I extracted some points of interest from Open Street Map (using the pyrosm package) that I later exported to a parquet file. Here are the geometries, which have type shapely.geometry:
0 POINT (-82.65865 41.81229)
1 POINT (-79.03619 43.15180)
2 POINT (-73.85599 42.61587)
3 POINT (-73.88552 42.78819)
4 POINT (-73.97070 40.67335)
...
185430 POLYGON ((-77.82350 42.79552, -77.82337 42.796...
185431 MULTIPOLYGON (((-77.82678 42.79437, -77.82673 ...
185432 POLYGON ((-77.82104 42.79403, -77.82091 42.794...
185433 POLYGON ((-77.82415 42.79387, -77.82417 42.793...
185434 POLYGON ((-77.82503 42.79258, -77.82508 42.792...
Name: geometry, Length: 185435, dtype: geometry
I write this dataframe to parquet with the to_parquet method from pandas, but upon reading back the df I get the geometries as bytes:
0 b"\x01\x01\x00\x00\x00\x00\x00\x00#'\xaaT\xc0\...
1 b'\x01\x01\x00\x00\x00\x00\x00\x00\xe0P\xc2S\x...
2 b'\x01\x01\x00\x00\x00\x00\x00\x00\x80\xc8vR\x...
3 b'\x01\x01\x00\x00\x00\x00\x00\x00`\xacxR\xc0\...
4 b'\x01\x01\x00\x00\x00\x00\x00\x00\x00 ~R\xc0\...
...
185430 b'\x01\x03\x00\x00\x00\x01\x00\x00\x00\x07\x00...
185431 b'\x01\x06\x00\x00\x00\x02\x00\x00\x00\x01\x03...
185432 b'\x01\x03\x00\x00\x00\x04\x00\x00\x00+\x00\x0...
185433 b'\x01\x03\x00\x00\x00\x02\x00\x00\x00\x16\x00...
185434 b'\x01\x03\x00\x00\x00\x03\x00\x00\x00C\x00\x0...
Name: geometry, Length: 185435, dtype: object
It seems that the pyarrow/fastparquet engines have trouble writing the geometries.
I've made a few attempts at conversion, using the below string as a sample:
x = b"\x01\x03\x00\x00\x00\x01\x00\x00\x00\x07\x00\x00\x00\x8bp\x93Q\xe5\xb5S\xc0\xc5\x98\xaaj8\x80E#\xe4\x8a\xe6\\\xe5\xb5S\xc0\x84\xe3\xe8\xe0O\x80E#\xeb\xa9\xd5W\xd7\xb5S\xc0\x84\xe3\xe8\xe0O\x80E#\xc2\xff\xb1k\xd6\xb5S\xc0\xce\xefE\xc5I\x80E#i\xe5^`\xd6\xb5S\xc0'\xbc\x04\xa7>\x80E#\xeb\xa9\xd5W\xd7\xb5S\xc0\x19i\xf3I8\x80E#\x8bp\x93Q\xe5\xb5S\xc0\xc5\x98\xaaj8\x80E#"
Attempt 1:
str(x,'utf-8')
Attempt 1 Error:
---------------------------------------------------------------------------
UnicodeDecodeError Traceback (most recent call last)
<ipython-input-33-e93cefe956dd> in <module>
----> 1 str(test,'utf-8')
UnicodeDecodeError: 'utf-8' codec can't decode byte 0x8b in position 13: invalid start byte
Attempt 2:
x.encode('utf-8').strip()
Attempt 2 Error:
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-34-44a32c3005da> in <module>
----> 1 test.encode('utf-8').strip()
AttributeError: 'bytes' object has no attribute 'encode'
I've also tried using Python's geojson package but geojson.Polygon(x) returns an array of ints:
{"coordinates": [1, 3, 0, 0, 0, 1, 0, 0, 0, 7, 0, 0, 0, 139, 112, 147, 81, 229, 181, 83, 192, 197, 152, 170, 106, 56, 128, 69, 64, 228, 138, 230, 92, 229, 181, 83, 192, 132, 227, 232, 224, 79, 128, 69, 64, 235, 169, 213, 87, 215, 181, 83, 192, 132, 227, 232, 224, 79, 128, 69, 64, 194, 255, 177, 107, 214, 181, 83, 192, 206, 239, 69, 197, 73, 128, 69, 64, 105, 229, 94, 96, 214, 181, 83, 192, 39, 188, 4, 167, 62, 128, 69, 64, 235, 169, 213, 87, 215, 181, 83, 192, 25, 105, 243, 73, 56, 128, 69, 64, 139, 112, 147, 81, 229, 181, 83, 192, 197, 152, 170, 106, 56, 128, 69, 64], "type": "Polygon"}
Is there a different decoder that I could use? How can I decode the above byte string?
