i have a big dataset like this and I'm trying to make a dictionary of dictionaries of the dataframe to organize the column of 'crime' with the frequencies of the other columns.
train_data
23 Wednesday BAYVIEW CENTRAL INGLESIDE NORTHERN PARK RICHMOND crime
0 1 1 0 0 0 1 0 0 3
1 1 1 0 0 0 1 0 0 1
2 1 1 0 0 0 1 0 0 1
3 1 1 0 0 0 1 0 0 0
4 1 1 0 0 0 0 1 0 0
5 1 1 0 0 1 0 0 0 0
6 1 1 0 0 1 0 0 0 2
7 1 1 1 0 0 0 0 0 2
8 1 1 0 0 0 0 0 1 0
9 1 1 0 1 0 0 0 0 0
So i decided first of all to groupby the dataframe with the column of 'crime':
train_data=train_data.groupby(['crime']).sum()
23 Wednesday BAYVIEW CENTRAL INGLESIDE NORTHERN PARK RICHMOND
crime
0 5 5 0 1 1 1 1 1
1 2 2 0 0 0 2 0 0
2 2 2 1 0 1 0 0 0
3 1 1 0 0 0 1 0 0
And then i tried to organize them in a dictionary of dictionaries but i can't make it, i tried in some ways iterating too but there is something wrong with the dataframe.
The result should be something like this:
{0: {23: 5, Wednesday: 1, BAYVIEW: 0, CENTRAL: 1, ...},
1: {23: 2, Wednesday: 2, BAYVIEW: 0, ...},
2: {...}, 3: {...}}
You can use
d = train_data.to_dict(orient='index')
See http://pandas.pydata.org/pandas-docs/version/0.17.1/generated/pandas.DataFrame.to_dict.html for more options.
If you're on pandas 0.17.0 or greater as MaxNoe posted:
train_data.groupby('crime').sum().to_dict(orient='index')
otherwise:
train_data.groupby('crime').sum().T.to_dict()
Related
I have a dataframe of student responses[S1-S82] and each strand corresponding to the response. I want to know the count of each response given wrt each strand. If the student marked answer correctly I want to know the strand name and no. of correct responses, if the answer is wrong I want to know the strand name and no. of wrong responses(similar to value counts). I am attaching a screenshot of the dataframe.
https://prnt.sc/1125odu
I have written the following code
data_transposed['Counts'] = data_transposed.groupby(['STRAND-->'])['S1'].transform('count')
but it is really not helping me get what I want. I am looking for an option similar to value_counts to plot the data.
Please look into it and help me. Thank you,
I think you are looking to groupby the Strands for each student S1 thru S82.
Here's how I would do it.
Step 1: Create a DataFrame with groupby Strand--> where value is 0
Step 2: Create another DataFrame with groupby Strand--> where value
is 1
Step 3: Add a column in each of the dataframes and assign value of 0 or 1 to represent which data it grouped
Step 4: Concatenate both dataframes.
Step 5: Rearrange the columns to have Strand-->, val, then all students S1 thru S82
Step 6: Sort the dataframe using Strand--> so you get the values in
the right order.
The code is as shown below:
import pandas as pd
import numpy as np
d = {'Strand-->':['Geometry','Geometry','Geometry','Geometry','Mensuration',
'Mensuration','Mensuration','Geometry','Algebra','Algebra',
'Comparing Quantities','Geometry','Data Handling','Geometry','Geometry']}
for i in range(1,83): d ['S'+str(i)] = np.random.randint(0,2,size=15)
df = pd.DataFrame(d)
print (df)
df1 = df.groupby('Strand-->').agg(lambda x: x.eq(0).sum())
df1['val'] = 0
df2 = df.groupby('Strand-->').agg(lambda x: x.ne(0).sum())
df2['val'] = 1
df3 = pd.concat([df1,df2]).reset_index()
dx = [0,-1] + [i for i in range(1,83)]
df3 = df3[df3.columns[dx]].sort_values('Strand-->').reset_index(drop=True)
print (df3)
The output of this will be as follows:
Original DataFrame:
Strand--> S1 S2 S3 S4 S5 ... S77 S78 S79 S80 S81 S82
0 Geometry 0 1 0 0 1 ... 1 0 0 0 1 0
1 Geometry 0 0 0 1 1 ... 1 1 1 0 0 0
2 Geometry 1 1 1 0 0 ... 0 0 1 0 0 0
3 Geometry 0 1 1 0 1 ... 1 0 0 1 0 1
4 Mensuration 1 1 1 0 1 ... 0 1 1 1 0 0
5 Mensuration 0 1 1 1 0 ... 1 0 0 1 1 0
6 Mensuration 1 0 1 1 1 ... 0 1 0 0 1 0
7 Geometry 1 0 1 1 1 ... 1 1 1 0 0 1
8 Algebra 0 0 1 0 1 ... 1 1 0 0 1 1
9 Algebra 0 1 0 1 1 ... 1 1 1 1 0 1
10 Comparing Quantities 1 1 0 1 1 ... 1 1 0 1 1 0
11 Geometry 1 1 1 1 0 ... 0 0 1 0 1 0
12 Data Handling 1 1 0 0 0 ... 1 0 1 1 0 0
13 Geometry 1 1 1 0 0 ... 1 1 1 1 0 0
14 Geometry 0 1 0 0 1 ... 0 1 1 0 1 0
Updated DataFrame:
Note here that column 'val' will be 0 or 1. If 0, then it is the count of 0s. If 1, then it is the count of 1s.
