I want to build a script which would check up an instance of RabbitMQ on my server once in a minute. Is it possible to check if RabbitMQ is "doing well" in automatic mode, it might be via a script (ruby, python, whatever) or command line. By "doing well" it's not about to crash for any reason and it's not frozen.
Also, if I'm able to connect to it from a client script, say, from ruby, does that mean that "it's doing well" or not necessarily?
That doesn't mean it's doing well. The problem is that "doing well" cannot be measured. You need to check things like total queued messages, messages per second or memory consumption. A simple ping won't tell you much. Heck, rabbitmq as an erlang system is built to crash and respawn.
Once you define what you mean by doing well, you can create a script to hit Rabbit's API. It's simple HTTP.
The API becomes available via the Rabbit Management Plug see https://www.rabbitmq.com/management.html
Once installed you have to define what it means to be doing well within the context of your application. It could be that you app takes a long time to process messages. It could be that you'll have bursts of messages but you have to average their processing time. It could be that you purposely under powered the server so you only want to worry about extreme memory pressures. See http://looselycoupledlabs.com/2014/08/monitoring-rabbitmq/ for an example metric set.
The is no single stats value that will tell you any server is about to fail. You'll want to combine Rabbit's stats with the host OS'.
Related
I have a Python program that I am running as a Job on a Kubernetes cluster every 2 hours. I also have a webserver that starts the job whenever user clicks a button on a page.
I need to ensure that at most only one instance of the Job is running on the cluster at any given time.
Given that I am using Kubernetes to run the job and connecting to Postgresql from within the job, the solution should somehow leverage these two. I though a bit about it and came with the following ideas:
Find a setting in Kubernetes that would set this limit, attempts to start second instance would then fail. I was unable to find this setting.
Create a shared lock, or mutex. Disadvantage is that if job crashes, I may not unlock before quitting.
Kubernetes is running etcd, maybe I can use that
Create a 'lock' table in Postgresql, when new instance connects, it checks if it is the only one running. Use transactions somehow so that one wins and proceeds, while others quit. I have not yet thought this out, but is should work.
Query kubernetes API for a label I use on the job, see if there are some instances. This may not be atomic, so more than one instance may slip through.
What are the usual solutions to this problem given the platform choice I made? What should I do, so that I don't reinvent the wheel and have something reliable?
A completely different approach would be to run a (web) server that executes the job functionality. At a high level, the idea is that the webserver can contact this new job server to execute functionality. In addition, this new job server will have an internal cron to trigger the same functionality every 2 hours.
There could be 2 approaches to implementing this:
You can put the checking mechanism inside the jobserver code to ensure that even if 2 API calls happen simultaneously to the job server, only one executes, while the other waits. You could use the language platform's locking features to achieve this, or use a message queue.
You can put the checking mechanism outside the jobserver code (in the database) to ensure that only one API call executes. Similar to what you suggested. If you use a postgres transaction, you don't have to worry about your job crashing and the value of the lock remaining set.
The pros/cons of both approaches are straightforward. The major difference in my mind between 1 & 2, is that if you update the job server code, then you might have a situation where 2 job servers might be running at the same time. This would destroy the isolation property you want. Hence, database might work better, or be more idiomatic in the k8s sense (all servers are stateless so all the k8s goodies work; put any shared state in a database that can handle concurrency).
Addressing your ideas, here are my thoughts:
Find a setting in k8s that will limit this: k8s will not start things with the same name (in the metadata of the spec). But anything else goes for a job, and k8s will start another job.
a) etcd3 supports distributed locking primitives. However, I've never used this and I don't really know what to watch out for.
b) postgres lock value should work. Even in case of a job crash, you don't have to worry about the value of the lock remaining set.
Querying k8s API server for things that should be atomic is not a good idea like you said. I've used a system that reacts to k8s events (like an annotation change on an object spec), but I've had bugs where my 'operator' suddenly stops getting k8s events and needs to be restarted, or again, if I want to push an update to the event-handler server, then there might be 2 event handlers that exist at the same time.
I would recommend sticking with what you are best familiar with. In my case that would be implementing a job-server like k8s deployment that runs as a server and listens to events/API calls.
I need you guys :D
I have a web page, on this page I have check some items and pass their value as variable to python script.
problem is:
I Need to write a python script and in that script I need to put this variables into my predefined shell commands and run them.
It is one gnuplot and one other shell commands.
I never do anything in python can you guys send me some advices ?
THx
I can't fully address your questions due to lack of information on the web framework that you are using but here are some advice and guidance that you will find useful. I did had a similar problem that will require me to run a shell program that pass arguments derived from user requests( i was using the django framework ( python ) )
Now there are several factors that you have to consider
How long will each job takes
What is the load that you are expecting (are there going to be loads of jobs)
Will there be any side effects from your shell command
Here are some explanation that why this will be important
How long will each job takes.
Depending on your framework and browser, there is a limitation on the duration that a connection to the server is kept alive. In other words, you will have to take into consideration that the time for the server to response to a user request do not exceed the connection time out set by the server or the browser. If it takes too long, then you will get a server connection time out. Ie you will get an error response as there is no response from the server side.