Update:
Converting the df to a GeoPandas df and using its to_parquet method worked. It'd still be nice to know how to make the conversion without using GeoPandas.
The format seems to be WKB, see https://en.wikipedia.org/wiki/Well-known_text_representation_of_geometry
There are many packages that can decode it, but it is geometry-specific binary format, so you would need to use some geometry-specific package like geopndas or parse_wkb to decode it.
I am trying to sign a byte array in python by the same way as it happens on the crypto library with the secp256k1 from NodeJS
This is the code on NodeJS/Browser:
const secp256k1 = require('secp256k1')
var message = [2, 118, 145, 101, 166, 249, 149, 13, 2, 58, 65, 94, 230, 104, 184, 11, 185, 107, 92, 154, 226, 3, 93, 151, 189, 251, 68, 243, 86, 23, 90, 68, 255, 111, 3, 0, 0, 0, 0, 0, 0, 187, 226, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 4, 0, 84, 101, 115, 116, 105, 0, 0, 0, 0, 0, 0, 0];
var private_key_buffer = [122, 241, 114, 103, 51, 227, 157, 149, 221, 126, 157, 173, 31, 111, 43, 118, 208, 71, 123, 59, 96, 68, 57, 177, 53, 59, 151, 188, 36, 167, 40, 68]
const signature = secp256k1.sign(SHA3BUF(message), private_key_buffer)
This is my implementation in python:
import hashlib
import ecdsa
message = bytearray([2, 118, 145, 101, 166, 249, 149, 13, 2, 58, 65, 94, 230, 104, 184, 11, 185, 107, 92, 154, 226, 3, 93, 151, 189, 251, 68, 243, 86, 23, 90, 68, 255, 111, 3, 0, 0, 0, 0, 0, 0, 187, 226, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 4, 0, 84, 101, 115, 116, 105, 0, 0, 0, 0, 0, 0, 0])
private_key_buffer = bytearray([122, 241, 114, 103, 51, 227, 157, 149, 221, 126, 157, 173, 31, 111, 43, 118, 208, 71, 123, 59, 96, 68, 57, 177, 53, 59, 151, 188, 36, 167, 40, 68])
signinKey = ecdsa.SigningKey.from_string(private_key_buffer, curve=ecdsa.SECP256k1)
signature = signinKey.sign_deterministic(message, hashfunc=hashlib.sha3_256)
but by some reason, the signature I get in the javascript code is diferent from the python code:
java script signature: [23, 54, 64, 151, 95, 33, 200, 66, 246, 166, 144, 182, 81, 179, 124, 223, 250, 50, 137, 169, 45, 181, 197, 74, 225, 207, 116, 125, 50, 241, 38, 52, 118, 215, 252, 94, 191, 154, 200, 195, 152, 73, 1, 197, 158, 24, 72, 177, 118, 39, 241, 82, 114, 107, 25, 106, 67, 205, 202, 4, 7, 57, 82, 237]
python script signature: [213, 69, 97, 237, 85, 226, 217, 201, 51, 14, 220, 92, 105, 59, 54, 92, 87, 88, 233, 147, 191, 15, 21, 86, 134, 202, 205, 223, 83, 134, 70, 39, 10, 19, 147, 20, 181, 180, 88, 103, 79, 55, 144, 98, 84, 2, 224, 127, 192, 200, 200, 250, 170, 129, 67, 99, 163, 72, 92, 253, 109, 108, 104, 206]
So how can I make the python code output the same signature of the JS code?
