I want to count number of times each values is appearing in dataframe.
Here is my dataframe - df:
status
1 N
2 N
3 C
4 N
5 S
6 N
7 N
8 S
9 N
10 N
11 N
12 S
13 N
14 C
15 N
16 N
17 N
18 N
19 S
20 N
I want to dictionary of counts:
ex. counts = {N: 14, C:2, S:4}
I have tried df['status']['N'] but it gives keyError and also df['status'].value_counts but no use.
You can use value_counts and to_dict:
print df['status'].value_counts()
N 14
S 4
C 2
Name: status, dtype: int64
counts = df['status'].value_counts().to_dict()
print counts
{'S': 4, 'C': 2, 'N': 14}
An alternative one liner using underdog Counter:
In [3]: from collections import Counter
In [4]: dict(Counter(df.status))
Out[4]: {'C': 2, 'N': 14, 'S': 4}
You can try this way.
df.stack().value_counts().to_dict()
Can you convert df into a list?
If so:
a = ['a', 'a', 'a', 'b', 'b', 'c']
c = dict()
for i in set(a):
c[i] = a.count(i)
Using a dict comprehension:
c = {i: a.count(i) for i in set(a)}
See my response in this thread for a Pandas DataFrame output,
count the frequency that a value occurs in a dataframe column
For dictionary output, you can modify as follows:
def column_list_dict(x):
column_list_df = []
for col_name in x.columns:
y = col_name, len(x[col_name].unique())
column_list_df.append(y)
return dict(column_list_df)
Related
I have a data frame that contains a single column Positive Dispatch,
index Positive Dispatch
0 a,c
1 b
2 a,b
Each keyword has its own value:
a,b,c = 12,22,11
I want to create a new column that contains the max of each row, for example in the first row there are a and c and between them a has the biggest value, which is 12 and so on:
Positive Dispatch Max
a,c 12
b 22
a,b 22
My attempt:
import pandas as pd
dic1 = {
'a': [12,0,22],
'b': [0,13,22],
'c': [12,0,0], # there can be N number of columns here for example
} # 'd': [11,22,333]
a,b,c = 12,22,11 # d will have its own value, for example d = 33
df = pd.DataFrame(dic1)
df['Positive Dispatch'] = df.gt(0).dot(df.columns + ',').str[:-1] #Creating the positive dispatch column
print(df['Positive Dispatch'].max(axis=1))
But this gives the error:
ValueError: No axis named 1 for object type <class 'pandas.core.series.Series'>
IIUC:
create a dict then calculate max according to the key and value of the dictionary by using split()+max()+map():
d={'a':a,'b':b,'c':c}
df['Max']=df['Positive Dispatch'].str.split(',').map(lambda x:max([d.get(y) for y in x]))
#for more columns use applymap() in place of map() and logic remains same
OR
If you have more columns like 'Dispatch' then use:
d={'a':a,'b':b,'c':c,'d':d}
df[['Max','Min']]=df[['Positive Dispatch','Negative Dispatch']].applymap(lambda x:max([d.get(y) for y in x.split(',')]))
Sample Dataframe used:
dic1 = {
'a': [12,0,22],
'b': [0,13,22],
'c': [12,0,0], # there can be N number of columns here for example
'd': [11,22,333]}
a,b,c,d = 12,22,11,33 # d will have its own value, for example d = 33
df = pd.DataFrame(dic1)
df['Positive Dispatch'] = df.gt(0).dot(df.columns + ',').str[:-1]
df['Negative Dispatch']=[['a,d'],['c,b,a'],['d,c']]
df['Negative Dispatch']=df['Negative Dispatch'].str.join(',')
output:
a b c Positive Dispatch Max
0 12 0 12 a,c 12
1 0 13 0 b 22
2 22 22 0 a,b 22
I'm trying to create a cognitive task named 2-backed test.
I created a semi-random list with certain conditions and now I wanted to know what should be the good answer for the participant.