Strand--> val S1 S2 S3 S4 ... S77 S78 S79 S80 S81 S82
0 Algebra 0 2 1 1 1 ... 0 0 1 1 1 0
1 Algebra 1 0 1 1 1 ... 2 2 1 1 1 2
2 Comparing Quantities 0 0 0 1 0 ... 0 0 1 0 0 1
3 Comparing Quantities 1 1 1 0 1 ... 1 1 0 1 1 0
4 Data Handling 0 0 0 1 1 ... 0 1 0 0 1 1
5 Data Handling 1 1 1 0 0 ... 1 0 1 1 0 0
6 Geometry 0 4 2 3 5 ... 3 4 2 6 5 6
7 Geometry 1 4 6 5 3 ... 5 4 6 2 3 2
8 Mensuration 0 1 1 0 1 ... 2 1 2 1 1 3
9 Mensuration 1 2 2 3 2 ... 1 2 1 2 2 0
For single student you can do:
df.groupby(['Strand-->', 'S1']).size().to_frame(name = 'size').reset_index()
If you want to calculate all students at once you can do:
df_m = pd.melt(df, id_vars=['Strand-->'], value_vars=df.columns[1:]).rename({'variable':'result'},axis=1).sort_values(['result'])
df_m['result'].groupby([df_m['Strand-->'],df_m['value']]).value_counts().unstack(fill_value=0).reset_index()
I'm trying to build a multi regression model with qualitative data.
In order to do that I need to build a new data frame that creates a new data frame with columns based on the unique values and marks 1 if the index had that value.
Example:
d = {'City': ['Tokyo','Tokyo','Lisbon','Tokyo','Madrid','Lisbon','Madrid','London','Tokyo','London','Tokyo'],
'Card': ['Visa','Visa','Visa','Master Card','Bitcoin','Master Card','Bitcoin','Visa','Master Card','Visa','Bitcoin'],
'Client Number':[1,2,3,4,5,6,7,8,9,10,11],
}
d = pd.DataFrame(data=d).set_index('Client Number')
And get a result equal to this
Let us try get_dummies
df = pd.get_dummies(d,prefix='', prefix_sep='')
Out[202]:
Lisbon London Madrid Tokyo Bitcoin Master Card Visa
Client Number
1 0 0 0 1 0 0 1
2 0 0 0 1 0 0 1
3 1 0 0 0 0 0 1
4 0 0 0 1 0 1 0
5 0 0 1 0 1 0 0
6 1 0 0 0 0 1 0
7 0 0 1 0 1 0 0
8 0 1 0 0 0 0 1
9 0 0 0 1 0 1 0
10 0 1 0 0 0 0 1
11 0 0 0 1 1 0 0
I have a dataframe:
DOW
0 0
1 1
2 2
3 3
4 4
5 5
6 6
This corresponds to the dayof the week. Now I want to create this dataframe-
DOW MON_FLAG TUE_FLAG WED_FLAG THUR_FLAG FRI_FLAG SAT_FLAG
0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0
2 2 0 1 0 0 0 0
3 3 0 0 1 0 0 0
4 4 0 0 0 1 0 0
5 5 0 0 0 0 1 0
6 6 0 0 0 0 0 1
7 0 0 0 0 0 0 0
8 1 1 0 0 0 0 0
Depending on the DOW column for example its 1 then MON_FLAG will be 1 if its 2 then TUES_FLAG will be 1 and so on. I have kept Sunday as 0 that's why all the flag columns are zero in that case.
Use get_dummies with rename columns by dictionary:
d = {0:'SUN_FLAG',1:'MON_FLAG',2:'TUE_FLAG',
3:'WED_FLAG',4:'THUR_FLAG',5: 'FRI_FLAG',6:'SAT_FLAG'}
df = df.join(pd.get_dummies(df['DOW']).rename(columns=d))
print (df)
DOW SUN_FLAG MON_FLAG TUE_FLAG WED_FLAG THUR_FLAG FRI_FLAG SAT_FLAG
0 0 1 0 0 0 0 0 0
1 1 0 1 0 0 0 0 0
2 2 0 0 1 0 0 0 0
3 3 0 0 0 1 0 0 0
4 4 0 0 0 0 1 0 0
5 5 0 0 0 0 0 1 0
6 6 0 0 0 0 0 0 1
7 0 1 0 0 0 0 0 0
8 1 0 1 0 0 0 0 0
I have a problem while transposing a Pandas DataFrame that has the following structure:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
foo 0 4 0 0 0 0 0 0 0 0 14 1 0 1 0 0 0
bar 0 6 0 0 4 0 5 0 0 0 0 0 0 0 1 0 0
lorem 1 3 0 0 0 1 0 0 2 0 3 0 1 2 1 1 0
ipsum 1 2 0 1 0 0 1 0 0 0 0 0 4 0 6 0 0
dolor 1 2 4 0 1 0 0 0 0 0 2 0 0 1 0 0 2
..