For the deterministic ECDSA as described in RFC6979, a hash algorithm is used in two places: One algorithm (H1) is used for hashing the message, another (H2) for determining the k-value. k is a parameter within the signature algorithm, whose role is described e.g. in RFC6979, section 2.4 or also here. For the non-deterministic variant k is determined randomly, for the deterministic variant as described in RFC6979.
RFC6979 doesn't specify that H1 and H2 must be different, see RFC6979, section 3.6. Nevertheless, it makes sense that an implementation offers the possibility to define both hash algorithms separately.
The ECDSA implementation of Python generally allows two different hash algorithms to be applied. Before this is shown in the 2nd case, the following variant, which correponds to the posted Python-code, applies the same hash algorithm H1 = H2 = SHA3-256. The hash algorithm specified in the sign_deterministic-method defines both H1 and H2:
import hashlib
import ecdsa
message = b'Everything should be made as simple as possible, but not simpler.'
private_key_buffer = bytearray.fromhex('0000000000000000000000000000000000000000000000000000000000000001')
sk = ecdsa.SigningKey.from_string(private_key_buffer, curve=ecdsa.SECP256k1)
signature = sk.sign_deterministic(message, hashfunc=hashlib.sha3_256)
print(signature.hex())
The signature is:
r = 88ecdbc6a2762e7ad1160f7c984cd61385ff07982280538dd7d2103be2dce720
s = c1487df9feab7afda6e6115bdd4d9c5316e3f917a3235a5e47aee09624491304
The next variant uses H1 = SHA3-256 for hashing the message and H2 = SHA256 for k-determination. This is possible by replacing the sign_deterministic-method with the sign_digest_deterministic-method, which allows separate hashing of the message with H1. The hash algorithm specified in the sign_digest_deterministic-method then only defines H2:
import hashlib
import ecdsa
message = b'Everything should be made as simple as possible, but not simpler.'
private_key_buffer = bytearray.fromhex('0000000000000000000000000000000000000000000000000000000000000001')
digest = hashlib.sha3_256()
digest.update(message)
hash = digest.digest()
sk = ecdsa.SigningKey.from_string(private_key_buffer, curve=ecdsa.SECP256k1)
signature = sk.sign_digest_deterministic(hash, hashfunc=hashlib.sha256)
print(signature.hex())
The signature is:
r = 64b10395957b78d3bd3db279e5fa4ebee36b58dd1becace4bc2d7e3a04cf6259
s = 19f1eee7495064ac679d7b64ab7213b921b650c0a3746f2938ffeede0ff1f2e8
The following code is functionally identical to the posted NodeJS-code:
const secp256k1 = require('secp256k1')
const sha3 = require('js-sha3')
message = 'Everything should be made as simple as possible, but not simpler.'
private_key_buffer = Buffer.from('0000000000000000000000000000000000000000000000000000000000000001','hex')
digest = sha3.sha3_256;
hash = Buffer.from(digest(message), 'hex')
signature = secp256k1.sign(hash, private_key_buffer)
console.log(signature.signature.toString('hex'))
and generates the same signature as in the 2nd case, i.e. apparently H2 = SHA256. I didn't find a way to change this to SHA3-256 without much effort. However, according to the documentation it is possible to replace the default generator that implements RFC6979. This should also change H2, but could be more expensive.
In summary: The simplest way to fix the incompatibility of both codes
is to change the Python-code as described above in the 2nd case, i.e. to use the sign_digest_deterministic-method. The message is then hashed with SHA3-256, the k-generation takes place with SHA256. A more expensive alternative would be to implement an own generator to enable k-generation with SHA3-256 in the NodeJS-code. Or of course, you try to find another ECDSA-library for the NodeJS-code that allows you to define H1 and H2 separately, analogous to the Python-code.
Update:
Canonical signature: If (r,s) is a signature, then (r, -s mod n) = (r, n - s) is also a valid signature. Here n is the order of the base point. If in case s > n/2 the part -s mod n = n - s is used instead of s, then the result for the signature is unambiguous and is limited to the area below n/2. This is called canonical signature, which is particularly relevant for the Bitcoin topic and also frequently used for test vectors.
