Force each row in Hive table to use a mapper - python

Supposed I have a Hive table (named table), like so:
row1 2341
row2 828242
row3 205252
...
The table itself is very long (thousands of lines). I am doing something like this to run a transformation using a Python script:
FROM (
MAP table.row, table.num
USING 'python script.py'
AS output
FROM table
) t1
INSERT OVERWRITE TABLE table2
SELECT (t1.output) as output_result;
The issue is that because I'm actually reading over a table and not files, each of the rows are being passed to the same mapper. This, as you can imagine, takes a long time. Is there a way to force each row to go to a separate mapper so that whatever logic is in the script can take care of everything else? Essentially, I want to run mapreduce like it's supposed to, but only passing in rows from a table to different mappers.
Thanks for the help.

Number of input splits are decided by Hadoop. But you may control it by setting
mapred.min.split.size parameter.
Passing rows through table or through file does not matter as behind the scenes both are text files.
By default, a file in kilobytes would be passed to one mapper only.
If you only want to try, you can create a file with size of around 1 GB and then run the query.

Related

Python sqlite3 never returns an inner join with 28 milion+ rows

Sqlite database with two tables, each over 28 million rows long. Here's the schema:
CREATE TABLE MASTER (ID INTEGER PRIMARY KEY AUTOINCREMENT,PATH TEXT,FILE TEXT,FULLPATH TEXT,MODIFIED_TIME FLOAT);
CREATE TABLE INCREMENTAL (INC_ID INTEGER PRIMARY KEY AUTOINCREMENT,INC_PATH TEXT,INC_FILE TEXT,INC_FULLPATH TEXT,INC_MODIFIED_TIME FLOAT);
Here's an example row from MASTER:
ID PATH FILE FULLPATH MODIFIED_TIME
---------- --------------- ---------- ----------------------- -------------
1 e:\ae/BONDS/0/0 100.bin e:\ae/BONDS/0/0/100.bin 1213903192.5
The tables have mostly identical data, with some differences between MODIFIED_TIME in MASTER and INC_MODIFIED_TIME in INCREMENTAL.
If I execute the following query in sqlite, I get the results I expect:
select ID from MASTER inner join INCREMENTAL on FULLPATH = INC_FULLPATH and MODIFIED_TIME != INC_MODIFIED_TIME;
That query will pause for a minute or so, return a number of rows, pause again, return some more, etc., and finish without issue. Takes about 2 minutes to fully return everything.
However, if I execute the same query in Python:
changed_files = conn.execute("select ID from MASTER inner join INCREMENTAL on FULLPATH = INC_FULLPATH and MODIFIED_TIME != INC_MODIFIED_TIME;")
It will never return - I can leave it running for 24 hours and still have nothing. The python32.exe process doesn't start consuming a large amount of cpu or memory - it stays pretty static. And the process itself doesn't actually seem to go unresponsive - however, I can't Ctrl-C to break, and have to kill the process to actually stop the script.
I do not have these issues with a small test database - everything runs fine in Python.
I realize this is a large amount of data, but if sqlite is handling the actual queries, python shouldn't be choking on it, should it? I can do other large queries from python against this database. For instance, this works:
new_files = conn.execute("SELECT DISTINCT INC_FULLPATH, INC_PATH, INC_FILE from INCREMENTAL where INC_FULLPATH not in (SELECT DISTINCT FULLPATH from MASTER);")
Any ideas? Are the pauses in between sqlite returning data causing a problem for Python? Or is something never occurring at the end to signal the end of the query results (and if so, why does it work with small databases)?
Thanks. This is my first stackoverflow post and I hope I followed the appropriate etiquette.
Python tends to have older versions of the SQLite library, especially Python 2.x, where it is not updated.
However, your actual problem is that the query is slow.
Use the usual mechanisms to optimize it, such as creating a two-column index on INC_FULLPATH and INC_MODIFIED_TIME.

