I have a Dataframe like so:
p_rel y_BET sq_resid
1 0.069370 41.184996 0.292942
2 0.116405 43.101090 0.010953
3 0.173409 44.727748 0.036832
4 0.225629 46.681293 0.540616
5 0.250682 46.980616 0.128191
6 0.294650 47.446113 0.132367
7 0.322530 48.078038 0.235047
How do I get rid of the fourth row because it has the max value of sq_resid? note: the max will change from dataset to dataset so just removing the 4th row isn't enough.
I have tried several things such as I can remove the max value which leaves the dataframe like below but haven't been able to remove the whole row.
p_rel y_BET sq_resid
1 0.069370 41.184996 0.292942
2 0.116405 43.101090 0.010953
3 0.173409 44.727748 0.036832
4 0.225629 46.681293 Nan
5 0.250682 46.980616 0.128191
6 0.294650 47.446113 0.132367
7 0.322530 48.078038 0.235047
You could just filter the df like so:
In [255]:
df.loc[df['sq_resid']!=df['sq_resid'].max()]
Out[255]:
p_rel y_BET sq_resid
1 0.069370 41.184996 0.292942
2 0.116405 43.101090 0.010953
3 0.173409 44.727748 0.036832
5 0.250682 46.980616 0.128191
6 0.294650 47.446113 0.132367
or drop using idxmax which will return the label row of the max value:
In [257]:
df.drop(df['sq_resid'].idxmax())
Out[257]:
p_rel y_BET sq_resid
1 0.069370 41.184996 0.292942
2 0.116405 43.101090 0.010953
3 0.173409 44.727748 0.036832
5 0.250682 46.980616 0.128191
6 0.294650 47.446113 0.132367
7 0.322530 48.078038 0.235047
Related
I have big dataset of values as follow:
column "bigger" would be index of the first row with bigger "bsl" than "mb" from current row. I need to do it without loop as I need it to be done in less than a second. by loop it's over a minute.
For example for the first row (with index 74729) the bigger is going to be 74731. I know it can be done by linq in C# but I'm almost new in python.
here is another example:
here is text version:
index bsl mb bigger
74729 47091.89 47160.00 74731.0
74730 47159.00 47201.00 74735.0
74731 47196.50 47201.50 74735.0
74732 47186.50 47198.02 74735.0
74733 47191.50 47191.50 74735.0
74734 47162.50 47254.00 74736.0
74735 47252.50 47411.50 74736.0
74736 47414.50 47421.00 74747.0
74737 47368.50 47403.00 74742.0
74738 47305.00 47310.00 74742.0
74739 47292.00 47320.00 74742.0
74740 47302.00 47374.00 74742.0
74741 47291.47 47442.50 74899.0
74742 47403.50 47416.50 74746.0
74743 47354.34 47362.50 74746.0
I'm not sure how many rows you have, but if the number is reasonable, you can perform a pairwise comparison:
# get data as arrays
a = df['bsl'].to_numpy()
b = df['mb'].to_numpy()
idx = df.index.to_numpy()
# compare values and mask lower triangle
# to ensure comparing only the greater indices
out = np.triu(a>b[:,None]).argmax(1).astype(float)
# reindex to original indices
idx = idx[out]
# mask invalid indices
idx[out<np.arange(len(out))] = np.nan
df['bigger'] = idx
Output:
bsl mb bigger
0 1 2 2.0
1 2 4 6.0
2 3 3 5.0
3 2 1 3.0
4 3 5 NaN
5 4 2 5.0
6 5 1 6.0
7 1 0 7.0
I've been on this all night, and just can't figure it out, even though I know it should be simple. So, my sincerest apologies for the following incantation from a sleep-deprived fellow:
So, I have four fields, Employee ID, Name, Station and Shift (ID is non-null integer, the rest are strings or null).
I have about 10 dataframes, all indexed by ID. And each containing only two columns either (Name and Station) or (Name and Shift)
Now of course, I want to combine all of this into one dataframe, which has a unique row for each ID.
But I'm really frustrated by it at this point(especially because I can't find a way to directly check how many unique indices my final dataframe ends with)
After messing around with some very ugly ways of using .merge(), I finally found .concat(). But it keeps making multiple rows per ID, when I check in excel, the indices are like Table1/1234, Table2/1234 etc. One row has the shift, the other one has station, which is precisely what I'm trying to avoid.
How do I compile all my data into one dataframe, having exactly one row per ID? Possibly without using 9 different merge statements, as I have to scale up later.
If I understand your question correctly, this is the thing that you want.
For example with this 3 dataframes..
