I have a 3D regular grid of data. I would like to write a routine allowing the user to specify a plane slicing through the data with arbitrary orientation and returning a contour plot of the data in the plane. Is there a ready-made way in matplotlib to do this? Could find anything in the docs.
You can use roll function of numpy to rotate your plane and make it parallel with a base plane. now you can choose your plane and plot. Only problem is that at close to edges the value from one side will be added to opposite side.
Related
I have generated a series of 2D plots using matplotlib.pyplot. I want to change the perspective of each 2D plot to make them look more "3D" (from the rectangular shape to parallelogram shape) and stack them together by hand, which will look something like this:
If there are texts present in the 2D plot (e.g. labels, title, legend), I want them to be rotated together with the plot. The reason I don't want to use mplot3d is that it doesn't support some advanced functions that is used in my 2D plots.
This has already been asked before for 3D plots: how to set "camera position" for 3d plots using python/matplotlib?, but the ax.view_init is only implemented for 3D plots. I wonder if there is a way to also change the camera angle for a 2D plot. If not, are there any tools that can do this task?
So I am a bit new to python and having a little trouble.
I am attempting to plot (project) a 3d data set onto an arbitrary plane. I can of course plot xy etc. but since my data has a particular orientation (all the points fall into an arbitrary orientated cylinder) I want project all the points onto a plane that slices that cylinder orthogonally and that plane would have a arbitrary orientation.
I am working with microseismic data if anyone is familiar with that and all the points are located around a wellbore with follows an arbitrary but fairly straight azimuth.
The data is in Cartesian coordinates.
I have a 3d array of data of which I am trying to do a visualization. The entries of the 3d array can only take boolean value. I would like to visualize it in way imshow offers to visualize a matrix by giving a color value to each entry. Here it is in 3d so I guess we should add some empty space between the points to see the inside.
I have looked into matplotlib 3d plots but I could not find the right tool for such visualization. What could I use?
Is there any kind of chance to "cut" the surface plot (x,y,z) made by use of the matplotlib by some well defined boundaries, so that I can draw any kind of shape in 3D. Now I can do that but x,y are 2D arrays (meshgrid) and the shape is always rectangular.
Example:
Here, the plate has a base-shape of rectangular (2d-array are used). The z coordinates are derived by some function f=f(x,y).
What I would like achieve is shown in the picture below (made by hand ;)). One idea is to turn-off a single cell. But how to make the cells transparent?
What you'd like is to mask some regions in the surface. Unfortunately, matplotlib does not support masked arrays yet for plot_surface, but you could circumvent it by using np.nan for those masked regions.
It is also detailed in plotting-a-masked-surface-plot-using-python-numpy-and-matplotlib.
I am attempting to do something similar to this:
sample ozone profile
Not necessarily over an orthographic projection - a cube over a map would suffice.
I'm able to plot the PolyCollection object produced by matplotlib.pyplot.pcolor, but cannot figure out if there's an accepted way of plotting the profile over an arbitrary lat/lon path.
The only thing I can think of right now is continuing to use pcolor() to get the face colors, then just modifying the vertices for each Poly object.
If you want to create a 3D projection, then you may use the plot_surface. It essentially draws a 2D array where the 3D coordinates of each vertex is given.
You might get some ideas by looking at this: Creating intersecting images in matplotlib with imshow or other function
The matplotlib solution there is essentially the same as using pcolor, but the 3D arithmetics is carried out by matplotlib. The suggestion to use mayavi is also something worth conisdering, as matplotlib is not at its strongest with 3D projected raster data.