How to read a csv using sql

I would like to know how to read a csv file using sql. I would like to use group by and join other csv files together. How would i go about this in python.
example:
select * from csvfile.csv where name LIKE 'name%'
SQL code is executed by a database engine. Python does not directly understand or execute SQL statements.
While some SQL database store their data in csv-like files, almost all of them use more complicated file structures. Therefore, you're required to import each csv file into a separate table in the SQL database engine. You can then use Python to connect to the SQL engine and send it SQL statements (such as SELECT). The engine will perform the SQL, extract the results from its data files, and return them to your Python program.
The most common lightweight engine is SQLite.
littletable is a Python module I wrote for working with lists of objects as if they were database tables, but using a relational-like API, not actual SQL select statements. Tables in littletable can easily read and write from CSV files. One of the features I especially like is that every query from a littletable Table returns a new Table, so you don't have to learn different interfaces for Table vs. RecordSet, for instance. Tables are iterable like lists, but they can also be selected, indexed, joined, and pivoted - see the opening page of the docs.
# print a particular customer name
# (unique indexes will return a single item; non-unique
# indexes will return a Table of all matching items)
print(customers.by.id["0030"].name)
print(len(customers.by.zipcode["12345"]))
# print all items sold by the pound
for item in catalog.where(unitofmeas="LB"):
print(item.sku, item.descr)
# print all items that cost more than 10
for item in catalog.where(lambda o : o.unitprice>10):
print(item.sku, item.descr, item.unitprice)
# join tables to create queryable wishlists collection
wishlists = customers.join_on("id") + wishitems.join_on("custid") + catalog.join_on("sku")
# print all wishlist items with price > 10
bigticketitems = wishlists().where(lambda ob : ob.unitprice > 10)
for item in bigticketitems:
print(item)
Columns of Tables are inferred from the attributes of the objects added to the table. namedtuples are good also, as well as a types.SimpleNamespaces. You can insert dicts into a Table, and they will be converted to SimpleNamespaces.
littletable takes a little getting used to, but it sounds like you are already thinking along a similar line.
You can easily query an SQL Database using PHP script. PHP runs serverside, so all your code will have to be on a webserver (the one with the database). You could make a function to connect to the database like this:
$con= mysql_connect($hostname, $username, $password)
or die("An error has occured");
Then use the $con to accomplish other tasks such as looping through data and creating a table, or even adding rows and columns to an existing table.
EDIT: I noticed you said .CSV file. You can upload a CSV file into a SQL database and create a table out of it. If you are using a control panel service such as phpMyAdmin, you can simply import a CSV file into your database like this:
If you are looking for a free web host to test your SQL and PHP files on, check out x10 hosting.

Merging SQLite databases is driving me mad. Help?

I've got 32 SQLite (3.7.9) databases with 3 tables each that I'm trying to merge together using the idiom that I've found elsewhere (each db has the same schema):
attach db1.sqlite3 as toMerge;
insert into tbl1 select * from toMerge.tbl1;
insert into tbl2 select * from toMerge.tbl2;
insert into tbl3 select * from toMerge.tbl3;
detach toMerge;
and rinse-repeating for the entire set of databases. I do this using python and the sqlite3 module:
for fn in filelist:
completedb = sqlite3.connect("complete.sqlite3")
c = completedb.cursor()
c.execute("pragma synchronous = off;")
c.execute("pragma journal_mode=off;")
print("Attempting to merge " + fn + ".")
query = "attach '" + fn + "' as toMerge;"
c.execute(query)
try:
c.execute("insert into tbl1 select * from toMerge.tbl1;")
c.execute("insert into tbl2 select * from toMerge.tbl2;")
c.execute("insert into tbl3 select * from toMerge.tbl3;")
c.execute("detach toMerge;")
completedb.commit()
except sqlite3.Error as err:
print "Error! ", type(err), " Error msg: ", err
raise
2 of the tables are fairly small, only 50K rows per db, while the third (tbl3) is larger, about 850 - 900K rows. Now, what happens is that the inserts progressively slow down until I get to about the fourth database when they grind to a near halt (on the order of a a megabyte or two in file size added every 1-3 minutes to the combined database). In case it was python, I've even tried dumping out the tables as INSERTs (.insert; .out foo; sqlite3 complete.db < foo is the skeleton, found here) and combining them in a bash script using the sqlite3 CLI to do the work directly, but I get exactly the same problem.
The table setup of tbl3 isn't too demanding - a text field containing a UUID, two integers, and four real values. My worry is that it's the number of rows, because I ran into exactly the same trouble at exactly the same spot (about four databases in) when the individual databases were an order of magnitude larger in terms of file size with the same number of rows (I trimmed the contents of tbl3 significantly by storing summary stats instead of raw data). Or maybe it's the way I'm performing the operation? Can anyone shed some light on this problem that I'm having before I throw something out the window?
Try adding or removing indexes/primary key for the larger table.
You didn't mention the OS you were using or the db file sizes. Windows can have issues with files that are bigger than 2Gb depending on what version.
In any case, since this is a glorified batch script why not get rid of the for loop, get the filename from sys.argv, and then just run it once for each merge db. That way you will never have to deal with memory issues from doing too much in one process.
Mind you, if you end the loop with the following that will likely also fix things.
c.close()
completedb.close()
You say that the same thing occurs when you follow this process using the CLI and quitting after every db. I assume that you mean the Python CLI, and quitting means that you exit and restart Python. If that is true, and it still develops a problem every 4th database, then something is wrong with your SQLITE shared library. It shouldn't be keeping state like that.
If I were in your shoes, I would stop using attach and just open multiple connections in Python, then move the data in batches of about 1000 records per commit. It would be slower than your technique because all the data moves in and out of Python objects, but I think it would also be more reliable. Open the complete db, then loop around opening a second db, copying, then closing the second db. For the copying, I would use OFFSET and LIMIT on the SELECT statements to process batches of 100 records, then commit, then repeat.
In fact, I would also count the completedb records, and the second db records before copying, then after copying count the completedb records to ensure that I had copied the expected amount. Also, you would be keeping track of the value of the next OFFSET and I would write that to a text file right after committing, so that I could interrupt and restart the process at any time and it would carry on where it left off.

