Lock threads in Python for a task - python

I have a program that uses threads to start another thread once a certain threshold is reached. Right now the second thread is being started multiple times. I implemented a lock but I don't think I did it right.
for i in range(max_threads):
t1 = Thread(target=grab_queue)
t1.start()
in grab_queue, I have:
...
rows.append(resultJson)
if len(rows.value()) >= 250:
with Lock():
row_thread = Thread(target=insert_rows, kwargs={'rows': rows.value()})
row_thread.start()
rows.reset()
Which starts another thread to process the list of rows. I would like to make sure that as soon as it hits the if condition, the other threads wont run in order to make sure that extra threads to process the list of rows aren't started.

Your lock is covering the wrong portion of the code. You have a race condition between the check for the size of rows, and the portion of the code where you reset the rows. Given that the lock is taken only after the size check, two threads could easily both decide that the array has grown too large, and only then would the lock kick in to serialize the resetting of the array. "Serialize" in this case means that the task would still be performed twice, once by each thread, but it would happen in succession rather than in parallel.
The correct code could look like this:
rows.append(resultJson)
with grow_lock:
if len(rows.value()) >= 250:
row_thread = Thread(target=insert_rows, kwargs={'rows': rows.value()})
row_thread.start()
rows.reset()
There is another issue with the code as shown in the question: if Lock() refers to threading.Lock, it is creating and locking a new lock on each invocation, and in each thread! A lock protects a resource shared among threads, and to perform that function, the lock must itself be shared. To fix the problem, instantiate the lock once and pass it to the thread's target function.
Taking a step back, your code implements a custom thread pool. Getting that right and covering all the corner cases takes a lot of work, testing, and debugging. There are production-tested modules specialized for that purpose, such as the multiprocessing module shipped with Python (which supports both process and thread pools), and it is a good idea to get acquainted with them before reimplementing their functionality. See, for example, this article for an accessible introduction to multiprocessing-based thread pools.

Related

Make two competing functions and kill the slow one

In python, I have to fetch crypto data from binance every minute and do some calculations. For fetching data I have two functions func_a() and func_b(). They both do the same thing but in wildly different manner. Sometimes func_a is faster and sometimes func_b is faster. I want to run both the functions in parallel, if any of the function returns result to me faster, I want to kill the other one and move on (because they both are going to bring the same result).
How can I achieve this in python? Please mind that I do not want to replace these functions or their mechanics.
Python threads aren't very suitable for this purpose for two reasons:
The Python GIL means that if you spawn two CPU-bound threads, each of the two threads will run at half its normal speed (because only one thread is actually running at any given instant; the other is waiting to acquire the interpreter lock)
There is no reliable way to unilaterally kill a thread, because if you do that, any resources it had allocated will be leaked, causing major problems.
If you really want to be able to cancel a function-in-progress, then, you have two options:
Modify the function to periodically check a "please_quit" boolean variable (or whatever) and return immediately if that boolean's state has changed to True. Then your main thread can set the please_quit variable and then call join() on the thread, and rest assured that the thread will quit ASAP. (This does require that you have the ability to modify the function's implementation)
Spawn child processes instead of child threads. A child process takes more resources to launch, but it can run truly in parallel (since it has its own separate Python interpreter) and it is safe (usually) to unilaterally kill it, because the OS will automatically clean up all of the process's held resources when the process is killed.

When, why, and how to call thread.join() in Python?