I want a column in my dataframe saying if yes or no, 2 letters before it was the same letter.
Here is my code :
from random import choice, shuffle
import pandas as pd
num = 60
letters = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L']
# letters_1 = [1, 2, 3, 4, 5, 6]
my_list = [choice(letters), choice(letters)]
probab = list(range(num - 2))
shuffle(probab)
# We want 20% of the letters to repeat the letter 2 letters back
pourc = 20
repeatnum = num * pourc // 100
for i in probab:
ch = prev = my_list[-2]
if i >= repeatnum:
while ch == prev:
ch = choice(letters)
my_list.append(ch)
df = pd.DataFrame(my_list, columns=["letters"])
df.head(10)
letters
0 F
1 I
2 D
3 I
4 H
5 C
6 L
7 G
8 D
9 L
# Create a list to store the data
response = []
# For each row in the column,
for i in df['letters']:
# if more than a value,
if i == [i - 2]:
response.append('yes')
else:
response.append('no')
# Create a column from the list
df['response'] = response
First error :
if i == [i - 2]:
TypeError: unsupported operand type(s) for -: 'str' and 'int'
If I use numbers instead of letters, I can get over this error, but I would prefer keeping letters..
But after that if I run it with number, I get no errors, but my new column response only have 'no'. But I know that 12 times it should be 'yes'.
It seems like you want to perform a comparison on the column and the same column shifted by two elements. Use shift + np.where -
df['response'] = np.where(df.letters.eq(df.letters.shift(2)), 'yes', 'no')
df.head(10)
letters response
0 F no
1 I no
2 D no
3 I yes
4 H no
5 C no
6 L no
7 G no
8 D no
9 L no
But I know that 12 times it should be 'yes'.
df.response.eq('yes').sum()
12
How do you iterate over a Pandas Series generated from a .groupby('...').size() command and get both the group name and count.
As an example if I have:
foo
-1 7
0 85
1 14
2 5
how can I loop over them so that in each iteration I would have -1 & 7, 0 & 85, 1 & 14 and 2 & 5 in variables?
I tried the enumerate option but it doesn't quite work. Example:
for i, row in enumerate(df.groupby(['foo']).size()):
print(i, row)
it doesn't return -1, 0, 1, and 2 for i but rather 0, 1, 2, 3.
Update:
Given a pandas Series:
s = pd.Series([1,2,3,4], index=['a', 'b', 'c', 'd'])
s
#a 1
#b 2
#c 3
#d 4
#dtype: int64
You can directly loop through it, which yield one value from the series in each iteration:
for i in s:
print(i)
1
2
3
4
If you want to access the index at the same time, you can use either items or iteritems method, which produces a generator that contains both the index and value:
for i, v in s.items():
print('index: ', i, 'value: ', v)
#index: a value: 1
#index: b value: 2
#index: c value: 3
#index: d value: 4
for i, v in s.iteritems():
print('index: ', i, 'value: ', v)
#index: a value: 1
#index: b value: 2
#index: c value: 3
#index: d value: 4
Old Answer:
You can call iteritems() method on the Series:
for i, row in df.groupby('a').size().iteritems():
print(i, row)
# 12 4
# 14 2
According to doc:
Series.iteritems()
Lazily iterate over (index, value) tuples
Note: This is not the same data as in the question, just a demo.
To expand upon the answer of Psidom, there are three useful ways to unpack data from pd.Series. Having the same Series as Psidom:
s = pd.Series([1,2,3,4], index=['a', 'b', 'c', 'd'])
A direct loop over s yields the value of each row.
A loop over
s.iteritems() or s.items() yields a tuple with the (index,value)
pairs of each row.
Using enumerate() on s.iteritems() yields a
nested tuple in the form of: (rownum,(index,value)).