In [1]: df1
Out[1]:
0 1 2
0 3.588843 3.566220 6.518865
1 7.585399 4.269357 4.781765
2 9.242681 7.228869 5.680521
3 3.600121 3.931781 4.616634
4 9.830029 9.177663 9.842953
5 2.738782 3.767870 0.925619
6 0.084544 6.677092 1.983105
7 5.229042 4.729659 8.638492
8 8.575547 6.453765 6.055660
9 4.386650 5.547295 8.475186
In [2]: df2
Out[2]:
0 1
0 95.013170 90.382886
2 1.317641 29.600709
4 89.908139 21.391058
6 31.233153 3.902560
8 17.186079 94.768480
In [3]: df
Out[3]:
0 1 2
0 0.777689 0.357484 0.753773
1 0.271929 0.571058 0.229887
2 0.417618 0.310950 0.450400
3 0.682350 0.364849 0.933218
4 0.738438 0.086243 0.397642
5 0.237481 0.051303 0.083431
6 0.543061 0.644624 0.288698
7 0.118142 0.536156 0.098139
8 0.892830 0.080694 0.084702
9 0.073194 0.462129 0.015707
You can do
pd.concat([df,df1,df2], axis=1)
This produces
In [6]: pd.concat([df,df1,df2], axis=1)
Out[6]:
0 1 2 0 1 2 0 1
0 0.777689 0.357484 0.753773 3.588843 3.566220 6.518865 95.013170 90.382886
1 0.271929 0.571058 0.229887 7.585399 4.269357 4.781765 NaN NaN
2 0.417618 0.310950 0.450400 9.242681 7.228869 5.680521 1.317641 29.600709
3 0.682350 0.364849 0.933218 3.600121 3.931781 4.616634 NaN NaN
4 0.738438 0.086243 0.397642 9.830029 9.177663 9.842953 89.908139 21.391058
5 0.237481 0.051303 0.083431 2.738782 3.767870 0.925619 NaN NaN
6 0.543061 0.644624 0.288698 0.084544 6.677092 1.983105 31.233153 3.902560
7 0.118142 0.536156 0.098139 5.229042 4.729659 8.638492 NaN NaN
8 0.892830 0.080694 0.084702 8.575547 6.453765 6.055660 17.186079 94.768480
9 0.073194 0.462129 0.015707 4.386650 5.547295 8.475186 NaN NaN
For more details you might want to see pd.concat
Just a tip putting simple illustrative data in your question always helps in getting answer.
I have a dataframe df with NaN values and I want to dynamically replace them with the average values of previous and next non-missing values.
In [27]: df
Out[27]:
A B C
0 -0.166919 0.979728 -0.632955
1 -0.297953 -0.912674 -1.365463
2 -0.120211 -0.540679 -0.680481
3 NaN -2.027325 1.533582
4 NaN NaN 0.461821
5 -0.788073 NaN NaN
6 -0.916080 -0.612343 NaN
7 -0.887858 1.033826 NaN
8 1.948430 1.025011 -2.982224
9 0.019698 -0.795876 -0.046431
For example, A[3] is NaN so its value should be (-0.120211-0.788073)/2 = -0.454142. A[4] then should be (-0.454142-0.788073)/2 = -0.621108.
Therefore, the result dataframe should look like:
In [27]: df
Out[27]:
A B C
0 -0.166919 0.979728 -0.632955
1 -0.297953 -0.912674 -1.365463
2 -0.120211 -0.540679 -0.680481
3 -0.454142 -2.027325 1.533582
4 -0.621108 -1.319834 0.461821
5 -0.788073 -0.966089 -1.260202
6 -0.916080 -0.612343 -2.121213
7 -0.887858 1.033826 -2.551718
8 1.948430 1.025011 -2.982224
9 0.019698 -0.795876 -0.046431
Is this a good way to deal with the missing values? I can't simply replace them by the average values of each column because my data is time-series and tends to increase over time. (The initial value may be $0 and final value might be $100000, so the average is $50000 which can be much bigger/smaller than the NaN values).