I have a problem with this algorithm:
function crc16 = crc16eval(D)
% CRC16EVAL CRC-CCITT check with the polynomial: x^16+x^12+x^5+1
D = uint16(D);
crchi = 255;
crclo = 255;
t = '00102030405060708191a1b1c1d1e1f112023222524272629383b3a3d3c3f3e32434041464744454a5b58595e5f5c5d53626160676665646b7a79787f7e7d7c74858687808182838c9d9e9f98999a9b95a4a7a6a1a0a3a2adbcbfbeb9b8bbbab6c7c4c5c2c3c0c1cedfdcdddadbd8d9d7e6e5e4e3e2e1e0effefdfcfbfaf9f8f9181b1a1d1c1f1e110003020504070608393a3b3c3d3e3f30212223242526272b5a59585f5e5d5c53424140474645444a7b78797e7f7c7d72636061666764656d9c9f9e99989b9a95848786818083828cbdbebfb8b9babbb4a5a6a7a0a1a2a3afdedddcdbdad9d8d7c6c5c4c3c2c1c0cefffcfdfafbf8f9f6e7e4e5e2e3e0e1e';
crc16htab = hex2dec(reshape(t,2,length(t)/2)');
t = '0021426384a5c6e708294a6b8cadceef31107352b594f7d639187b5abd9cffde62432001e6c7a4856a4b2809eecfac8d53721130d7f695b45b7a1938dffe9dbcc4e586a740610223cced8eaf48690a2bf5d4b79671503312fddcbf9e79583b1aa687e4c522036041ae8feccd2a0b684997b6d5f4133251709fbeddfc1b3a597888a9caeb0c2d4e6f80a1c2e304254667b998fbda3d1c7f5eb190f3d235147756eacba8896e4f2c0de2c3a08166472405dbfa99b85f7e1d3cd3f291b0577615344c6d0e2fc8e98aab44650627c0e182a37d5c3f1ef9d8bb9a75543716f1d0b3922e0f6c4daa8be8c926076445a283e0c11f3e5d7c9bbad9f81736557493b2d1f0';
crc16ltab = hex2dec(reshape(t,2,length(t)/2)');
for k = 1:length(D)
ix = double(bitxor(crchi,D(k)))+1;
crchi = bitxor(crclo,crc16htab(ix));
crclo = crc16ltab(ix);
end
crc16 = crchi*256+crclo;
end
I need translate that code to Python, and I have done the next:
def crc16eval(D):
crchi = 255
crclo = 255
t = '00102030405060708191a1b1c1d1e1f112023222524272629383b3a3d3c3f3e32434041464744454a5b58595e5f5c5d53626160676665646b7a79787f7e7d7c74858687808182838c9d9e9f98999a9b95a4a7a6a1a0a3a2adbcbfbeb9b8bbbab6c7c4c5c2c3c0c1cedfdcdddadbd8d9d7e6e5e4e3e2e1e0effefdfcfbfaf9f8f9181b1a1d1c1f1e110003020504070608393a3b3c3d3e3f30212223242526272b5a59585f5e5d5c53424140474645444a7b78797e7f7c7d72636061666764656d9c9f9e99989b9a95848786818083828cbdbebfb8b9babbb4a5a6a7a0a1a2a3afdedddcdbdad9d8d7c6c5c4c3c2c1c0cefffcfdfafbf8f9f6e7e4e5e2e3e0e1e'
# crc16htab = hex2dec(reshape(t,2,length(t)/2)');
tarray = [int(n, 16) for n in t] # Recorro el string t, y por cada caracter creo un nuevo entero en el array
crc16htab = reshape(tarray, (2, (len(t)/2) )).transpose()
#print crc16htab
t = '0021426384a5c6e708294a6b8cadceef31107352b594f7d639187b5abd9cffde62432001e6c7a4856a4b2809eecfac8d53721130d7f695b45b7a1938dffe9dbcc4e586a740610223cced8eaf48690a2bf5d4b79671503312fddcbf9e79583b1aa687e4c522036041ae8feccd2a0b684997b6d5f4133251709fbeddfc1b3a597888a9caeb0c2d4e6f80a1c2e304254667b998fbda3d1c7f5eb190f3d235147756eacba8896e4f2c0de2c3a08166472405dbfa99b85f7e1d3cd3f291b0577615344c6d0e2fc8e98aab44650627c0e182a37d5c3f1ef9d8bb9a75543716f1d0b3922e0f6c4daa8be8c926076445a283e0c11f3e5d7c9bbad9f81736557493b2d1f0'
# crc16ltab = hex2dec(reshape(t,2,length(t)/2)');
tarray = [int(n, 16) for n in t] # Recorro el string t, y por cada caracter creo un nuevo entero en el array
crc16ltab = reshape(tarray, (2, (len(t)/2))).transpose()
#print crc16ltab
for k in range(len(D)):
ix = crchi ^ D[k]
crchi = crclo ^ crc16htab[ix]
crclo = crc16ltab[ix]
return crchi*256+crclo
My problem is the next:
When I execute de Python code, It's take a loooong time to calculate de xor, I think the the problem is that
crclo = crc16ltab[ix]
is a matrix and that's take a long time to calculate. Which is the problem?