The last way is useful in case your index contains other information than the row number itself (e.g. in a case of a timeseries where the index is time).
s = pd.Series([1,2,3,4], index=['a', 'b', 'c', 'd'])
for rownum,(indx,val) in enumerate(s.iteritems()):
print('row number: ', rownum, 'index: ', indx, 'value: ', val)
will output:
row number: 0 index: a value: 1
row number: 1 index: b value: 2
row number: 2 index: c value: 3
row number: 3 index: d value: 4
You can read more on unpacking nested tuples here.
My data looks like:
SNP Name ss715583617 ss715592335 ss715591044 ss715598181
4 PI081762 T A A T
5 PI101404A T A A T
6 PI101404B T A A T
7 PI135624 T A A T
8 PI326581 T A A T
9 PI326582A T A A T
10 PI326582B T A A T
11 PI339732 T A A T
12 PI339735A T A A T
13 PI339735B T A A T
14 PI342618A T A A T
In reality I have a dataset of 50,000 columns of 479 rows. My objective is to go through each column with characters and convert the data to integers depending on which is the most abundant character.
Right now I have the data input, and I have more or less written the function I would like to use to analyze each column separately. However, I can't quite understand how to use a forloop or use the apply function through all of the columns in the dataset. I would prefer not to hardcode the columns because I will have 40,000~50,000 columns to analyze.
My code so far is:
import pandas as pd
df = pd.read_csv("/home/dfreese/Desktop/testSNPtext", delimiter='\t')
df.head() # check that the file format fits
# ncol df
df2 = df.iloc[4:-1] # Select the rows you want to analyze in a subset df
print(df2)
My function:
def countAlleles(N):
# N is just suppose to be the column, ideally once I've optimized the function
# I need to analyze every column
# Will hold the counts of each letter in the column
letterCount = []
# This is a parallel array to know the order
letterOrder = {'T','A','G','C','H','U'}
# Boolean to use which one is the maximum
TFlag = None
AFlag = None
GFlag = None
CFlag = None
HFlag = None
UFlag = None
# Loop through the column to determine which one is the maximum
for i in range(len(N)): # How do I get index information of the column?
if(N[i] == 'T'): # If the element in the column is T
letterCount[0] = letterCount[0] + 1
elif(N[i] == 'A'):
letterCount[1] = letterCount [1] + 1
elif (N[i] == 'G'):
letterCount[2] = letterCount [2] + 1
elif (N[i] == 'C'):
lettercount[3] = letterCount[3] + 1
elif(N[i] == 'H'):
letterCount[4] = letterCount[4] + 1
else:
letterCount[5] = letterCount[5] + 1
max = letterCount[0] # This will hold the value of maximum
mIndex = 0 # This holds the index position with the max value
# Determine which one is max
for i in range(len(letterCount)):
if (letterCount[i] > max):
max = letterCount[i]
mIndex = i
So I designed the function to input the column, in hopes to be able to iterate through all the columns of the dataframe. My main question is:
1) How would I pass each in each column as a parameter to the for loop through the elements of each column?
My major source of confusion is how indexes are being used in pandas. I'm familiar with 2-dimensional array in C++ and Java and that is most of where my knowledge stems from.
I'm attempting to use the apply function:
df2 = df2.apply(countAlleles('ss715583617'), axis=2)
but it doesn't seem that my application is correct.
Updated answer: Now the dataframe is analyzed and replaced with the int values according to the occurences of a allele per column. The problem with what happens if one allele has the same number of occurences than the other is still the same - the assignment will be not unique.
