Pandas DataFrame stack multiple column values into single column - python

Assuming the following DataFrame:
key.0 key.1 key.2 topic
1 abc def ghi 8
2 xab xcd xef 9
How can I combine the values of all the key.* columns into a single column 'key', that's associated with the topic value corresponding to the key.* columns? This is the result I want:
topic key
1 8 abc
2 8 def
3 8 ghi
4 9 xab
5 9 xcd
6 9 xef
Note that the number of key.N columns is variable on some external N.

You can melt your dataframe:
>>> keys = [c for c in df if c.startswith('key.')]
>>> pd.melt(df, id_vars='topic', value_vars=keys, value_name='key')
topic variable key
0 8 key.0 abc
1 9 key.0 xab
2 8 key.1 def
3 9 key.1 xcd
4 8 key.2 ghi
5 9 key.2 xef
It also gives you the source of the key.
From v0.20, melt is a first class function of the pd.DataFrame class:
>>> df.melt('topic', value_name='key').drop('variable', 1)
topic key
0 8 abc
1 9 xab
2 8 def
3 9 xcd
4 8 ghi
5 9 xef

After trying various ways, I find the following is more or less intuitive, provided stack's magic is understood:
# keep topic as index, stack other columns 'against' it
stacked = df.set_index('topic').stack()
# set the name of the new series created
df = stacked.reset_index(name='key')
# drop the 'source' level (key.*)
df.drop('level_1', axis=1, inplace=True)
The resulting dataframe is as required:
topic key
0 8 abc
1 8 def
2 8 ghi
3 9 xab
4 9 xcd
5 9 xef
You may want to print intermediary results to understand the process in full. If you don't mind having more columns than needed, the key steps are set_index('topic'), stack() and reset_index(name='key').

OK , cause one of the current answer is mark as duplicated of this question, I will answer here.
By Using wide_to_long
pd.wide_to_long(df, ['key'], 'topic', 'age').reset_index().drop('age',1)
Out[123]:
topic key
0 8 abc
1 9 xab
2 8 def
3 9 xcd
4 8 ghi
5 9 xef

Related

Is it possible to combine agg and value_counts in single line with Pandas

Given a df
a b ngroup
0 1 3 0
1 1 4 0
2 1 1 0
3 3 7 2
4 4 4 2
5 1 1 4
6 2 2 4
7 1 1 4
8 6 6 5
I would like to compute the summation of multiple columns (i.e., a and b) grouped by the column ngroup.
In addition, I would like to count the number of element for each of the group.
Based on these two condition, the expected output as below
a b nrow_same_group ngroup
3 8 3 0
7 11 2 2
4 4 3 4
6 6 1 5
The following code should do the work
import pandas as pd
df=pd.DataFrame(list(zip([1,1,1,3,4,1,2,1,6,10],
[3,4,1,7,4,1,2,1,6,1],
[0,0,0,2,2,4,4,4,5])),columns=['a','b','ngroup'])
grouped_df = df.groupby(['ngroup'])
df1 = grouped_df[['a','b']].agg('sum').reset_index()
df2 = df['ngroup'].value_counts().reset_index()
df2.sort_values('index', axis=0, ascending=True, inplace=True, kind='quicksort', na_position='last')
df2.reset_index(drop=True, inplace=True)
df2.rename(columns={'index':'ngroup','ngroup':'nrow_same_group'},inplace=True)
df= pd.merge(df1, df2, on=['ngroup'])
However, I wonder whether there exist built-in pandas that achieve something similar, in single line.
You can do it using only groupby + agg.
import pandas as pd
df=pd.DataFrame(list(zip([1,1,1,3,4,1,2,1,6,10],
[3,4,1,7,4,1,2,1,6,1],
[0,0,0,2,2,4,4,4,5])),columns=['a','b','ngroup'])
res = (
df.groupby('ngroup', as_index=False)
.agg(a=('a','sum'), b=('b', 'sum'),
nrow_same_group=('a', 'size'))
)
Here the parameters passed to agg are tuples whose first element is the column to aggregate and the second element is the aggregation function to apply to that column. The parameter names are the labels for the resulting columns.
Output:
>>> res
ngroup a b nrow_same_group
0 0 3 8 3
1 2 7 11 2
2 4 4 4 3
3 5 6 6 1
First aggregate a, b with sum then calculate size of each group and assign this to nrow_same_group column
g = df.groupby('ngroup')
g.sum().assign(nrow_same_group=g.size())
a b nrow_same_group
ngroup
0 3 8 3
2 7 11 2
4 4 4 3
5 6 6 1