The pseudo-code of this algorithm is the next:
The algorithm for the CRC-CCITT is below described. Note that all operations are on bytes.
A = new byte
B = temp byte
CRCHI = High byte (most significant) of the 16-bit CRC
CRCLO = Low byte (least significant) of the 16-bit CRC
START:
FOR A = FIRST_BYTE TO LAST_BYTE IN BLOCK DO:
A = A XOR CRCHI
CRCHI = A
SHIFT A RIGHT FOUR TIMES (ZERO FILL)
A = A XOR CRCHI {IJKLMNOP}
CRCHI = CRCLO { swap CRCHI, CRCLO }
CRCLO = A
ROTATE A LEFT 4 TIMES {MNOPIJKL}
B=A { temp save }
ROTATE A LEFT ONCE {NOPIJKLM}
A = A AND $1F {000IJLLM}
CRCHI = A XOR CRCHI
A = B AND $F0 {MNOP0000}
CRCHI = A XOR CRCHI { CRCHI complete }
ROTATE B LEFT ONCE {NOP0000M}
B = B AND $ E0 {NOP00000}
CRCLO = B XOR CRCLO { CRCLO complete }
DOEND;
FINISH.
My question is: Why my python code take long time to execute? What is wrong? The problem I think is in
for k in range(len(D)):
ix = crchi ^ D[k]
crchi = crclo ^ crc16htab[ix]
crclo = crc16ltab[ix]
Thanks a lot!
I recommend a read of Ross Williams, A painless guide to CRC algorigthms which will teach you everything you ever wanted to know about CRC's and how to calculate them quickly.
Here is a conversion of the CCITT CRC algorithm used in the linux kernel. It may or may not be the same as what you are calculating as (if you read the above) you'll realise that there are quite a lot of knobs to twiddle when calculating CRCs.