import pandas as pd
import numpy as np
df = pd.DataFrame.from_dict({"ss1": ["T", "T", "T", "G"],
"ss2": ["G", "G", "T", "A"],
"ss3": ["C", "H", "C", "H"]})
letterOrder = np.array(['T', 'A', 'G', 'C', 'H', 'U'])
for col in df:
alleles = list()
for num, allele in enumerate(letterOrder):
alleles.append(df[col].str.count(allele).sum())
# dictionary with full sorted keys
repl = letterOrder[np.argsort(alleles)][::-1]
# directly replace chars by value
for num, char in enumerate(repl):
df[col].replace(char, num+1, inplace=True)
print(df)
This will change the initial dataframe
ss1 ss2 ss3
0 T G C
1 T G H
2 T T C
3 G A H
to the new dataframe with ints sorted according to the number of occurences:
ss1 ss2 ss3
0 1 1 2
1 1 1 1
2 1 3 2
3 2 2 1
For reference the old answer which gives the maximum column indices:
import pandas as pd
import numpy as np
from collections import OrderedDict
df = pd.DataFrame.from_dict({"ss1": ["T", "T", "T", "G"],
"ss2": ["G", "G", "T", "A"],
"ss3": ["C", "H", "C", "H"]})
letterOrder = ['T', 'A', 'G', 'C', 'H', 'U']
full_results = OrderedDict()
for col in df:
alleles = list()
for num, allele in enumerate(letterOrder):
alleles.append(df[col].str.count(allele).sum())
full_results[col] = [letterOrder[np.argmax(alleles)], np.max(alleles)]
print(full_results)
This will give:
OrderedDict([('ss1', ['T', 3]), ('ss2', ['G', 2]), ('ss3', ['C', 2])])
The key in the dict is the name of your column, and the value is a list with [allele, number_of_occurences].
I used OrderedDict to keep the order of your columns and the name, but if you don't need the order, you can use a dict, or if you don't need the column name (and the implicit ID is enough), use a list.
But be careful: If in one column two (or more) characters have the same number of counts, this will only return one of them. You would need to add an additional test for this.
To iterate over columns in e.g. a for loop, use list(df). Anyhow, you can easily do what you are attempting using collections.Counter
assume a dataframe df
df
# Name ss715583617 ss715592335 ss715591044 ss715598181
#0 PI081762 T A A T
#1 PI101404A T A A T
#2 PI101404B T A A T
#3 PI135624 T A A T
#4 PI326581 T A F D
#5 PI326582A G A F T
#6 PI326582B G A A T
#7 PI339732 D H A T
#8 PI339735A D A A T
#9 PI339735B A A A T
#10 PI342618A D A A T
What I gather from the comments sections and your original post, you want to replace each character in each column according to it's frequency of occurrence. This is one approach:
Make the Counters
from collections import Counter
cols = [ col for col in list(df) if col not in ['Name'] ] # all the column you want to operate on
col_counters = { col: Counter( df[col] ) for col in cols }
#{'ss715583617': Counter({'T': 5, 'D': 3, 'G': 2, 'A': 1}),
# 'ss715591044': Counter({'A': 9, 'F': 2}),
# 'ss715592335': Counter({'A': 10, 'H': 1}),
# 'ss715598181': Counter({'T': 10, 'D': 1})}
Sort the items in each Counter
sort_func = lambda items: sorted(items, key=lambda x:x[1], reverse=True ) # sort a nested list according to second element in each sublist
sort_result = { col: sort_func(counter.items()) for col,counter in col_counters.iteritems() }
#{'ss715583617': [('T', 5), ('D', 3), ('G', 2), ('A', 1)],
# 'ss715591044': [('A', 9), ('F', 2)],
# 'ss715592335': [('A', 10), ('H', 1)],
# 'ss715598181': [('T', 10), ('D', 1)]}
Replace letters in dataframe according to sort result
Here we will use enumerate to get the position of each sort result
mapper = { col: {letter:i+1 for i,letter in enumerate(sort_result[col]) } for col in sort_result }
#{'ss715583617': {'A': 4, 'D': 2, 'G': 3, 'T': 1},
# 'ss715591044': {'A': 1, 'F': 2},
# 'ss715592335': {'A': 1, 'H': 2},
# 'ss715598181': {'D': 2, 'T': 1}}
df.replace( to_replace=mapper, inplace=True)
# Name ss715583617 ss715592335 ss715591044 ss715598181
#0 PI081762 1 1 1 1
#1 PI101404A 1 1 1 1
#2 PI101404B 1 1 1 1
#3 PI135624 1 1 1 1
#4 PI326581 1 1 2 2
#5 PI326582A 3 1 2 1
#6 PI326582B 3 1 1 1
#7 PI339732 2 2 1 1
#8 PI339735A 2 1 1 1
#9 PI339735B 4 1 1 1
#10 PI342618A 2 1 1 1
This should be enough to get you on your way. I am not sure how you want to handle duplicate elements, for instance if a column has the same number if T and G.
