I'm trying to implement an RK4 method to solve for the orbit of a rocket around the Earth. Eventually this code will be used for more complex solar system simulations, but I'm just trying to get it working in this simple system first.
My code is below - I'm hoping someone can tell me what is wrong with it.
My trouble-shooting efforts have been long and unfruitful, but I'll summarise what I've found:
I believe the acceleration function is fine and correct, as it gives believable values and agrees with my calculator/brain
It appears as though the problem lies somewhere in the calculation of the next "r" value - when you run this code, an x-y graph will appear, showing that the rocket initially falls in towards the Earth, then bounces away again, then back. I printed all the relevant values at this point, and found that "v" and "a" were negative in both components, despite the rocket clearly moving in the positive y direction. This makes me think that the calculation of the new "r" is in disagreement with the physics.
The rocket is falling to Earth much faster than it should, which is also suspicious (technically it shouldn't fall into Earth at all, since the initial velocity is set to the required orbital velocity)
Either way I would greatly appreciate if anyone could find the error, as I have been unable up to this point.
from __future__ import division
import numpy as np
import matplotlib.pyplot as plt
mE = 5.9742e24 #earth mass
mM = 7.35e22 #moon mass
dM = 379728240.5 #distance from moon to barycentre
dE = 4671759.5 #distance from earth to barycentre
s = 6.4686973e7 #hypothesised distance from moon to Lagrange-2 point
sr = 6.5420e7 #alternate L2 distance
def Simulate(iterations):
x = dM #initialise rocket positions
y = 0
a = 10 #set the time step
xdot = 0. #initialise rocket velocity
ydot = -((6.6726e-11)*mE/x)**0.5
rocket_history_x, rocket_history_y = [[] for _ in range(2)]
history_mx, history_my = [[] for _ in range(2)]
history_ex, history_ey = [[] for _ in range(2)]
sep_history, step_history = [[] for _ in range(2)] #create lists to store data in
history_vx, history_vy = [[] for _ in range(2)]
history_ax, history_ay = [[] for _ in range(2)]
n = 1500
m = 10000 #n,m,p are for storing every nth, mth and pth value to the lists
p = 60000
r = np.array((x,y)) #create rocket position vector
v = np.array((xdot, ydot)) #create rocket velocity vector
for i in range(iterations):
xe, ye = 0, 0 #position of earth
re = np.array((xe,ye)) #create earth position vector
phi = np.arctan2((r[1]-ye),(r[0]-xe)) #calculate phi, the angle between the rocket and the earth, as measured from the earth
r_hat_e = np.array((np.cos(phi), np.sin(phi))) #create vector along which earth's acceleration acts
def acc(r): #define the acceleration vector function
return ((-6.6726e-11)*(mE)/abs(np.dot((r-re),(r-re))))*r_hat_e
k1v = acc(r) #use RK4 method
k1r = v
k2v = acc(r + k1r*(a/2)) #acc(r + (a/2)*v)
k2r = v * (a/2) * k1v # v*acc(r)
k3v = acc(r + k2r*(a/2)) #acc(r + (a/2)*v*acc(r))
k3r = v * k2v * (a/2) #v*(a/2)*acc(r + (a/2)*v)
k4v = acc(r + k3r*a) #acc(r + (a**2/2)*v*acc(r + (a/2)*v))
k4r = v * k3v * a #v*a*acc(r + (a/2)*v*acc(r))
v = v + (a/6) * (k1v + 2*k2v + 2*k3v + k4v) #update v
r = r + (a/6) * (k1r + 2*k2r + 2*k3r + k4r) #update r
sep = np.sqrt(np.dot((r-re),(r-re))) #separation of rocket and earth, useful for visualisation/trouble-shooting
if i% n == 0: # Check for the step
rocket_history_x.append(r[0])
rocket_history_y.append(r[1])
history_ex.append(xe)
history_ey.append(ye)
sep_history.append(sep) #putting data into lists for plotting and troubleshooting
step_history.append(i)
history_ax.append(acc(r)[0])
history_ay.append(acc(r)[1])
history_vx.append(v[0])
history_vy.append(v[1])
#if i% m == 0: # Check for the step
#print r
#print acc(r)
#if i% p == 0: # Check for the step
#print ((a/6)*(k1v + 2*k2v + 2*k3v + k4v))
#print ((a/6)*(k1r + 2*k2r + 2*k3r + k4r))
#print k1v, k2v, k3v, k4v
#print k1r, k2r, k3r, k4r
return rocket_history_x, rocket_history_y, history_ex, history_ey, history_mx, history_my, sep_history, step_history, history_ax, history_ay, history_vx, history_vy
x , y, xe, ye, mx, my, sep, step, ax, ay, vx, vy = Simulate(130000)
#print x,y,vx,vy,ax,ay,step
print ("Plotting graph...")
