matplotlib: drawing simultaneously to different plots - python

Due to the 2nd answer of this question I supposed the following code
import matplotlib.pyplot as plt
for i1 in range(2):
plt.figure(1)
f, ax = plt.subplots()
plt.plot((0,3), (2, 2), 'b')
for i2 in range(2):
plt.figure(2)
f, ax = plt.subplots()
plt.plot([1,2,3], [1,2,3], 'r')
plt.savefig('foo_{}_bar_{}.jpg'.format(i2, i1))
plt.close()
plt.figure(1)
plt.plot( [1,2,3],[1,2,3], 'r')
plt.savefig('bar_{}.jpg'.format(i1))
plt.close()
to create plots bar_0.jpg and bar_1.jpg showing a blue and a red line each.
However, figures look like
instead of
How can I achieve the desired behaviour?
Note that plots foo_*.jpg have to be closed and saved during handling of the bar plots.

You're already saving the Axes objects, so instead of calling the PyPlot plot function (which draws on the last created or activated Axes), use the objects' plot function:
ax.plot(...)
If you then give both a different name, say ax1 and ax2, you can draw on the one you like without interfering with the other. All plt. commands also exist as an Axes member function, but sometimes the name changes (plt.xticks becomes ax.set_xticks for example). See the documentation of Axes for details.
To save to figures, use the Figure objects in the same way:
f.savefig(...)
This API type is only just coming to Matlab, FYI, and will probably replace the old-fashioned "draw on the last active plot" behaviour in the future. The object-oriented approach here is more flexible with minimal overhead, so I strongly recommend you use it everywhere.

If unsure, better to make it explicit:
import matplotlib.pyplot as plt
for i1 in range(2):
fig1,ax1 = plt.subplots()
fig2,ax2 = plt.subplots()
ax1.plot([0,4],[2,2],'b')
for i2 in range(2):
ax2.plot([1,2,3],[1,2,3],'r')
fig2.savefig('abc{}.png'.format(2*i1+i2))
plt.figure(1)
ax1.plot([1,2,3],[1,2,3],'r')
fig1.savefig('cba{}.png'.format(i1))

Related

How to have searborn dist and box plot on the same graph one above the other with a single x axis? [duplicate]

I'm trying to share two subplots axes, but I need to share the x axis after the figure was created. E.g. I create this figure:
import numpy as np
import matplotlib.pyplot as plt
t = np.arange(1000)/100.
x = np.sin(2*np.pi*10*t)
y = np.cos(2*np.pi*10*t)
fig = plt.figure()
ax1 = plt.subplot(211)
plt.plot(t,x)
ax2 = plt.subplot(212)
plt.plot(t,y)
# some code to share both x axes
plt.show()
Instead of the comment I want to insert some code to share both x axes.
How do I do this? There are some relevant sounding attributes
_shared_x_axes and _shared_x_axes when I check to figure axis (fig.get_axes()) but I don't know how to link them.
The usual way to share axes is to create the shared properties at creation. Either
fig=plt.figure()
ax1 = plt.subplot(211)
ax2 = plt.subplot(212, sharex = ax1)
or
fig, (ax1, ax2) = plt.subplots(nrows=2, sharex=True)
Sharing the axes after they have been created should therefore not be necessary.
However if for any reason, you need to share axes after they have been created (actually, using a different library which creates some subplots, like here might be a reason), there would still be a solution:
Using
ax1.get_shared_x_axes().join(ax1, ax2)
creates a link between the two axes, ax1 and ax2. In contrast to the sharing at creation time, you will have to set the xticklabels off manually for one of the axes (in case that is wanted).
A complete example:
import numpy as np
import matplotlib.pyplot as plt
t= np.arange(1000)/100.
x = np.sin(2*np.pi*10*t)
y = np.cos(2*np.pi*10*t)
fig=plt.figure()
ax1 = plt.subplot(211)
ax2 = plt.subplot(212)
ax1.plot(t,x)
ax2.plot(t,y)
ax1.get_shared_x_axes().join(ax1, ax2)
ax1.set_xticklabels([])
# ax2.autoscale() ## call autoscale if needed
plt.show()
The other answer has code for dealing with a list of axes:
axes[0].get_shared_x_axes().join(axes[0], *axes[1:])
As of Matplotlib v3.3 there now exist Axes.sharex, Axes.sharey methods:
ax1.sharex(ax2)
ax1.sharey(ax3)
Just to add to ImportanceOfBeingErnest's answer above:
If you have an entire list of axes objects, you can pass them all at once and have their axes shared by unpacking the list like so:
ax_list = [ax1, ax2, ... axn] #< your axes objects
ax_list[0].get_shared_x_axes().join(ax_list[0], *ax_list)
The above will link all of them together. Of course, you can get creative and sub-set your list to link only some of them.
Note:
In order to have all axes linked together, you do have to include the first element of the axes_list in the call, despite the fact that you are invoking .get_shared_x_axes() on the first element to start with!
So doing this, which would certainly appear logical:
ax_list[0].get_shared_x_axes().join(ax_list[0], *ax_list[1:])
... will result in linking all axes objects together except the first one, which will remain entirely independent from the others.