# This mysterious table is just the CRC of each possible byte. It can be
# computed using the standard bit-at-a-time methods. The polynomial can
# be seen in entry 128, 0x8408. This corresponds to x^0 + x^5 + x^12.
# Add the implicit x^16, and you have the standard CRC-CCITT.
# From linux kernel lib/crc-ccitt.c
_crc_table = (
0x0000, 0x1189, 0x2312, 0x329b, 0x4624, 0x57ad, 0x6536, 0x74bf,
0x8c48, 0x9dc1, 0xaf5a, 0xbed3, 0xca6c, 0xdbe5, 0xe97e, 0xf8f7,
0x1081, 0x0108, 0x3393, 0x221a, 0x56a5, 0x472c, 0x75b7, 0x643e,
0x9cc9, 0x8d40, 0xbfdb, 0xae52, 0xdaed, 0xcb64, 0xf9ff, 0xe876,
0x2102, 0x308b, 0x0210, 0x1399, 0x6726, 0x76af, 0x4434, 0x55bd,
0xad4a, 0xbcc3, 0x8e58, 0x9fd1, 0xeb6e, 0xfae7, 0xc87c, 0xd9f5,
0x3183, 0x200a, 0x1291, 0x0318, 0x77a7, 0x662e, 0x54b5, 0x453c,
0xbdcb, 0xac42, 0x9ed9, 0x8f50, 0xfbef, 0xea66, 0xd8fd, 0xc974,
0x4204, 0x538d, 0x6116, 0x709f, 0x0420, 0x15a9, 0x2732, 0x36bb,
0xce4c, 0xdfc5, 0xed5e, 0xfcd7, 0x8868, 0x99e1, 0xab7a, 0xbaf3,
0x5285, 0x430c, 0x7197, 0x601e, 0x14a1, 0x0528, 0x37b3, 0x263a,
0xdecd, 0xcf44, 0xfddf, 0xec56, 0x98e9, 0x8960, 0xbbfb, 0xaa72,
0x6306, 0x728f, 0x4014, 0x519d, 0x2522, 0x34ab, 0x0630, 0x17b9,
0xef4e, 0xfec7, 0xcc5c, 0xddd5, 0xa96a, 0xb8e3, 0x8a78, 0x9bf1,
0x7387, 0x620e, 0x5095, 0x411c, 0x35a3, 0x242a, 0x16b1, 0x0738,
0xffcf, 0xee46, 0xdcdd, 0xcd54, 0xb9eb, 0xa862, 0x9af9, 0x8b70,
0x8408, 0x9581, 0xa71a, 0xb693, 0xc22c, 0xd3a5, 0xe13e, 0xf0b7,
0x0840, 0x19c9, 0x2b52, 0x3adb, 0x4e64, 0x5fed, 0x6d76, 0x7cff,
0x9489, 0x8500, 0xb79b, 0xa612, 0xd2ad, 0xc324, 0xf1bf, 0xe036,
0x18c1, 0x0948, 0x3bd3, 0x2a5a, 0x5ee5, 0x4f6c, 0x7df7, 0x6c7e,
0xa50a, 0xb483, 0x8618, 0x9791, 0xe32e, 0xf2a7, 0xc03c, 0xd1b5,
0x2942, 0x38cb, 0x0a50, 0x1bd9, 0x6f66, 0x7eef, 0x4c74, 0x5dfd,
0xb58b, 0xa402, 0x9699, 0x8710, 0xf3af, 0xe226, 0xd0bd, 0xc134,
0x39c3, 0x284a, 0x1ad1, 0x0b58, 0x7fe7, 0x6e6e, 0x5cf5, 0x4d7c,
0xc60c, 0xd785, 0xe51e, 0xf497, 0x8028, 0x91a1, 0xa33a, 0xb2b3,
0x4a44, 0x5bcd, 0x6956, 0x78df, 0x0c60, 0x1de9, 0x2f72, 0x3efb,
0xd68d, 0xc704, 0xf59f, 0xe416, 0x90a9, 0x8120, 0xb3bb, 0xa232,
0x5ac5, 0x4b4c, 0x79d7, 0x685e, 0x1ce1, 0x0d68, 0x3ff3, 0x2e7a,
0xe70e, 0xf687, 0xc41c, 0xd595, 0xa12a, 0xb0a3, 0x8238, 0x93b1,
0x6b46, 0x7acf, 0x4854, 0x59dd, 0x2d62, 0x3ceb, 0x0e70, 0x1ff9,
0xf78f, 0xe606, 0xd49d, 0xc514, 0xb1ab, 0xa022, 0x92b9, 0x8330,
0x7bc7, 0x6a4e, 0x58d5, 0x495c, 0x3de3, 0x2c6a, 0x1ef1, 0x0f78
)
def update_crc(data, crc, table=_crc_table):
"""
Add a byte to the crc calculation
"""
return (crc >> 8) ^ table[(crc ^ data) & 0xff]
def calculate_crc(data, crc=0xFFFF, table=_crc_table):
"""
Calculates the CRC for the data string passed in
"""
for c in data:
crc = update_crc(ord(c), crc, table)
return crc
print "%04X" % calculate_crc("Hello")
If you need to calculate CRC16 only (just result, not code), you could use PyCRC or CRC-16.
This was the final solution, too late to post here maybe... But I think that maybe It's useful for someone.