plt.figure()
plt.subplot(311)
plt.plot(x, y, linestyle='--', color = 'green')
#plt.plot(mx, my, linestyle='-', color = 'blue')
plt.plot(xe, ye, linestyle='-', color = 'red')
#plt.plot(xm, ym)
plt.xlabel("Orbit X")
plt.ylabel("Orbit Y")
'''
plt.plot(step, vy)
plt.ylabel("vy")
'''
plt.subplot(312)
plt.plot(step, sep)
plt.xlabel("steps")
plt.ylabel("separation")
plt.subplot(313)
plt.plot(step, ay)
plt.ylabel("ay")
plt.show()
print("Simulation Complete")
Your most grave error is that in the computation of the v slopes, you used multiplication instead of addition.
k1v = acc(r) #use RK4 method
k1r = v
k2v = acc(r + (a/2) * k1r)
k2r = v + (a/2) * k1v
k3v = acc(r + (a/2) * k2r)
k3r = v + (a/2) * k2v
k4v = acc(r + a * k3r)
k4r = v + a * k3v
A second error is that you use a value from a different state in the acceleration computation of the changed states. This might reduce the order of the method down to 1. Which might not change this plot visibly but will have larger errors over longer integration periods. Use
def acc(r): #define the acceleration vector function
return ((-6.6726e-11)*(mE)/abs(np.dot((r-re),(r-re)))**1.5)*(r-re)
It is the first time I am trying to write a Poincare section code at Python.
I borrowed the piece of code from here:
https://github.com/williamgilpin/rk4/blob/master/rk4_demo.py
and I have tried to run it for my system of second order coupled odes. The problem is that I do not see what I was expecting to. Actually, I need the Poincare section when x=0 and px>0.
I believe that my implementation is not the best out there. I would like to:
Improve the way that the initial conditions are chosen.
Apply the correct conditions (x=0 and px>0) in order to acquire the correct Poincare section.
Create one plot with all the collected poincare section data, not four separate ones.
I would appreciate any help.
This is the code:
from matplotlib.pyplot import *
from scipy import *
from numpy import *
# a simple Runge-Kutta integrator for multiple dependent variables and one independent variable
def rungekutta4(yprime, time, y0):
# yprime is a list of functions, y0 is a list of initial values of y
# time is a list of t-values at which solutions are computed
#
# Dependency: numpy
N = len(time)
y = array([thing*ones(N) for thing in y0]).T
for ii in xrange(N-1):
dt = time[ii+1] - time[ii]
k1 = dt*yprime(y[ii], time[ii])
k2 = dt*yprime(y[ii] + 0.5*k1, time[ii] + 0.5*dt)
k3 = dt*yprime(y[ii] + 0.5*k2, time[ii] + 0.5*dt)
k4 = dt*yprime(y[ii] + k3, time[ii+1])
y[ii+1] = y[ii] + (k1 + 2.0*(k2 + k3) + k4)/6.0
return y
# Miscellaneous functions
n= 1.0/3.0
kappa1 = 0.1
kappa2 = 0.1
kappa3 = 0.1
def total_energy(valpair):
(x, y, px, py) = tuple(valpair)