Matplotlib: collecting lines onto the same axis

I'm just starting using Matplotlib the "right" way. I'm writing various programs that will each give me back a time series, and I'm looking to superimpose the graphs of the various time series, like this:
I think what I want is a single Axes instance defined in the main function, then I call each of my little functions, and they all return a Line2D instance, and then I'll put them all on the Axes object I created.
But I'm having trouble taking an existing Line2D object and adding it to an existing Axes object (like I'd want to do with the output of my function.) I thought of taking a Line2D called a and say ax.add_line(a).
import matplotlib.pyplot as plt
a, = plt.plot([1,2,3], [3,4,5], label = 'a')
fig, ax = plt.subplots()
ax.add_line(a)
Gives me a RuntimeError: "Can not put single artist in more than one figure."
I'm guessing that over time Matplotlib has stopped wanting users to be able to add a given line to any Axes they want. A similar thing is discussed in the comments of this answer, except there they're talking about an Axes object in two different Figure objects.
What's the best way to accomplish what I want? I'd rather keep my main script tidy, and not say ax.plot(some_data) over and over when I want to superimpose these lines.
Indeed, you cannot add the same artist to more than one axes or figure.
But for what I understand from your question, that isn't really necessary.
So let's just do as you propose;
"I thought of taking a Line2D called a and say ax.add_line(a)."
import numpy as np
import matplotlib.pyplot as plt
def get_line(label="a"):
return plt.Line2D(np.linspace(0,1,10), np.random.rand(10), label = label)
fig, ax = plt.subplots()
ax.add_line(get_line(label="a"))
ax.add_line(get_line(label="b"))
ax.add_line(get_line(label="z"))
ax.legend()
plt.show()
The way matplotlib would recommend is to create functions that take an axes as input and plot to that axes.
import numpy as np
import matplotlib.pyplot as plt
def plot_line(ax=None, label="a"):
ax = ax or plt.gca()
line, = ax.plot(np.linspace(0,1,10), np.random.rand(10), label = label)
return line
fig, ax = plt.subplots()
plot_line(ax, label="a")
plot_line(ax, label="b")
plot_line(ax, label="z")
ax.legend()
plt.show()
A possible work around for your problem:
import matplotlib.pyplot as plt
x = np.array([1,2,3])
y = np.array([3,4,5])
label = '1'
def plot(x,y,label):
a, = plt.plot(x,y, label = label)
return a
fig, ax = plt.subplots()
plot(x,y,label)
plot(x,1.5*y,label)
You can put your plot command now in a loop with changing labels. You can still use the ax handle to modify/define the plot parameters.

Avoid overlapping on seaborn plots

I'm making some EDA using pandas and seaborn, this is the code I have to plot the histograms of a group of features:
skewed_data = pd.DataFrame.skew(data)
skewed_features =skewed_data.index
fig, axs = plt.subplots(ncols=len(skewed_features))
plt.ticklabel_format(style='sci', axis='both', scilimits=(0,0))
for i,skewed_feature in enumerate(skewed_features):
g = sns.distplot(data[column])
sns.distplot(data[skewed_feature], ax=axs[i])
This is the result I'm getting:
Is not readable, how can I avoid that issue?
I know you are concerning about the layout of the figures. However, you need to first decide how to represent your data. Here are two choices for your case
(1) Multiple lines in one figure and
(2) Multiple subplots 2x2, each subplot draws one line.
I am not quite familiar with searborn, but the plotting of searborn is based on matplotlib. I could give you some basic ideas.
To archive (1), you can first declare the figure and ax, then add all line to this ax. Example codes:
import matplotlib.pyplot as plt
fig, ax = plt.subplots()
# YOUR LOOP, use the ax parameter
for i in range(3)
sns.distplot(data[i], ax=ax)
To archive (2), same as above, but with different number subplots, and put your line in the different subplot.
# Four subplots, 2x2
fig, axarr = plt.subplots(2,2)
# YOUR LOOP, use different cell
You may check matplotlib subplots demo. To do a good visualization is a very tough work. There are so many documents to read. Check the gallery of matplotlib or seaborn is a good and quick way to understand how some kinds of visualization are implemented.
Thanks.