# CRC16EVAL CRC-CCITT check with the polynomial: x^16+x^12+x^5+1
def crc16eval(D):
crchi = 255
crclo = 255
crc16htab = [0, 16, 32, 48, 64, 80, 96, 112, 129, 145, 161, 177, 193, 209, 225, 241, 18, 2, 50, 34, 82, 66, 114, 98, 147, 131, 179, 163, 211, 195, 243, 227, 36, 52, 4, 20, 100, 116, 68, 84, 165, 181, 133, 149, 229, 245, 197, 213, 54, 38, 22, 6, 118, 102, 86, 70, 183, 167, 151, 135, 247, 231, 215, 199, 72, 88, 104, 120, 8, 24, 40, 56, 201, 217, 233, 249, 137, 153, 169, 185, 90, 74, 122, 106, 26, 10, 58, 42, 219, 203, 251, 235, 155, 139, 187, 171, 108, 124, 76, 92, 44, 60, 12, 28, 237, 253, 205, 221, 173, 189, 141, 157, 126, 110, 94, 78, 62, 46, 30, 14, 255, 239, 223, 207, 191, 175, 159, 143, 145, 129, 177, 161, 209, 193, 241, 225, 16, 0, 48, 32, 80, 64, 112, 96, 131, 147, 163, 179, 195, 211, 227, 243, 2, 18, 34, 50, 66, 82, 98, 114, 181, 165, 149, 133, 245, 229, 213, 197, 52, 36, 20, 4, 116, 100, 84, 68, 167, 183, 135, 151, 231, 247, 199, 215, 38, 54, 6, 22, 102, 118, 70, 86, 217, 201, 249, 233, 153, 137, 185, 169, 88, 72, 120, 104, 24, 8, 56, 40, 203, 219, 235, 251, 139, 155, 171, 187, 74, 90, 106, 122, 10, 26, 42, 58, 253, 237, 221, 205, 189, 173, 157, 141, 124, 108, 92, 76, 60, 44, 28, 12, 239, 255, 207, 223, 175, 191, 143, 159, 110, 126, 78, 94, 46, 62, 14, 30]
crc16ltab = [0, 33, 66, 99, 132, 165, 198, 231, 8, 41, 74, 107, 140, 173, 206, 239, 49, 16, 115, 82, 181, 148, 247, 214, 57, 24, 123, 90, 189, 156, 255, 222, 98, 67, 32, 1, 230, 199, 164, 133, 106, 75, 40, 9, 238, 207, 172, 141, 83, 114, 17, 48, 215, 246, 149, 180, 91, 122, 25, 56, 223, 254, 157, 188, 196, 229, 134, 167, 64, 97, 2, 35, 204, 237, 142, 175, 72, 105, 10, 43, 245, 212, 183, 150, 113, 80, 51, 18, 253, 220, 191, 158, 121, 88, 59, 26, 166, 135, 228, 197, 34, 3, 96, 65, 174, 143, 236, 205, 42, 11, 104, 73, 151, 182, 213, 244, 19, 50, 81, 112, 159, 190, 221, 252, 27, 58, 89, 120, 136, 169, 202, 235, 12, 45, 78, 111, 128, 161, 194, 227, 4, 37, 70, 103, 185, 152, 251, 218, 61, 28, 127, 94, 177, 144, 243, 210, 53, 20, 119, 86, 234, 203, 168, 137, 110, 79, 44, 13, 226, 195, 160, 129, 102, 71, 36, 5, 219, 250, 153, 184, 95, 126, 29, 60, 211, 242, 145, 176, 87, 118, 21, 52, 76, 109, 14, 47, 200, 233, 138, 171, 68, 101, 6, 39, 192, 225, 130, 163, 125, 92, 63, 30, 249, 216, 187, 154, 117, 84, 55, 22, 241, 208, 179, 146, 46, 15, 108, 77, 170, 139, 232, 201, 38, 7, 100, 69, 162, 131, 224, 193, 31, 62, 93, 124, 155, 186, 217, 248, 23, 54, 85, 116, 147, 178, 209, 240]
for k in range(len(D)):
ix = crchi ^ D[k]
crchi = crclo ^ crc16htab[ix]
crclo = crc16ltab[ix]
return crchi*256+crclo
Antonio.