return .5*(px**2 + py**2) + (1.0/(1.0*(n+1)))*(kappa1*np.absolute(x)**(n+1)+kappa2*np.absolute(y-x)**(n+1)+kappa3*np.absolute(y)**(n+1))
def pqdot(valpair, tval):
# input: [x, y, px, py], t
# takes a pair of x and y values and returns \dot{p} according to the Hamiltonian
(x, y, px, py) = tuple(valpair)
return np.array([px, py, -kappa1*np.sign(x)*np.absolute(x)**n+kappa2*np.sign(y-x)*np.absolute(y-x)**n, kappa2*np.sign(y-x)*np.absolute(y-x)**n-kappa3*np.sign(y)*np.absolute(y)**n]).T
def findcrossings(data, data1):
# returns indices in 1D data set where the data crossed zero. Useful for generating Poincare map at 0
prb = list()
for ii in xrange(len(data)-1):
if (((data[ii] > 0) and (data[ii+1] < 0)) or ((data[ii] < 0) and (data[ii+1] > 0))) and data1[ii] > 0:
prb.append(ii)
return array(prb)
t = linspace(0, 1000.0, 100000)
print ("step size is " + str(t[1]-t[0]))
# Representative initial conditions for E=1
E = 1
x0=0
y0=0
init_cons = [[x0, y0, np.sqrt(2*E-(1.0*i/10.0)*(1.0*i/10.0)-2.0/(n+1)*(kappa1*np.absolute(x0)**(n+1)+kappa2*np.absolute(y0-x0)**(n+1)+kappa3*np.absolute(y0)**(n+1))), 1.0*i/10.0] for i in range(-10,11)]
outs = list()
for con in init_cons:
outs.append( rungekutta4(pqdot, t, con) )
# plot the results
fig1 = figure(1)
for ii in xrange(4):
subplot(2, 2, ii+1)
plot(outs[ii][:,1],outs[ii][:,3])
ylabel("py")
xlabel("y")
title("Full trajectory projected onto the plane")
fig1.suptitle('Full trajectories E = 1', fontsize=10)
# Plot Poincare sections at x=0 and px>0
fig2 = figure(2)
for ii in xrange(4):
subplot(2, 2, ii+1)
xcrossings = findcrossings(outs[ii][:,0], outs[ii][:,3])
yints = [.5*(outs[ii][cross, 1] + outs[ii][cross+1, 1]) for cross in xcrossings]
pyints = [.5*(outs[ii][cross, 3] + outs[ii][cross+1, 3]) for cross in xcrossings]
plot(yints, pyints,'.')
ylabel("py")
xlabel("y")
title("Poincare section x = 0")
fig2.suptitle('Poincare Sections E = 1', fontsize=10)
show()
You need to compute the derivatives of the Hamiltonian correctly. The derivative of |y-x|^n for x is
n*(x-y)*|x-y|^(n-2)=n*sign(x-y)*|x-y|^(n-1)
and the derivative for y is almost, but not exactly (as in your code), the same,
n*(y-x)*|x-y|^(n-2)=n*sign(y-x)*|x-y|^(n-1),
note the sign difference. With this correction you can take larger time steps, with correct linear interpolation probably even larger ones, to obtain the images
I changed the integration of the ODE to
t = linspace(0, 1000.0, 2000+1)
...
E_kin = E-total_energy([x0,y0,0,0])
init_cons = [[x0, y0, (2*E_kin-py**2)**0.5, py] for py in np.linspace(-10,10,8)]
outs = [ odeint(pqdot, con, t, atol=1e-9, rtol=1e-8) ) for con in init_cons[:8] ]
Obviously the number and parametrization of initial conditions may change.