How to share x axes of two subplots after they have been created

I'm trying to share two subplots axes, but I need to share the x axis after the figure was created. E.g. I create this figure:
import numpy as np
import matplotlib.pyplot as plt
t = np.arange(1000)/100.
x = np.sin(2*np.pi*10*t)
y = np.cos(2*np.pi*10*t)
fig = plt.figure()
ax1 = plt.subplot(211)
plt.plot(t,x)
ax2 = plt.subplot(212)
plt.plot(t,y)
# some code to share both x axes
plt.show()
Instead of the comment I want to insert some code to share both x axes.
How do I do this? There are some relevant sounding attributes
_shared_x_axes and _shared_x_axes when I check to figure axis (fig.get_axes()) but I don't know how to link them.
The usual way to share axes is to create the shared properties at creation. Either
fig=plt.figure()
ax1 = plt.subplot(211)
ax2 = plt.subplot(212, sharex = ax1)
or
fig, (ax1, ax2) = plt.subplots(nrows=2, sharex=True)
Sharing the axes after they have been created should therefore not be necessary.
However if for any reason, you need to share axes after they have been created (actually, using a different library which creates some subplots, like here might be a reason), there would still be a solution:
Using
ax1.get_shared_x_axes().join(ax1, ax2)
creates a link between the two axes, ax1 and ax2. In contrast to the sharing at creation time, you will have to set the xticklabels off manually for one of the axes (in case that is wanted).
A complete example:
import numpy as np
import matplotlib.pyplot as plt
t= np.arange(1000)/100.
x = np.sin(2*np.pi*10*t)
y = np.cos(2*np.pi*10*t)
fig=plt.figure()
ax1 = plt.subplot(211)
ax2 = plt.subplot(212)
ax1.plot(t,x)
ax2.plot(t,y)
ax1.get_shared_x_axes().join(ax1, ax2)
ax1.set_xticklabels([])
# ax2.autoscale() ## call autoscale if needed
plt.show()
The other answer has code for dealing with a list of axes:
axes[0].get_shared_x_axes().join(axes[0], *axes[1:])
As of Matplotlib v3.3 there now exist Axes.sharex, Axes.sharey methods:
ax1.sharex(ax2)
ax1.sharey(ax3)
Just to add to ImportanceOfBeingErnest's answer above:
If you have an entire list of axes objects, you can pass them all at once and have their axes shared by unpacking the list like so:
ax_list = [ax1, ax2, ... axn] #< your axes objects
ax_list[0].get_shared_x_axes().join(ax_list[0], *ax_list)
The above will link all of them together. Of course, you can get creative and sub-set your list to link only some of them.
Note:
In order to have all axes linked together, you do have to include the first element of the axes_list in the call, despite the fact that you are invoking .get_shared_x_axes() on the first element to start with!
So doing this, which would certainly appear logical:
ax_list[0].get_shared_x_axes().join(ax_list[0], *ax_list[1:])
... will result in linking all axes objects together except the first one, which will remain entirely independent from the others.

What is the difference between drawing plots using plot, axes or figure in matplotlib?