You can try to understand your logic behind the average that is Geometric progression
s=df.isnull().cumsum()
t1=df[(s==1).shift(-1).fillna(False)].stack().reset_index(level=0,drop=True)
t2=df.lookup(s.idxmax()+1,s.idxmax().index)
df.fillna(t1/(2**s)+t2*(1-0.5**s)*2/2)
Out[212]:
A B C
0 -0.166919 0.979728 -0.632955
1 -0.297953 -0.912674 -1.365463
2 -0.120211 -0.540679 -0.680481
3 -0.454142 -2.027325 1.533582
4 -0.621107 -1.319834 0.461821
5 -0.788073 -0.966089 -1.260201
6 -0.916080 -0.612343 -2.121213
7 -0.887858 1.033826 -2.551718
8 1.948430 1.025011 -2.982224
9 0.019698 -0.795876 -0.046431
Explanation:
1st NaN x/2+y/2=1st
2nd NaN 1st/2+y/2=2nd
3rd NaN 2nd/2+y/2+3rd
Then x/(2**n)+y(1-(1/2)**n)/(1-1/2), this is the key
Got a simular Problem.
The following code worked for me.
def fill_nan_with_mean_from_prev_and_next(df):
NANrows = pd.isnull(df).any(1).nonzero()[0]
null_df = df.isnull()
for row in NANrows :
for colum in range(0,df.shape[1]):
if(null_df.iloc[row][colum]):
df.iloc[row][colum] = (df.iloc[row-1][colum]+df.iloc[row-1][colum])/2
return df
maybe it is helps someone too.
as Ben.T has mentioned above
if you have another group of NaN in the same column
you can consider this lazy solution :)
for column in df:
for ind,row in df[[column]].iterrows():
if ~np.isnan(row[column]):
previous = row[column]
else:
indx = ind + 1
while np.isnan(df.loc[indx,column]):
indx += 1
next = df.loc[indx,column]
previous = df[column][ind] = (previous + next)/2
I want to create a key for the qcut bins I have from my data set.
So below I have the data from the 'total' column into ten bins, I have dropped the duplicates and sorted the values so I can see what the bin values are and in order. The below has the bins without using 'precision'.
bin_key=pd.qcut(bin_key['Total'], 10).drop_duplicates().sort_values()
bin_key.reset_index(drop=True, inplace=True)
bin_key
Output:
0 (11.199, 7932.26]
1 (7932.26, 15044.289]
2 (15044.289, 22709.757]
3 (22709.757, 32762.481]
4 (32762.481, 43491.146]
5 (43491.146, 55728.56]
6 (55728.56, 72823.314]
7 (72823.314, 100161.814]
8 (100161.814, 156406.846]
9 (156406.846, 1310448.18]
I want to round the values to the nearest thounsand. Using precision it looks like this:
bin_key=pd.qcut(bin_key['Total_Costs'], 10, 'precision=-3').drop_duplicates().sort_values()
bin_key.reset_index(drop=True, inplace=True)
bin_key
Output
0 (-1000.0, 8000.0]
1 (8000.0, 15000.0]
2 (15000.0, 23000.0]
3 (23000.0, 33000.0]
4 (33000.0, 43000.0]
5 (43000.0, 56000.0]
6 (56000.0, 73000.0]
7 (73000.0, 100000.0]
8 (100000.0, 156000.0]
9 (156000.0, 1310000.0]
How can I round to 0 rather than -1000?
I'm trying to get the row of the median value for a column.
I'm using data.median() to get the median value for 'column'.
id 30444.5
someProperty 3.0
numberOfItems 0.0
column 70.0
And data.median()['column'] is subsequently:
data.median()['performance']
>>> 70.0
How can get the row or index of the median value?
Is there anything similar to idxmax / idxmin?
I tried filtering but it's not reliable in cases multiple rows have the same value.
Thanks!
You can use rank and idxmin and apply it to each column:
import numpy as np
import pandas as pd
def get_median_index(d):
ranks = d.rank(pct=True)
close_to_median = abs(ranks - 0.5)
return close_to_median.idxmin()
df = pd.DataFrame(np.random.randn(13, 4))
df
0 1 2 3
0 0.919681 -0.934712 1.636177 -1.241359
1 -1.198866 1.168437 1.044017 -2.487849
2 1.159440 -1.764668 -0.470982 1.173863
3 -0.055529 0.406662 0.272882 -0.318382
4 -0.632588 0.451147 -0.181522 -0.145296
5 1.180336 -0.768991 0.708926 -1.023846
6 -0.059708 0.605231 1.102273 1.201167
7 0.017064 -0.091870 0.256800 -0.219130
8 -0.333725 -0.170327 -1.725664 -0.295963
9 0.802023 0.163209 1.853383 -0.122511
10 0.650980 -0.386218 -0.170424 1.569529
11 0.678288 -0.006816 0.388679 -0.117963
12 1.640222 1.608097 1.779814 1.028625
df.apply(get_median_index, 0)
0 7
1 7
2 3
3 4
May be just : data[data.performance==data.median()['performance']].