The computation and display of the zero-crossings was changed to
def refine_crossing(a,b):
tf = -a[0]/a[2]
while abs(b[0])>1e-6:
b = odeint(pqdot, a, [0,tf], atol=1e-8, rtol=1e-6)[-1];
# Newton step using that b[0]=x(tf) and b[2]=x'(tf)
tf -= b[0]/b[2]
return [ b[1], b[3] ]
# Plot Poincare sections at x=0 and px>0
fig2 = figure(2)
for ii in xrange(8):
#subplot(4, 2, ii+1)
xcrossings = findcrossings(outs[ii][:,0], outs[ii][:,3])
ycrossings = [ refine_crossing(outs[ii][cross], outs[ii][cross+1]) for cross in xcrossings]
yints, pyints = array(ycrossings).T
plot(yints, pyints,'.')
ylabel("py")
xlabel("y")
title("Poincare section x = 0")
and evaluating the result of a longer integration interval
I have two lists to describe the function y(x):
x = [0,1,2,3,4,5]
y = [12,14,22,39,58,77]
I would like to perform cubic spline interpolation so that given some value u in the domain of x, e.g.
u = 1.25
I can find y(u).
I found this in SciPy but I am not sure how to use it.
Short answer:
from scipy import interpolate
def f(x):
x_points = [ 0, 1, 2, 3, 4, 5]
y_points = [12,14,22,39,58,77]
tck = interpolate.splrep(x_points, y_points)
return interpolate.splev(x, tck)
print(f(1.25))
Long answer:
scipy separates the steps involved in spline interpolation into two operations, most likely for computational efficiency.
The coefficients describing the spline curve are computed,
using splrep(). splrep returns an array of tuples containing the
coefficients.
These coefficients are passed into splev() to actually
evaluate the spline at the desired point x (in this example 1.25).
x can also be an array. Calling f([1.0, 1.25, 1.5]) returns the
interpolated points at 1, 1.25, and 1,5, respectively.
This approach is admittedly inconvenient for single evaluations, but since the most common use case is to start with a handful of function evaluation points, then to repeatedly use the spline to find interpolated values, it is usually quite useful in practice.
In case, scipy is not installed:
import numpy as np
from math import sqrt
def cubic_interp1d(x0, x, y):
"""
Interpolate a 1-D function using cubic splines.
x0 : a float or an 1d-array
x : (N,) array_like
A 1-D array of real/complex values.
y : (N,) array_like
A 1-D array of real values. The length of y along the
interpolation axis must be equal to the length of x.
Implement a trick to generate at first step the cholesky matrice L of
the tridiagonal matrice A (thus L is a bidiagonal matrice that
can be solved in two distinct loops).
additional ref: www.math.uh.edu/~jingqiu/math4364/spline.pdf
"""
x = np.asfarray(x)
y = np.asfarray(y)
# remove non finite values
# indexes = np.isfinite(x)
# x = x[indexes]
# y = y[indexes]
# check if sorted
if np.any(np.diff(x) < 0):
indexes = np.argsort(x)
x = x[indexes]
y = y[indexes]
size = len(x)
xdiff = np.diff(x)
ydiff = np.diff(y)
# allocate buffer matrices
Li = np.empty(size)
Li_1 = np.empty(size-1)
z = np.empty(size)
# fill diagonals Li and Li-1 and solve [L][y] = [B]
Li[0] = sqrt(2*xdiff[0])
Li_1[0] = 0.0
B0 = 0.0 # natural boundary
z[0] = B0 / Li[0]
for i in range(1, size-1, 1):
Li_1[i] = xdiff[i-1] / Li[i-1]
Li[i] = sqrt(2*(xdiff[i-1]+xdiff[i]) - Li_1[i-1] * Li_1[i-1])
Bi = 6*(ydiff[i]/xdiff[i] - ydiff[i-1]/xdiff[i-1])
z[i] = (Bi - Li_1[i-1]*z[i-1])/Li[i]
i = size - 1
Li_1[i-1] = xdiff[-1] / Li[i-1]
Li[i] = sqrt(2*xdiff[-1] - Li_1[i-1] * Li_1[i-1])
Bi = 0.0 # natural boundary
z[i] = (Bi - Li_1[i-1]*z[i-1])/Li[i]
# solve [L.T][x] = [y]
i = size-1
z[i] = z[i] / Li[i]
for i in range(size-2, -1, -1):
z[i] = (z[i] - Li_1[i-1]*z[i+1])/Li[i]
# find index
index = x.searchsorted(x0)
np.clip(index, 1, size-1, index)
xi1, xi0 = x[index], x[index-1]
yi1, yi0 = y[index], y[index-1]
zi1, zi0 = z[index], z[index-1]
hi1 = xi1 - xi0
# calculate cubic
f0 = zi0/(6*hi1)*(xi1-x0)**3 + \
zi1/(6*hi1)*(x0-xi0)**3 + \
(yi1/hi1 - zi1*hi1/6)*(x0-xi0) + \
(yi0/hi1 - zi0*hi1/6)*(xi1-x0)
return f0
if __name__ == '__main__':
import matplotlib.pyplot as plt
x = np.linspace(0, 10, 11)
y = np.sin(x)
plt.scatter(x, y)
x_new = np.linspace(0, 10, 201)
plt.plot(x_new, cubic_interp1d(x_new, x, y))
plt.show()
If you have scipy version >= 0.18.0 installed you can use CubicSpline function from scipy.interpolate for cubic spline interpolation.