I'm kind of confused what is going at the backend when I draw plots in matplotlib, tbh, I'm not clear with the hierarchy of plot, axes and figure. I read the documentation and it was helpful but I'm still confused...
The below code draws the same plot in three different ways -
#creating the arrays for testing
x = np.arange(1, 100)
y = np.sqrt(x)
#1st way
plt.plot(x, y)
#2nd way
ax = plt.subplot()
ax.plot(x, y)
#3rd way
figure = plt.figure()
new_plot = figure.add_subplot(111)
new_plot.plot(x, y)
Now my question is -
What is the difference between all the three, I mean what is going under the hood when any of the 3 methods are called?
Which method should be used when and what are the pros and cons of using any on those?
The names of objects
Matplotlib is strongly object oriented and its principal objects are the figure and the axes (I find the name axes a bit misleading, but probably it's just me).
You can think of the figure as a canvas, of which you typically specify the dimensions and possibly e.g., the background color etc etc. You use the canvas, the figure, essentially in two ways, placing other objects on it (mostly axes, but also text labels etc) and saving its contents with savefig.
You can think of an axes as a sort of Swiss Army knife, a handy object that offers a tool (e.g. .plot, .scatter, .hist etc) for everything, mostly. You can place one, two, ... many axes inside a figure using one of many different methods.
The plt interface
The plt procedural interface was originally developed to mimic the MATLAB™ interface but is not really different from the object oriented interface, even if you don't make a direct reference to the main objects (i.e., a figure and an axes) these objects are automatically instantiated and each plt method is, essentially, translated to a call of one of the methods of the underlying fundamental objects: e.g., a plt.plot() is a hidden_axes.plot and a plt.savefig is a hidden_figure.savefig.
In every moment you can have an handle on these hidden objects using plt.gcf and plt.gca, and this is sometimes necessary when one of the object methods has not been ported to a method in the plt namespace.
I'd like to add that the plt namespace contains also a number of convenience methods¹ to instantiate, in different ways, figure and axes.
Your examples
1st way
plt.plot(x, y)
Here you use only the plt interface, you can only use a single axes in each figure, but this is what you want when you are doing an exploration of your data,
a quick recipe that gets the work done...
2nd way
ax = plt.subplot()
ax.plot(x, y)
Here you use a convenience method in the plt namespace to give a name (and a handle) to your axes object, but btw there is also an hidden figure. You can later use the axes object to plot, to make an histogram etc, all things that you can do with the plt interface, but you can also access all its attributes and modify them with greater freedom.
3rd way
figure = plt.figure()
new_plot = figure.add_subplot(111)
new_plot.plot(x, y)
Here you start instantiating a figure using a convenience method in the plt namespace and later you use only the object oriented interface.
It is possible to bypass the plt convenience method (matplotlib.figure.Figure) but you then have to tweak the figure for a better interactive experience (after all, it's a convenience method).
Personal recommendations
I suggest bare plt.plot, plt.scatter in the context of an interactive session, possibly using IPython with its %matplotlib magic command, and also in the context of an exploratory Jupyter notebook.
On the other hand the object oriented approach, plus a few plt
convenience methods¹, is the way to go
if you have a permanent issue to solve once for all with a
customized arrangement of finely tuned subplots,
if you want to embed Matplotlib in the UI of a program you write.
There is a large gray area between these extremes and if you ask me what to do I'd just say "It depends"...
(1) The convenience methods in the plt name space are REALLY CONVENIENT! In particular, when you instantiate Figures and Axes using them, all the minute details needed to deal with interactive windows are automatically taken into account.
Method 1
plt.plot(x, y)
This lets you plot just one figure with (x,y) coordinates. If you just want to get one graphic, you can use this way.
Method 2
ax = plt.subplot()
ax.plot(x, y)
This lets you plot one or several figure(s) in the same window. As you write it, you will plot just one figure, but you can make something like this:
fig1, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2)
You will plot 4 figures which are named ax1, ax2, ax3 and ax4 each one but on the same window. This window will be just divided in 4 parts with my example.
Method 3
fig = plt.figure()
new_plot = fig.add_subplot(111)
new_plot.plot(x, y)
I didn't use it, but you can find documentation.
Example:
import numpy as np
import matplotlib.pyplot as plt
# Method 1 #
x = np.random.rand(10)
y = np.random.rand(10)
figure1 = plt.plot(x,y)
# Method 2 #
x1 = np.random.rand(10)
x2 = np.random.rand(10)
x3 = np.random.rand(10)
x4 = np.random.rand(10)
y1 = np.random.rand(10)
y2 = np.random.rand(10)
y3 = np.random.rand(10)
y4 = np.random.rand(10)
figure2, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2)
ax1.plot(x1,y1)
ax2.plot(x2,y2)
ax3.plot(x3,y3)
ax4.plot(x4,y4)
plt.show()
Other example:

Categories

Resources