how remove rows in a dataframe that the order of values are not important

I have a dataframe like this:
source target weight
1 2 5
2 1 5
1 2 5
1 2 7
3 1 6
1 1 6
1 3 6
My goal is to remove the duplicate rows, but the order of source and target columns are not important. In fact, the order of two columns are not important and they should be removed. In this case, the expected result would be
source target weight
1 2 5
1 2 7
3 1 6
1 1 6
Is there any way to this without loops?
Use frozenset and duplicated
df[~df[['source', 'target']].apply(frozenset, 1).duplicated()]
source target weight
0 1 2 5
3 3 1 6
4 1 1 6
If you want to account for unordered source/target and weight
df[~df[['weight']].assign(A=df[['source', 'target']].apply(frozenset, 1)).duplicated()]
source target weight
0 1 2 5
3 1 2 7
4 3 1 6
5 1 1 6
However, to be explicit with more readable code.
# Create series where values are frozensets and therefore hashable.
# With hashable things, we can determine duplicity.
# Note that I also set the index and name to set up for a convenient `join`
s = pd.Series(list(map(frozenset, zip(df.source, df.target))), df.index, name='mixed')
# Use `drop` to focus on just those columns leaving whatever else is there.
# This is more general and accommodates more than just a `weight` column.
mask = df.drop(['source', 'target'], axis=1).join(s).duplicated()
df[~mask]
source target weight
0 1 2 5
3 1 2 7
4 3 1 6
5 1 1 6
Should be fairly easy.
data = [[1,2,5],
[2,1,5],
[1,2,5],
[3,1,6],
[1,1,6],
[1,3,6],
]
df = pd.DataFrame(data,columns=['source','target','weight'])
You can drop the duplicates using drop_duplicates
df = df.drop_duplicates(keep=False)
print(df)
would result in:
source target weight
1 2 1 5
3 3 1 6
4 1 1 6
5 1 3 6
because you want to handle the unordered source/target issue.
def pair(row):
sorted_pair = sorted([row['source'],row['target']])
row['source'] = sorted_pair[0]
row['target'] = sorted_pair[1]
return row
df = df.apply(pair,axis=1)
and then you can use df.drop_duplicates()
source target weight
0 1 2 5
3 1 2 7
4 1 3 6
5 1 1 6