You can check scipy version by running following commands in python:
#!/usr/bin/env python3
import scipy
scipy.version.version
If your scipy version is >= 0.18.0 you can run following example code for cubic spline interpolation:
#!/usr/bin/env python3
import numpy as np
from scipy.interpolate import CubicSpline
# calculate 5 natural cubic spline polynomials for 6 points
# (x,y) = (0,12) (1,14) (2,22) (3,39) (4,58) (5,77)
x = np.array([0, 1, 2, 3, 4, 5])
y = np.array([12,14,22,39,58,77])
# calculate natural cubic spline polynomials
cs = CubicSpline(x,y,bc_type='natural')
# show values of interpolation function at x=1.25
print('S(1.25) = ', cs(1.25))
## Aditional - find polynomial coefficients for different x regions
# if you want to print polynomial coefficients in form
# S0(0<=x<=1) = a0 + b0(x-x0) + c0(x-x0)^2 + d0(x-x0)^3
# S1(1< x<=2) = a1 + b1(x-x1) + c1(x-x1)^2 + d1(x-x1)^3
# ...
# S4(4< x<=5) = a4 + b4(x-x4) + c5(x-x4)^2 + d5(x-x4)^3
# x0 = 0; x1 = 1; x4 = 4; (start of x region interval)
# show values of a0, b0, c0, d0, a1, b1, c1, d1 ...
cs.c
# Polynomial coefficients for 0 <= x <= 1
a0 = cs.c.item(3,0)
b0 = cs.c.item(2,0)
c0 = cs.c.item(1,0)
d0 = cs.c.item(0,0)
# Polynomial coefficients for 1 < x <= 2
a1 = cs.c.item(3,1)
b1 = cs.c.item(2,1)
c1 = cs.c.item(1,1)
d1 = cs.c.item(0,1)
# ...
# Polynomial coefficients for 4 < x <= 5
a4 = cs.c.item(3,4)
b4 = cs.c.item(2,4)
c4 = cs.c.item(1,4)
d4 = cs.c.item(0,4)
# Print polynomial equations for different x regions
print('S0(0<=x<=1) = ', a0, ' + ', b0, '(x-0) + ', c0, '(x-0)^2 + ', d0, '(x-0)^3')
print('S1(1< x<=2) = ', a1, ' + ', b1, '(x-1) + ', c1, '(x-1)^2 + ', d1, '(x-1)^3')
print('...')
print('S5(4< x<=5) = ', a4, ' + ', b4, '(x-4) + ', c4, '(x-4)^2 + ', d4, '(x-4)^3')
# So we can calculate S(1.25) by using equation S1(1< x<=2)
print('S(1.25) = ', a1 + b1*0.25 + c1*(0.25**2) + d1*(0.25**3))
# Cubic spline interpolation calculus example
# https://www.youtube.com/watch?v=gT7F3TWihvk
Just putting this here if you want a dependency-free solution.
Code taken from an answer above: https://stackoverflow.com/a/48085583/36061
def my_cubic_interp1d(x0, x, y):
"""
Interpolate a 1-D function using cubic splines.
x0 : a 1d-array of floats to interpolate at
x : a 1-D array of floats sorted in increasing order
y : A 1-D array of floats. The length of y along the
interpolation axis must be equal to the length of x.