What is the load that you are expecting.
You will have probably figure that if a work that you are requesting is huge,it will take out more resources than you will need. Also, if you have multiple requests at the same time, it will take a huge toll on your server. For instance, if you do proceed with using subprocess for your jobs, it will be important to note if you job is blocking or non blocking.
Side effects.
It is important to understand what are the side effects of your shell process. For instance, if your shell process involves writing and generating lots of temp files, you will then have to consider the permissions that your script have. It is a complex task.
So how can this be resolve!
subprocesswhich ship with base python will allow you to run shell commands using python. If you want more sophisticated tools check out the fabric library. For passing of arguments do check out optparse and sys.argv
If you expect a huge work load or a long processing time, do consider setting up a queue system for your jobs. Popular framework like celery is a good example. You may look at gevent and asyncio( python 3) as well. Generally, instead of returning a response on the fly, you can retur a job id or a url in which the user can come back later on and have a look
Point to note!
Permission and security is vital! The last thing you want is for people to execute shell command that will be detrimental to your system
You can also increase connection timeout depending on the framework that you are using.
I hope you will find this useful
Cheers,
Biobirdman
I'm trying to do some machinery automation with python, but I've run into a problem.
I have code that does the actual control, code that logs, code the provides a GUI, and some other modules all being called from a single script.
The issue is that an error in one module halts all the others. So, for instance a bug in the GUI will kill the control systems.
I want to be able to have the modules run independently, so one can crash, be restarted, be patched, etc without halting the others.
The only way I can find to make that work is to store the variables in an SQL database, or files or something.
Is there a way for one python script to sort of ..debug another? so that one script can read or change the variables in the other? I can't find a way to do that that also allows to scripts to be started and stopped independently.
Does anyone have any ideas or advice?
A fairly effective way to do this is to use message passing. Each of your modules are independent, but they can send and receive messages to each other. A very good reference on the many ways to achieve this in Python is the Python wiki page for parallel processing.
A generic strategy
Split your program into pieces where there are servers and clients. You could then use middleware such as 0MQ, Apache ActiveMQ or RabbitMQ to send data between different parts of the system.
In this case, your GUI could send a message to the log parser server telling it to begin work. Once it's done, the log parser will send a broadcast message to anyone interested telling the world the a reference to the results. The GUI could be a subscriber to the channel that the log parser subscribes to. Once it receives the message, it will open up the results file and display whatever the user is interested in.
Serialization and deserialization speed is important also. You want to minimise the overhead for communicating. Google Protocol Buffers and Apache Thrift are effective tools here.
You will also need some form of supervision strategy to prevent a failure in one of the servers from blocking everything. supervisord will restart things for you and is quite easy to configure. Again, it is only one of many options in this space.
Overkill much?
It sounds like you have created a simple utility. The multiprocessing module is an excellent way to have different bits of the program running fairly independently. You still apply the same strategy (message passing, no shared shared state, supervision), but with different tactics.
You want multiply independent processes, and you want them to talk to each other. Hence: read what methods of inter-process communication are available on your OS. I recommend sockets (generic, will work over a n/w and with diff OSs). You can easily invent a simple (maybe http-like) protocol on top of TCP, maybe with json for messages. There is a bunch of classes coming with Python distribution to make it easy (SocketServer.ThreadingMixIn, SocketServer.TCPServer, etc.).
I am working on a django web application.
A function 'xyx' (it updates a variable) needs to be called every 2 minutes.
I want one http request should start the daemon and keep calling xyz (every 2 minutes) until I send another http request to stop it.
Appreciate your ideas.
Thanks
Vishal Rana
There are a number of ways to achieve this. Assuming the correct server resources I would write a python script that calls function xyz "outside" of your django directory (although importing the necessary stuff) that only runs if /var/run/django-stuff/my-daemon.run exists. Get cron to run this every two minutes.
Then, for your django functions, your start function creates the above mentioned file if it doesn't already exist and the stop function destroys it.
As I say, there are other ways to achieve this. You could have a python script on loop waiting for approx 2 minutes... etc. In either case, you're up against the fact that two python scripts run on two different invocations of cpython (no idea if this is the case with mod_wsgi) cannot communicate with each other and as such IPC between python scripts is not simple, so you need to use some sort of formal IPC (like semaphores, files etc) rather than just common variables (which won't work).
Probably a little hacked but you could try this:
Set up a crontab entry that runs a script every two minutes. This script will check for some sort of flag (file existence, contents of a file, etc.) on the disk to decide whether to run a given python module. The problem with this is it could take up to 1:59 to run the function the first time after it is started.
I think if you started a daemon in the view function it would keep the httpd worker process alive as well as the connection unless you figure out how to send a connection close without terminating the django view function. This could be very bad if you want to be able to do this in parallel for different users. Also to kill the function this way, you would have to somehow know which python and/or httpd process you want to kill later so you don't kill all of them.
The real way to do it would be to code an actual daemon in w/e language and just make a system call to "/etc/init.d/daemon_name start" and "... stop" in the django views. For this, you need to make sure your web server user has permission to execute the daemon.