Python script to diff same table in two different databases

I am about to write a python script to help me migrate data between different versions of the same application.
Before I get started, I would like to know if there is a script or module that does something similar, and I can either use, or use as a starting point for rolling my own at least. The idea is to diff the data between specific tables, and then to store the diff as SQL INSERT statements to be applied to the earlier version database.
Note: This script is not robust in the face of schema changes
Generally the logic would be something along the lines of
def diff_table(table1, table2):
# return all rows in table 2 that are not in table1
pass
def persist_rows_tofile(rows, tablename):
# save rows to file
pass
dbnames=('db.v1', 'db.v2')
tables_to_process = ('foo', 'foobar')
for table in tables_to_process:
table1 = dbnames[0]+'.'+table
table2 = dbnames[1]+'.'+table
rows = diff_table(table1, table2)
if len(rows):
persist_rows_tofile(rows, table)
Is this a good way to write such a script or could it be improved?. I suspect it could be improved by cacheing database connections etc (which I have left out - because I am not too familiar with SqlAlchemy etc).
Any tips on how to add SqlAlchemy and to generally improve such a script?
To move data between two databases I use pg_comparator. It's like diff and patch for sql! You can use it to swap the order of columns but if you need to split or merge columns you need to use something else.
I also use it to duplicate a database asynchronously. A cron-job runs every five minutes and pushes all changes on the "master"-database to the "slave"-databases. Especially handy if you only need distribute a single table, or a not all columns per table etc.

What's the most efficient way to insert thousands of records into a table (MySQL, Python, Django)

I have a database table with a unique string field and a couple of integer fields. The string field is usually 10-100 characters long.
Once every minute or so I have the following scenario: I receive a list of 2-10 thousand tuples corresponding to the table's record structure, e.g.
[("hello", 3, 4), ("cat", 5, 3), ...]
I need to insert all these tuples to the table (assume I verified neither of these strings appear in the database). For clarification, I'm using InnoDB, and I have an auto-incremental primary key for this table, the string is not the PK.
My code currently iterates through this list, for each tuple creates a Python module object with the appropriate values, and calls ".save()", something like so:
#transaction.commit_on_success
def save_data_elements(input_list):
for (s, i1, i2) in input_list:
entry = DataElement(string=s, number1=i1, number2=i2)
entry.save()
This code is currently one of the performance bottlenecks in my system, so I'm looking for ways to optimize it.
For example, I could generate SQL codes each containing an INSERT command for 100 tuples ("hard-coded" into the SQL) and execute it, but I don't know if it will improve anything.
Do you have any suggestion to optimize such a process?
Thanks
You can write the rows to a file in the format
"field1", "field2", .. and then use LOAD DATA to load them
data = '\n'.join(','.join('"%s"' % field for field in row) for row in data)
f= open('data.txt', 'w')
f.write(data)
f.close()
Then execute this:
LOAD DATA INFILE 'data.txt' INTO TABLE db2.my_table;
Reference
For MySQL specifically, the fastest way to load data is using LOAD DATA INFILE, so if you could convert the data into the format that expects, it'll probably be the fastest way to get it into the table.
If you don't LOAD DATA INFILE as some of the other suggestions mention, two things you can do to speed up your inserts are :
Use prepared statements - this cuts out the overhead of parsing the SQL for every insert
Do all of your inserts in a single transaction - this would require using a DB engine that supports transactions (like InnoDB)
If you can do a hand-rolled INSERT statement, then that's the way I'd go. A single INSERT statement with multiple value clauses is much much faster than lots of individual INSERT statements.
Regardless of the insert method, you will want to use the InnoDB engine for maximum read/write concurrency. MyISAM will lock the entire table for the duration of the insert whereas InnoDB (under most circumstances) will only lock the affected rows, allowing SELECT statements to proceed.
what format do you receive? if it is a file, you can do some sort of bulk load: http://www.classes.cs.uchicago.edu/archive/2005/fall/23500-1/mysql-load.html
This is unrelated to the actual load of data into the DB, but...
If providing a "The data is loading... The load will be done shortly" type of message to the user is an option, then you can run the INSERTs or LOAD DATA asynchronously in a different thread.
Just something else to consider.
I donot know the exact details, but u can use json style data representation and use it as fixtures or something. I saw something similar on Django Video Workshop by Douglas Napoleone. See the videos at http://www.linux-magazine.com/online/news/django_video_workshop. and http://www.linux-magazine.com/online/features/django_reloaded_workshop_part_1. Hope this one helps.
Hope you can work it out. I just started learning django, so I can just point you to resources.

Categories

Resources