Implement a trick to generate at first step the cholesky matrice L of
the tridiagonal matrice A (thus L is a bidiagonal matrice that
can be solved in two distinct loops).
additional ref: www.math.uh.edu/~jingqiu/math4364/spline.pdf
# original function code at: https://stackoverflow.com/a/48085583/36061
This function is licenced under: Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)
https://creativecommons.org/licenses/by-sa/3.0/
Original Author raphael valentin
Date 3 Jan 2018
Modifications made to remove numpy dependencies:
-all sub-functions by MR
This function, and all sub-functions, are licenced under: Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)
Mod author: Matthew Rowles
Date 3 May 2021
"""
def diff(lst):
"""
numpy.diff with default settings
"""
size = len(lst)-1
r = [0]*size
for i in range(size):
r[i] = lst[i+1] - lst[i]
return r
def list_searchsorted(listToInsert, insertInto):
"""
numpy.searchsorted with default settings
"""
def float_searchsorted(floatToInsert, insertInto):
for i in range(len(insertInto)):
if floatToInsert <= insertInto[i]:
return i
return len(insertInto)
return [float_searchsorted(i, insertInto) for i in listToInsert]
def clip(lst, min_val, max_val, inPlace = False):
"""
numpy.clip
"""
if not inPlace:
lst = lst[:]
for i in range(len(lst)):
if lst[i] < min_val:
lst[i] = min_val
elif lst[i] > max_val:
lst[i] = max_val
return lst
def subtract(a,b):
"""
returns a - b
"""
return a - b
size = len(x)
xdiff = diff(x)
ydiff = diff(y)
# allocate buffer matrices
Li = [0]*size
Li_1 = [0]*(size-1)
z = [0]*(size)
# fill diagonals Li and Li-1 and solve [L][y] = [B]
Li[0] = sqrt(2*xdiff[0])
Li_1[0] = 0.0
B0 = 0.0 # natural boundary
z[0] = B0 / Li[0]
for i in range(1, size-1, 1):
Li_1[i] = xdiff[i-1] / Li[i-1]
Li[i] = sqrt(2*(xdiff[i-1]+xdiff[i]) - Li_1[i-1] * Li_1[i-1])
Bi = 6*(ydiff[i]/xdiff[i] - ydiff[i-1]/xdiff[i-1])
z[i] = (Bi - Li_1[i-1]*z[i-1])/Li[i]
i = size - 1
Li_1[i-1] = xdiff[-1] / Li[i-1]
Li[i] = sqrt(2*xdiff[-1] - Li_1[i-1] * Li_1[i-1])
Bi = 0.0 # natural boundary
z[i] = (Bi - Li_1[i-1]*z[i-1])/Li[i]
# solve [L.T][x] = [y]
i = size-1
z[i] = z[i] / Li[i]
for i in range(size-2, -1, -1):
z[i] = (z[i] - Li_1[i-1]*z[i+1])/Li[i]
# find index
index = list_searchsorted(x0,x)
index = clip(index, 1, size-1)
xi1 = [x[num] for num in index]
xi0 = [x[num-1] for num in index]
yi1 = [y[num] for num in index]
yi0 = [y[num-1] for num in index]
zi1 = [z[num] for num in index]
zi0 = [z[num-1] for num in index]
hi1 = list( map(subtract, xi1, xi0) )
# calculate cubic - all element-wise multiplication
f0 = [0]*len(hi1)
for j in range(len(f0)):
f0[j] = zi0[j]/(6*hi1[j])*(xi1[j]-x0[j])**3 + \
zi1[j]/(6*hi1[j])*(x0[j]-xi0[j])**3 + \
(yi1[j]/hi1[j] - zi1[j]*hi1[j]/6)*(x0[j]-xi0[j]) + \
(yi0[j]/hi1[j] - zi0[j]*hi1[j]/6)*(xi1[j]-x0[j])
return f0
Minimal python3 code:
from scipy import interpolate
if __name__ == '__main__':
x = [ 0, 1, 2, 3, 4, 5]
y = [12,14,22,39,58,77]
# tck : tuple (t,c,k) a tuple containing the vector of knots,
# the B-spline coefficients, and the degree of the spline.
tck = interpolate.splrep(x, y)
print(interpolate.splev(1.25, tck)) # Prints 15.203125000000002
print(interpolate.splev(...other_value_here..., tck))
Based on comment of cwhy and answer by youngmit
In my previous post, I wrote a code based on a Cholesky development to solve the matrix generated by the cubic algorithm. Unfortunately, due to the square root function, it may perform badly on some sets of points (typically a non-uniform set of points).