Sorting pandas.DataFrame in python sorted() function manner

Description
Long story short, I need a way to sort a DataFrame by a specific column, given a specific function which is analagous to usage of "key" parameter in python built-in sorted() function. Yet there's no such "key" parameter in pd.DataFrame.sort_value() function.
The approach used for now
I have to create a new column to store the "scores" of a specific row, and delete it in the end. The problem of this approach is that the necessity to generate a column name which does not exists in the DataFrame, and it could be more troublesome when it comes to sorting by multiple columns.
I wonder if there's a more suitable way for such purpose, in which there's no need to come up with a new column name, just like using a sorted() function and specifying parameter "key" in it.
Update: I changed my implementation by using a new object instead of generating a new string beyond those in the columns to avoid collision, as shown in the code below.
Code
Here goes the example code. In this sample the DataFrame is needed to be sort according to the length of the data in row "snippet". Please don't make additional assumptions on the type of the objects in each rows of the specific column. The only thing given is the column itself and a function object/lambda expression (in this example: len) that takes each object in the column as input and produce a value, which is used for comparison.
def sort_table_by_key(self, ascending=True, key=len):
"""
Sort the table inplace.
"""
# column_tmp = "".join(self._table.columns)
column_tmp = object() # Create a new object to avoid column name collision.
# Calculate the scores of the objects.
self._table[column_tmp] = self._table["snippet"].apply(key)
self._table.sort_values(by=column_tmp, ascending=ascending, inplace=True)
del self._table[column_tmp]
Now this is not implemented, check github issue 3942.
I think you need argsort and then select by iloc:
df = pd.DataFrame({
'A': ['assdsd','sda','affd','asddsd','ffb','sdb','db','cf','d'],
'B': list(range(9))
})
print (df)
A B
0 assdsd 0
1 sda 1
2 affd 2
3 asddsd 3
4 ffb 4
5 sdb 5
6 db 6
7 cf 7
8 d 8
def sort_table_by_length(column, ascending=True):
if ascending:
return df.iloc[df[column].str.len().argsort()]
else:
return df.iloc[df[column].str.len().argsort()[::-1]]
print (sort_table_by_length('A'))
A B
8 d 8
6 db 6
7 cf 7
1 sda 1
4 ffb 4
5 sdb 5
2 affd 2
0 assdsd 0
3 asddsd 3
print (sort_table_by_length('A', False))
A B
3 asddsd 3
0 assdsd 0
2 affd 2
5 sdb 5
4 ffb 4
1 sda 1
7 cf 7
6 db 6
8 d 8
How it working:
First get lengths to new Series:
print (df['A'].str.len())
0 6
1 3
2 4
3 6
4 3
5 3
6 2
7 2
8 1
Name: A, dtype: int64
Then get indices by sorted values by argmax, for descending ordering is used this solution:
print (df['A'].str.len().argsort())
0 8
1 6
2 7
3 1
4 4
5 5
6 2
7 0
8 3
Name: A, dtype: int64
Last change ordering by iloc:
print (df.iloc[df['A'].str.len().argsort()])
A B
8 d 8
6 db 6
7 cf 7
1 sda 1
4 ffb 4
5 sdb 5
2 affd 2
0 assdsd 0
3 asddsd 3

Modifying pandas dataframe through function in python

I tried to modify the dataframe through function and return the modified dataframe. Somehow, it is not reflected. In the below code, I pass a dataframe 'ding' to function 'test' and create a new column 'C' and return the modified dataframe. I expected the test_ding df to have 3 columns but could see only two columns. Any help is highly appreciated.
s1 = pd.Series([1,3,5,6,8,10,1,1,1,1,1,1])
s2 = pd.Series([4,5,6,8,10,1,7,1,6,5,4,3])
ding=pd.DataFrame({'A':s1,'B':s2})
def test(ding):
ding.C=ding.A+ding.B
return ding
test_ding=test(ding)
ding.C doesn't exist and can't be accessed like an attribute.
You need to change the line to
ding['C']=ding.A+ding.B
You can create an column like ding['A'] = blah which then turns into an attribute of the DataFrame. But you can't go the other way around.
Let's try this:
s1 = pd.Series([1,3,5,6,8,10,1,1,1,1,1,1])
s2 = pd.Series([4,5,6,8,10,1,7,1,6,5,4,3])
ding=pd.DataFrame({'A':s1,'B':s2})
def test(ding):
ding = ding.assign(C=ding.A+ding.B)
return ding
test_ding=test(ding)
print(test_ding)
Output:
A B C
0 1 4 5
1 3 5 8
2 5 6 11
3 6 8 14
4 8 10 18
5 10 1 11
6 1 7 8
7 1 1 2
8 1 6 7
9 1 5 6
10 1 4 5
11 1 3 4

Filter a pandas DataFrame using keys from a dictionary

I have the following pd.DataFrame:
AllData =
a#a.6 f#s.2 c#c.2 d#w.4 k#a.3
1 8 3 3 8
4 4 7 4 3
6 8 9 1 6
3 4 5 6 1
7 6 0 8 1
And I would like to create a new pd.DataFrame with only the columns whose names are keys in the following dictionary:
my_dict={a#a.6 : value1, c#c.2 : value2, d#w.4 : value5}
So the new DataFrame would be:
FilteredData =
a#a.6 c#c.2 d#w.4
1 3 3
4 7 4
6 9 1
3 5 6
7 0 8
What is the most efficient way of doing this?
I have tried to use:
FilteredData = AllData.filter(regex=my_dict.keys)
but unsurprisingly, this didn't work. Any suggestions/advice welcome
Cheers, Alex
You can also do this without the filter method at all like this:
FilteredData = AllData[my_dict.keys()]
Pandas dataframes have a method called filter that will return a new dataframe. Try this
FilteredData = AllData.filter(items=my_dict.keys())

Categories

Resources