12]: df = pd.DataFrame([[1, 2, 3], [1, 2, 4], [3, 4, 5]], columns=list('abc'))
In [13]: grouped_sum = df.groupby(['a', 'b'], as_index=False).sum()
In [14]: grouped_sum
Out[14]:
a b c
0 1 2 7
1 3 4 5
In [15]: tf.merge(grouped_sum) # this won't always be the same as grouped_sum!
Out[15]:
a b c
0 1 2 7
1 3 4 5
another option is to set a and b as the index of tf.

Categories

Resources