If the easy solutions (loop in a script, crontab signaled by a temp file) are too fragile for your intended usage, you could use Twisted facilities for process handling and scheduling and networking. Your Django app (using a Twisted client) would simply communicate via TCP (locally) with the Twisted server.
I'd like to prevent multiple instances of the same long-running python command-line script from running at the same time, and I'd like the new instance to be able to send data to the original instance before the new instance commits suicide. How can I do this in a cross-platform way?
Specifically, I'd like to enable the following behavior:
"foo.py" is launched from the command line, and it will stay running for a long time-- days or weeks until the machine is rebooted or the parent process kills it.
every few minutes the same script is launched again, but with different command-line parameters
when launched, the script should see if any other instances are running.
if other instances are running, then instance #2 should send its command-line parameters to instance #1, and then instance #2 should exit.
instance #1, if it receives command-line parameters from another script, should spin up a new thread and (using the command-line parameters sent in the step above) start performing the work that instance #2 was going to perform.
So I'm looking for two things: how can a python program know another instance of itself is running, and then how can one python command-line program communicate with another?
Making this more complicated, the same script needs to run on both Windows and Linux, so ideally the solution would use only the Python standard library and not any OS-specific calls. Although if I need to have a Windows codepath and an *nix codepath (and a big if statement in my code to choose one or the other), that's OK if a "same code" solution isn't possible.
I realize I could probably work out a file-based approach (e.g. instance #1 watches a directory for changes and each instance drops a file into that directory when it wants to do work) but I'm a little concerned about cleaning up those files after a non-graceful machine shutdown. I'd ideally be able to use an in-memory solution. But again I'm flexible, if a persistent-file-based approach is the only way to do it, I'm open to that option.
More details: I'm trying to do this because our servers are using a monitoring tool which supports running python scripts to collect monitoring data (e.g. results of a database query or web service call) which the monitoring tool then indexes for later use. Some of these scripts are very expensive to start up but cheap to run after startup (e.g. making a DB connection vs. running a query). So we've chosen to keep them running in an infinite loop until the parent process kills them.
This works great, but on larger servers 100 instances of the same script may be running, even if they're only gathering data every 20 minutes each. This wreaks havoc with RAM, DB connection limits, etc. We want to switch from 100 processes with 1 thread to one process with 100 threads, each executing the work that, previously, one script was doing.
But changing how the scripts are invoked by the monitoring tool is not possible. We need to keep invocation the same (launch a process with different command-line parameters) but but change the scripts to recognize that another one is active, and have the "new" script send its work instructions (from the command line params) over to the "old" script.
BTW, this is not something I want to do on a one-script basis. Instead, I want to package this behavior into a library which many script authors can leverage-- my goal is to enable script authors to write simple, single-threaded scripts which are unaware of multi-instance issues, and to handle the multi-threading and single-instancing under the covers.
The Alex Martelli approach of setting up a communications channel is the appropriate one. I would use a multiprocessing.connection.Listener to create a listener, in your choice. Documentation at:
http://docs.python.org/library/multiprocessing.html#multiprocessing-listeners-clients
Rather than using AF_INET (sockets) you may elect to use AF_UNIX for Linux and AF_PIPE for Windows. Hopefully a small "if" wouldn't hurt.
Edit: I guess an example wouldn't hurt. It is a basic one, though.
#!/usr/bin/env python
from multiprocessing.connection import Listener, Client
import socket
from array import array
from sys import argv
def myloop(address):
try:
listener = Listener(*address)
conn = listener.accept()
serve(conn)
except socket.error, e:
conn = Client(*address)
conn.send('this is a client')
conn.send('close')
def serve(conn):
while True:
msg = conn.recv()
if msg.upper() == 'CLOSE':
break
print msg
conn.close()
if __name__ == '__main__':
address = ('/tmp/testipc', 'AF_UNIX')
myloop(address)
This works on OS X, so it needs testing with both Linux and (after substituting the right address) Windows. A lot of caveats exists from a security point, the main one being that conn.recv unpickles its data, so you are almost always better of with recv_bytes.
The general approach is to have the script, on startup, set up a communication channel in a way that's guaranteed to be exclusive (other attempts to set up the same channel fail in a predictable way) so that further instances of the script can detect the first one's running and talk to it.
Your requirements for cross-platform functionality strongly point towards using a socket as the communication channel in question: you can designate a "well known port" that's reserved for your script, say 12345, and open a socket on that port listening to localhost only (127.0.0.1). If the attempt to open that socket fails, because the port in question is "taken", then you can connect to that port number instead, and that will let you communicate with the existing script.
If you're not familiar with socket programming, there's a good HOWTO doc here. You can also look at the relevant chapter in Python in a Nutshell (I'm biased about that one, of course;-).
Perhaps try using sockets for communication?
Sounds like your best bet is sticking with a pid file but have it not only contain the process Id - have it also include the port number that the prior instance is listening on. So when starting up check for the pid file and if present see if a process with that Id is running - if so send your data to it and quit otherwise overwrite the pid file with the current process's info.