I fetch a spreadsheet into a Python DataFrame named df.
Let's give a sample:
df=pd.DataFrame({'a': np.random.rand(10), 'b': np.random.rand(10)})
df.columns=['a','a']
a a
0 0.973858 0.036459
1 0.835112 0.947461
2 0.520322 0.593110
3 0.480624 0.047711
4 0.643448 0.104433
5 0.961639 0.840359
6 0.848124 0.437380
7 0.579651 0.257770
8 0.919173 0.785614
9 0.505613 0.362737
When I run df.columns.is_unique I get False
I would like to automatically rename column 'a' to 'a_2' (or things like that)
I don't expect a solution like df.columns=['a','a_2']
I looking for a solution that could be usable for several columns!
You can uniquify the columns manually:
df_columns = ['a', 'b', 'a', 'a_2', 'a_2', 'a', 'a_2', 'a_2_2']
def uniquify(df_columns):
seen = set()
for item in df_columns:
fudge = 1
newitem = item
while newitem in seen:
fudge += 1
newitem = "{}_{}".format(item, fudge)
yield newitem
seen.add(newitem)
list(uniquify(df_columns))
#>>> ['a', 'b', 'a_2', 'a_2_2', 'a_2_3', 'a_3', 'a_2_4', 'a_2_2_2']
I fetch a spreadsheet into a Python DataFrame named df... I would like
to automatically rename [duplicate] column [names].
Pandas does that automatically for you without you having to do anything...
test.xls:
import pandas as pd
import numpy as np
df = pd.io.excel.read_excel(
"./test.xls",
"Sheet1",
header=0,
index_col=0,
)
print df
--output:--
a b c b.1 a.1 a.2
index
0 10 100 -10 -100 10 21
1 20 200 -20 -200 11 22
2 30 300 -30 -300 12 23
3 40 400 -40 -400 13 24
4 50 500 -50 -500 14 25
5 60 600 -60 -600 15 26
print df.columns.is_unique
--output:--
True
If for some reason you are being given a DataFrame with duplicate columns, you can do this:
import pandas as pd
import numpy as np
from collections import defaultdict
df = pd.DataFrame(
{
'k': np.random.rand(10),
'l': np.random.rand(10),
'm': np.random.rand(10),
'n': np.random.rand(10),
'o': np.random.rand(10),
'p': np.random.rand(10),
}
)
print df
--output:--
k l m n o p
0 0.566150 0.025225 0.744377 0.222350 0.800402 0.449897
1 0.701286 0.182459 0.661226 0.991143 0.793382 0.980042
2 0.383213 0.977222 0.404271 0.050061 0.839817 0.779233
3 0.428601 0.303425 0.144961 0.313716 0.244979 0.487191
4 0.187289 0.537962 0.669240 0.096126 0.242258 0.645199
5 0.508956 0.904390 0.838986 0.315681 0.359415 0.830092
6 0.007256 0.136114 0.775670 0.665000 0.840027 0.991058
7 0.719344 0.072410 0.378754 0.527760 0.205777 0.870234
8 0.255007 0.098893 0.079230 0.225225 0.490689 0.554835
9 0.481340 0.300319 0.649762 0.460897 0.488406 0.16604
df.columns = ['a', 'b', 'c', 'b', 'a', 'a']
print df
--output:--
a b c b a a
0 0.566150 0.025225 0.744377 0.222350 0.800402 0.449897
1 0.701286 0.182459 0.661226 0.991143 0.793382 0.980042
2 0.383213 0.977222 0.404271 0.050061 0.839817 0.779233
3 0.428601 0.303425 0.144961 0.313716 0.244979 0.487191
4 0.187289 0.537962 0.669240 0.096126 0.242258 0.645199