With index:
foo,bar,lorem,ipsum,dolor,...
And this is basically a terms-documents matrix, where rows are terms and the headers (0-16) are document indexes.
Since my purpose is clustering documents and not terms, I want to transpose the dataframe and use this to perform a cosine-distance computation between documents themselves.
But when I transpose with:
pd.transpose()
I get:
foo bar ... pippo lorem
0 0 0 ... 0 0
1 4 6 ... 0 0
2 0 0 ... 0 0
3 0 0 ... 0 0
4 0 4 ... 0 0
..
16 0 2 ... 0 1
With index:
0 , 1 , 2 , 3 , ... , 15, 16
What I would like?
I'm looking for a way to make this operation preserving the dataframe index. Basically the first row of my new df should be the index.
Thank you
We can use a series of unstack
df2 = df.unstack().to_frame().unstack(1).droplevel(0,axis=1)
print(df2)
foo bar lorem ipsum dolor
0 0 0 1 1 1
1 4 6 3 2 2
2 0 0 0 0 4
3 0 0 0 1 0
4 0 4 0 0 1
5 0 0 1 0 0
6 0 5 0 1 0
7 0 0 0 0 0
8 0 0 2 0 0
9 0 0 0 0 0
10 14 0 3 0 2
11 1 0 0 0 0
12 0 0 1 4 0
13 1 0 2 0 1
14 0 1 1 6 0
15 0 0 1 0 0
16 0 0 0 0 2
Assuming data is square matrix (n x n) and if I understand the question correctly
df = pd.DataFrame([[0, 4,0], [0,6,0], [1,3,0]],
index =['foo', 'bar', 'lorem'],
columns=[0, 1, 2]
)
df_T = pd.DataFrame(df.values.T, index=df.index, columns=df.columns)
I have a dataframe where some cells contain lists of multiple values. How can I create new columns based on unique values of those lists? Those lists can contain values already included in previous observations, and also can be empty. How I create a new column (One Hot Encoding) based on those values?
CHECK EDIT - Data is within quotation marks:
data = {'tokens': ['["Spain", "Germany", "England", "Japan"]',
'["Spain", "Germany"]',
'["Morocco"]',
'[]',
'["Japan"]',
'[]']}
my_new_pd = pd.DataFrame(data)
0 ["Spain", "Germany", "England", "Japan"]
1 ["Spain", "Germany"]
2 ["Morocco"]
3 []
4 ["Japan", ""]
5 []
Name: tokens, dtype: object
I want something like
tokens_Spain|tokens_Germany |tokens_England |tokens_Japan|tokens_Morocco
0 1 1 1 1 0
1 1 1 0 0 0
2 0 0 0 0 1
3. 0 0 0 0 0
4. 0 0 1 1 0
5. 0 0 0 0 0
Method one from sklearn, since you already have the list type column in your dfs
from sklearn.preprocessing import MultiLabelBinarizer
mlb = MultiLabelBinarizer()
yourdf=pd.DataFrame(mlb.fit_transform(df['tokens']),columns=mlb.classes_, index=df.index)
Method two we do explode first then find the dummies
df['tokens'].explode().str.get_dummies().sum(level=0).add_prefix('tokens_')
tokens_A tokens_B tokens_C tokens_D tokens_Z
0 1 1 1 1 0
1 1 1 0 0 0
2 0 0 0 0 1
3 0 0 0 0 0
4 0 0 0 1 1
5 0 0 0 0 0
Method three kind of like "explode" on the axis = 0
pd.get_dummies(pd.DataFrame(df.tokens.tolist()),prefix='tokens',prefix_sep='_').sum(level=0,axis=1)
tokens_A tokens_D tokens_Z tokens_B tokens_C
0 1 1 0 1 1
1 1 0 0 1 0
2 0 0 1 0 0
3 0 0 0 0 0
4 0 1 1 0 0
5 0 0 0 0 0
Update
df['tokens'].explode().str.get_dummies().sum(level=0).add_prefix('tokens_')
tokens_England tokens_Germany tokens_Japan tokens_Morocco tokens_Spain
0 1 1 1 0 1
1 0 1 0 0 1
2 0 0 0 1 0
3 0 0 0 0 0
4 1 0 1 0 0
5 0 0 0 0 0