In the same spirit than previously, there is another idea using the Thomas algorithm (TDMA) (see https://en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm) to solve partially the tridiagonal matrix during its definition loop. However, the condition to use TDMA is that it requires at least that the matrix shall be diagonally dominant. However, in our case, it shall be true since |bi| > |ai| + |ci| with ai = h[i], bi = 2*(h[i]+h[i+1]), ci = h[i+1], with h[i] unconditionally positive. (see https://www.cfd-online.com/Wiki/Tridiagonal_matrix_algorithm_-TDMA(Thomas_algorithm)
I refer again to the document from jingqiu (see my previous post, unfortunately the link is broken, but it is still possible to find it in the cache of the web).
An optimized version of the TDMA solver can be described as follows:
def TDMAsolver(a,b,c,d):
""" This function is licenced under: Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)
https://creativecommons.org/licenses/by-sa/3.0/
Author raphael valentin
Date 25 Mar 2022
ref. https://www.cfd-online.com/Wiki/Tridiagonal_matrix_algorithm_-_TDMA_(Thomas_algorithm)
"""
n = len(d)
w = np.empty(n-1,float)
g = np.empty(n, float)
w[0] = c[0]/b[0]
g[0] = d[0]/b[0]
for i in range(1, n-1):
m = b[i] - a[i-1]*w[i-1]
w[i] = c[i] / m
g[i] = (d[i] - a[i-1]*g[i-1]) / m
g[n-1] = (d[n-1] - a[n-2]*g[n-2]) / (b[n-1] - a[n-2]*w[n-2])
for i in range(n-2, -1, -1):
g[i] = g[i] - w[i]*g[i+1]
return g
When it is possible to get each individual for ai, bi, ci, di, it becomes easy to combine the definitions of the natural cubic spline interpolator function within these 2 single loops.
def cubic_interpolate(x0, x, y):
""" Natural cubic spline interpolate function
This function is licenced under: Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)
https://creativecommons.org/licenses/by-sa/3.0/
Author raphael valentin
Date 25 Mar 2022
"""
xdiff = np.diff(x)
dydx = np.diff(y)
dydx /= xdiff
n = size = len(x)
w = np.empty(n-1, float)
z = np.empty(n, float)
w[0] = 0.
z[0] = 0.
for i in range(1, n-1):
m = xdiff[i-1] * (2 - w[i-1]) + 2 * xdiff[i]
w[i] = xdiff[i] / m
z[i] = (6*(dydx[i] - dydx[i-1]) - xdiff[i-1]*z[i-1]) / m
z[-1] = 0.
for i in range(n-2, -1, -1):
z[i] = z[i] - w[i]*z[i+1]
# find index (it requires x0 is already sorted)
index = x.searchsorted(x0)
np.clip(index, 1, size-1, index)
xi1, xi0 = x[index], x[index-1]
yi1, yi0 = y[index], y[index-1]
zi1, zi0 = z[index], z[index-1]
hi1 = xi1 - xi0
# calculate cubic
f0 = zi0/(6*hi1)*(xi1-x0)**3 + \
zi1/(6*hi1)*(x0-xi0)**3 + \
(yi1/hi1 - zi1*hi1/6)*(x0-xi0) + \
(yi0/hi1 - zi0*hi1/6)*(xi1-x0)
return f0
This function gives the same results as the function/class CubicSpline from scipy.interpolate, as we can see in the next plot.