I have this python threading code.
import threading
def sum(value):
sum = 0
for i in range(value+1):
sum += i
print "I'm done with %d - %d\n" % (value, sum)
return sum
r = range(500001, 500000*2, 100)
ts = []
for u in r:
t = threading.Thread(target=sum, args = (u,))
ts.append(t)
t.start()
for t in ts:
t.join()
Executing this, I have hundreds of threads are working.
However, when I move the t.join() right after the t.start(), I have only two threads working.
for u in r:
t = threading.Thread(target=sum, args = (u,))
ts.append(t)
t.start()
t.join()
I tested with the code that does not invoke the t.join(), but it seems to work fine?
Then when, how, and how to use thread.join()?
You seem to not understand what Thread.join does. When calling join, the current thread will block until that thread finished. So you are waiting for the thread to finish, preventing you from starting any other thread.
The idea behind join is to wait for other threads before continuing. In your case, you want to wait for all threads to finish at the end of the main program. Otherwise, if you didn’t do that, and the main program would end, then all threads it created would be killed. So usually, you should have a loop at the end, that joins all created threads to prevent the main thread from exiting down early.
Short answer: this one:
for t in ts:
t.join()
is generally the idiomatic way to start a small number of threads. Doing .join means that your main thread waits until the given thread finishes before proceeding in execution. You generally do this after you've started all of the threads.
Longer answer:
len(list(range(500001, 500000*2, 100)))
Out[1]: 5000
You're trying to start 5000 threads at once. It's miraculous your computer is still in one piece!
Your method of .join-ing in the loop that dispatches workers is never going to be able to have more than 2 threads (i.e. only one worker thread) going at once. Your main thread has to wait for each worker thread to finish before moving on to the next one. You've prevented a computer-meltdown, but your code is going to be WAY slower than if you'd just never used threading in the first place!
At this point I'd talk about the GIL, but I'll put that aside for the moment. What you need to limit your thread creation to a reasonable limit (i.e. more than one, less than 5000) is a ThreadPool. There are various ways to do this. You could roll your own - this is fairly simple with a threading.Semaphore. You could use 3.2+'s concurrent.futures package. You could use some 3rd party solution. Up to you, each is going to have a different API so I can't really discuss that further.
Obligatory GIL Discussion
cPython programmers have to live with the GIL. The Global Interpreter Lock, in short, means that only one thread can be executing python bytecode at once. This means that on processor-bound tasks (like adding a bunch of numbers), threading will not result in any speed-up. In fact, the overhead involved in setting up and tearing down threads (not to mention context switching) will result in a slowdown. Threading is better positioned to provide gains on I/O bound tasks, such as retrieving a bunch of URLs.
multiprocessing and friends sidestep the GIL limitation by, well, using multiple processes. This isn't free - data transfer between processes is expensive, so a lot of care needs to be made not to write workers that depend on shared state.
join() waits for your thread to finish, so the first use starts a hundred threads, and then waits for all of them to finish. The second use wait for end of every thread before it launches another one, which kind of defeats the purpose of threading.
The first use makes most sense. You run the threads (all of them) to do some parallel computation, and then wait until all of them finish, before you move on and use the results, to make sure the work is done (i.e. the results are actually there).

Resource usage of "time.sleep" in loop vs. "threading.Timer"

First method:
import threading
import time
def keepalive():
while True:
print 'Alive.'
time.sleep(200)
threading.Thread(target=keepalive).start()
Second method:
import threading
def keepalive():
print 'Alive.'
threading.Timer(200, keepalive).start()
threading.Timer(200, keepalive).start()
Which method takes up more RAM? And in the second method, does the thread end after being activated? or does it remain in the memory and start a new thread? (multiple threads)
Timer creates a new thread object for each started timer, so it certainly needs more resources when creating and garbage collecting these objects.
As each thread exits immediately after it spawned another active_count stays constant, but there are constantly new Threads created and destroyed, which causes overhead. I'd say the first method is definitely better.
Altough you won't realy see much difference, only if the interval is very small.
Here's an example of how to test this yourself:
And in the second method, does the thread end after being activated? or does it remain in the memory and start a new thread? (multiple threads)
import threading
def keepalive():
print 'Alive.'
threading.Timer(200, keepalive).start()
print threading.active_count()
threading.Timer(200, keepalive).start()
I also changed the 200 to .2 so it wouldn't take as long.
The thread count was 3 forever.
Then I did this:
top -pid 24767
The #TH column never changed.
So, there's your answer: We don't have enough info to know whether Python maintains a single timer thread for all of the timers, or ends and cleans up the thread as soon as the timer runs, but we can be sure the threads doesn't stick around and pile up. (If you do want to know which of the former is happening, you can, e.g., print the thread ids.)
An alternative way to find out is to look at the source. As the documentation says, "Timer is a subclass of Thread and as such also functions as an example of creating custom threads". The fact that it's a subclass of Thread already tells you that each Timer is a Thread. And the fact that it "functions as an example" implies that it ought to be easy to read. If you click the link form the documentation to the source, you can see how trivial it is. Most of the work is done by Event, but that's in the same source file, and it's almost as simple. Effectively, it just creates a condition variable, waits on it (so it blocks until it times out, or you notify the condition by calling cancel), then quits.
The reason I'm answering one sub-question and explaining how I did it, rather than answering each sub-question, is because I think it would be more useful for you to walk through the same steps.
On further reflection, this probably isn't a question to be decided by optimization in the first place:
If you have a simple, synchronous program that needs to do nothing for 200 seconds, make a blocking call to sleep. Or, even simpler, just do the job and quit, and pick an external tool to schedule your script to run every 200s.
On the other hand, if your program is inherently asynchronous—especially if you've already got thread, signal handlers, and/or an event loop—there's just no way you're going to get sleep to work. If Timer is too inefficient, go to PyPI or ActiveState and find a better timer that lets you schedule repeatable timers (or even multiple timers) with a single instance and thread. (Or, if you're using signals, use signal.alarm or setitimer, and if you're using an event loop, build the timer into your main loop.)
I can't think of any use case where sleep and Timer would both be serious contenders.