5 0.508956 0.904390 0.838986 0.315681 0.359415 0.830092
6 0.007256 0.136114 0.775670 0.665000 0.840027 0.991058
7 0.719344 0.072410 0.378754 0.527760 0.205777 0.870234
8 0.255007 0.098893 0.079230 0.225225 0.490689 0.554835
9 0.481340 0.300319 0.649762 0.460897 0.488406 0.166047
print df.columns.is_unique
--output:--
False
name_counts = defaultdict(int)
new_col_names = []
for name in df.columns:
new_count = name_counts[name] + 1
new_col_names.append("{}{}".format(name, new_count))
name_counts[name] = new_count
print new_col_names
--output:--
['a1', 'b1', 'c1', 'b2', 'a2', 'a3']
df.columns = new_col_names
print df
--output:--
a1 b1 c1 b2 a2 a3
0 0.264598 0.321378 0.466370 0.986725 0.580326 0.671168
1 0.938810 0.179999 0.403530 0.675112 0.279931 0.011046
2 0.935888 0.167405 0.733762 0.806580 0.392198 0.180401
3 0.218825 0.295763 0.174213 0.457533 0.234081 0.555525
4 0.891890 0.196245 0.425918 0.786676 0.791679 0.119826
5 0.721305 0.496182 0.236912 0.562977 0.249758 0.352434
6 0.433437 0.501975 0.088516 0.303067 0.916619 0.717283
7 0.026491 0.412164 0.787552 0.142190 0.665488 0.488059
8 0.729960 0.037055 0.546328 0.683137 0.134247 0.444709
9 0.391209 0.765251 0.507668 0.299963 0.348190 0.731980
print df.columns.is_unique
--output:--
True
In case anyone needs this in Scala->
def renameDup (Header : String) : String = {
val trimmedList: List[String] = Header.split(",").toList
var fudge =0
var newitem =""
var seen = List[String]()
for (item <- trimmedList){
fudge = 1
newitem = item
for (newitem2 <- seen){
if (newitem2 == newitem ){
fudge += 1
newitem = item + "_" + fudge
}
}
seen= seen :+ newitem
}
return seen.mkString(",")
}
>>> ['a', 'b', 'a_2', 'a_2_2', 'a_2_3', 'a_3', 'a_2_4', 'a_2_2_2']
Here's a solution that uses pandas all the way through.
import pandas as pd
# create data frame with duplicate column names
df = pd.DataFrame({'a': [1, 2, 3], 'b': [4, 5, 6]})
df.rename({'a': 'col', 'b': 'col'}, axis=1, inplace=True)
df
---output---
col col
0 1 4
1 2 5
2 3 6
# make a new data frame of column headers and number sequentially
dfcolumns = pd.DataFrame({'name': df.columns})
dfcolumns['counter'] = dfcolumns.groupby('name').cumcount().apply(str)
# remove counter for first case (optional) and combine suffixes
dfcolumns.loc[dfcolumns.counter=='0', 'counter'] = ''
df.columns = dfcolumns['name'] + dfcolumns['counter']
df
---output---
col col1
0 1 4
1 2 5
2 3 6
I ran into this problem when loading DataFrames from oracle tables. 7stud is right that pd.read_excel() automatically designates duplicated columns with a *.1, but not all of the read functions do this. One work around is to save the DataFrame to a csv (or excel) file and then reload it to re-designate duplicated columns.
data = pd.read_SQL(SQL,connection)
data.to_csv(r'C:\temp\temp.csv')
data=read_csv(r'C:\temp\temp.csv')