It is possible to implement as well the first and second analytical derivatives that can be described such way:
f1p = -zi0/(2*hi1)*(xi1-x0)**2 + zi1/(2*hi1)*(x0-xi0)**2 + (yi1/hi1 - zi1*hi1/6) + (yi0/hi1 - zi0*hi1/6)
f2p = zi0/hi1 * (xi1-x0) + zi1/hi1 * (x0-xi0)
Then, it is easy to verify that f2p[0] and f2p[-1] are equal to 0, then that the interpolator function yields natural splines.
An additional reference concerning natural spline:
https://faculty.ksu.edu.sa/sites/default/files/numerical_analysis_9th.pdf#page=167
An example of use:
import matplotlib.pyplot as plt
import numpy as np
x = [-8,-4.19,-3.54,-3.31,-2.56,-2.31,-1.66,-0.96,-0.22,0.62,1.21,3]
y = [-0.01,0.01,0.03,0.04,0.07,0.09,0.16,0.28,0.45,0.65,0.77,1]
x = np.asfarray(x)
y = np.asfarray(y)
plt.scatter(x, y)
x_new= np.linspace(min(x), max(x), 10000)
y_new = cubic_interpolate(x_new, x, y)
plt.plot(x_new, y_new)
from scipy.interpolate import CubicSpline
f = CubicSpline(x, y, bc_type='natural')
plt.plot(x_new, f(x_new), label='ref')
plt.legend()
plt.show()
In a conclusion, this updated algorithm shall perform interpolation with better stability and faster than the previous code (O(n)). Associated with numba or cython, it shall be even very fast. Finally, it is totally independent of Scipy.
Important, note that as most of algorithms, it is sometimes useful to normalize the data (e.g. against large or small number values) to get the best results. As well, in this code, I do not check nan values or ordered data.
Whatever, this update was a good lesson learning for me and I hope it can help someone. Let me know if you find something strange.
If you want to get the value
from scipy.interpolate import CubicSpline
import numpy as np
x = [-5,-4.19,-3.54,-3.31,-2.56,-2.31,-1.66,-0.96,-0.22,0.62,1.21,3]
y = [-0.01,0.01,0.03,0.04,0.07,0.09,0.16,0.28,0.45,0.65,0.77,1]
value = 2
#ascending order
if np.any(np.diff(x) < 0):
indexes = np.argsort(x).astype(int)
x = np.array(x)[indexes]
y = np.array(y)[indexes]
f = CubicSpline(x, y, bc_type='natural')
specificVal = f(value).item(0) #f(value) is numpy.ndarray!!
print(specificVal)
If you want to plot the interpolated function.
np.linspace third parameter increase the "accuracy".
from scipy.interpolate import CubicSpline
import numpy as np
import matplotlib.pyplot as plt
x = [-5,-4.19,-3.54,-3.31,-2.56,-2.31,-1.66,-0.96,-0.22,0.62,1.21,3]
y = [-0.01,0.01,0.03,0.04,0.07,0.09,0.16,0.28,0.45,0.65,0.77,1]
#ascending order
if np.any(np.diff(x) < 0):
indexes = np.argsort(x).astype(int)
x = np.array(x)[indexes]
y = np.array(y)[indexes]
f = CubicSpline(x, y, bc_type='natural')
x_new = np.linspace(min(x), max(x), 100)
y_new = f(x_new)
plt.plot(x_new, y_new)
plt.scatter(x, y)
plt.title('Cubic Spline Interpolation')
plt.show()
output:
Yes, as others have already noted, it should be as simple as
>>> from scipy.interpolate import CubicSpline
>>> CubicSpline(x,y)(u)
array(15.203125)
(you can, for example, convert it to float to get the value from a 0d NumPy array)
What has not been described yet is boundary conditions: the default ‘not-a-knot’ boundary conditions work best if you have zero knowledge about the data you’re going to interpolate.
If you see the following ‘features’ on the plot, you can fine-tune the boundary conditions to get a better result:
the first derivative vanishes at boundaries => bc_type=‘clamped’
the second derivative vanishes at boundaries => bc_type='natural'
the function is periodic => bc_type='periodic'
See my article for more details and an interactive demo.