Python Threading: Only two active threads, how do I get more?

So I have the following program:
https://github.com/eWizardII/homobabel/blob/master/Experimental/demo_async_falcon.py
However, when it's run I only get two active threads are running, how can I make it so that there are more threads running. I have tried doing stuff like urlv2 = birdofprey(ip2) where ip2 = str(host+1) however that just ends up sending the same thing to two threads. Any help would be appreciated.
Thanks,
Active count=2 means that you have one of your designed thread (birdofprey), and the main thread. This is because you use lock, so the second birdofprey thread waits for the first and so on. I didn't get deeper into the algorithm, but it seems that you don't need to lock birdofprey threads, since they don't share any data (I could get wrong). If they share, you should make exclusive access to the shared data, and not to lock the whole body of run.
Update upon comment
remove locks (if there is no shared data. storage_i is not a shared data.);
in the for loop` create threads, start them, append to a list;
make the second loop over the list of threads, call join collect the information you need.
line 75, urlv.join() blocks until the thread finishes. So you actually create one thread, wait until it's done and then start the next. The other thread is the main thread.
I think the problem is that you need to pull urlv.join() out of the for loop. Right now, because of the join, you're waiting for your new thread to complete before starting the next one.
But for general readability, maintainability, etc., you might want to consider using Python's Queue class to set up a work queue and have a pool of worker threads pulling from it.

How do I limit the number of active threads in python?

Am new to python and making some headway with threading - am doing some music file conversion and want to be able to utilize the multiple cores on my machine (one active conversion thread per core).
class EncodeThread(threading.Thread):
# this is hacked together a bit, but should give you an idea
def run(self):
decode = subprocess.Popen(["flac","--decode","--stdout",self.src],
stdout=subprocess.PIPE)
encode = subprocess.Popen(["lame","--quiet","-",self.dest],
stdin=decode.stdout)
encode.communicate()
# some other code puts these threads with various src/dest pairs in a list
for proc in threads: # `threads` is my list of `threading.Thread` objects
proc.start()
Everything works, all the files get encoded, bravo! ... however, all the processes spawn immediately, yet I only want to run two at a time (one for each core). As soon as one is finished, I want it to move on to the next on the list until it is finished, then continue with the program.
How do I do this?
(I've looked at the thread pool and queue functions but I can't find a simple answer.)
Edit: maybe I should add that each of my threads is using subprocess.Popen to run a separate command line decoder (flac) piped to stdout which is fed into a command line encoder (lame/mp3).
If you want to limit the number of parallel threads, use a semaphore:
threadLimiter = threading.BoundedSemaphore(maximumNumberOfThreads)
class EncodeThread(threading.Thread):
def run(self):
threadLimiter.acquire()
try:
<your code here>
finally:
threadLimiter.release()
Start all threads at once. All but maximumNumberOfThreads will wait in threadLimiter.acquire() and a waiting thread will only continue once another thread goes through threadLimiter.release().
"Each of my threads is using subprocess.Popen to run a separate command line [process]".
Why have a bunch of threads manage a bunch of processes? That's exactly what an OS does that for you. Why micro-manage what the OS already manages?
Rather than fool around with threads overseeing processes, just fork off processes. Your process table probably can't handle 2000 processes, but it can handle a few dozen (maybe a few hundred) pretty easily.
You want to have more work than your CPU's can possibly handle queued up. The real question is one of memory -- not processes or threads. If the sum of all the active data for all the processes exceeds physical memory, then data has to be swapped, and that will slow you down.
If your processes have a fairly small memory footprint, you can have lots and lots running. If your processes have a large memory footprint, you can't have very many running.
If you're using the default "cpython" version then this won't help you, because only one thread can execute at a time; look up Global Interpreter Lock. Instead, I'd suggest looking at the multiprocessing module in Python 2.6 -- it makes parallel programming a cinch. You can create a Pool object with 2*num_threads processes, and give it a bunch of tasks to do. It will execute up to 2*num_threads tasks at a time, until all are done.
At work I have recently migrated a bunch of Python XML tools (a differ, xpath grepper, and bulk xslt transformer) to use this, and have had very nice results with two processes per processor.
It looks to me that what you want is a pool of some sort, and in that pool you would like the have n threads where n == the number of processors on your system. You would then have another thread whose only job was to feed jobs into a queue which the worker threads could pick up and process as they became free (so for a dual code machine, you'd have three threads but the main thread would be doing very little).
As you are new to Python though I'll assume you don't know about the GIL and it's side-effects with regard to threading. If you read the article I linked you will soon understand why traditional multithreading solutions are not always the best in the Python world. Instead you should consider using the multiprocessing module (new in Python 2.6, in 2.5 you can use this backport) to achieve the same effect. It side-steps the issue of the GIL by using multiple processes as if they were threads within the same application. There are some restrictions about how you share data (you are working in different memory spaces) but actually this is no bad thing: they just encourage good practice such as minimising the contact points between threads (or processes in this case).
In your case you are probably intersted in using a pool as specified here.
Short answer: don't use threads.
For a working example, you can look at something I've recently tossed together at work. It's a little wrapper around ssh which runs a configurable number of Popen() subprocesses. I've posted it at: Bitbucket: classh (Cluster Admin's ssh Wrapper).
As noted, I don't use threads; I just spawn off the children, loop over them calling their .poll() methods and checking for timeouts (also configurable) and replenish the pool as I gather the results. I've played with different sleep() values and in the past I've written a version (before the subprocess module was added to Python) which used the signal module (SIGCHLD and SIGALRM) and the os.fork() and os.execve() functions --- which my on pipe and file descriptor plumbing, etc).
In my case I'm incrementally printing results as I gather them ... and remembering all of them to summarize at the end (when all the jobs have completed or been killed for exceeding the timeout).
I ran that, as posted, on a list of 25,000 internal hosts (many of which are down, retired, located internationally, not accessible to my test account etc). It completed the job in just over two hours and had no issues. (There were about 60 of them that were timeouts due to systems in degenerate/thrashing states -- proving that my timeout handling works correctly).
So I know this model works reliably. Running 100 current ssh processes with this code doesn't seem to cause any noticeable impact. (It's a moderately old FreeBSD box). I used to run the old (pre-subprocess) version with 100 concurrent processes on my old 512MB laptop without problems, too).
(BTW: I plan to clean this up and add features to it; feel free to contribute or to clone off your own branch of it; that's what Bitbucket.org is for).
I am not an expert in this, but I have read something about "Lock"s. This article might help you out
Hope this helps
I would like to add something, just as a reference for others looking to do something similar, but who might have coded things different from the OP. This question was the first one I came across when searching and the chosen answer pointed me in the right direction. Just trying to give something back.
import threading
import time
maximumNumberOfThreads = 2
threadLimiter = threading.BoundedSemaphore(maximumNumberOfThreads)
def simulateThread(a,b):
threadLimiter.acquire()
try:
#do some stuff
c = a + b
print('a + b = ',c)
time.sleep(3)
except NameError: # Or some other type of error
# in case of exception, release
print('some error')
threadLimiter.release()
finally:
# if everything completes without error, release
threadLimiter.release()
threads = []
sample = [1,2,3,4,5,6,7,8,9]
for i in range(len(sample)):
thread = threading.Thread(target=(simulateThread),args=(sample[i],2))
thread.daemon = True
threads.append(thread)
thread.start()
for thread in threads:
thread.join()
This basically follows what you will find on this site:
https://www.kite.com/python/docs/threading.BoundedSemaphore

Categories

Resources