Python not defined recursive function? - python

I'm making a binary tree in Python 3.5.0 and I'm making the insert function for it. But I'm running in a bit of a problem when I call tree_insert inside itself it gives me this error:
File "D:/MadeUpPath/BinaryTree.py", line 10, in tree_insert
tree_insert(data, self.left)
NameError: name 'tree_insert' is not defined
class BinaryTree():
def __init__(self, data):
self.left = None
self.right = None
self.data = data
def tree_insert(self, data):
if (data < self.data):
if (self.left != None):
tree_insert(data, self.left)
else:
self.left = BinaryTree(data)
else:
if (self.right != None):
tree_insert(data, self.right)
else:
self.right = BinaryTree(data)
Upon testing further I found out that recursive functions simply don't work. I tried the following code to be sure but gave me the same error:
def factorial(n):
if n == 0:
return 1
else:
return n * factorial(n - 1)
File "D:/MadeUpPath/BinaryTree.py", line 23, in factorial
return n * factorial(n - 1)
NameError: name 'factorial' is not defined
If anyone can point me in the right direction it would be much appreciated :)

tree_insert() is an instance method, call it via self.tree_insert():
class BinaryTree():
def __init__(self, data):
self.left = None
self.right = None
self.data = data
def tree_insert(self, data):
if (data < self.data):
if (self.left != None):
self.tree_insert(data, self.left)
else:
self.left = BinaryTree(data)
else:
if (self.right != None):
self.tree_insert(data, self.right)
else:
self.right = BinaryTree(data)

Related

How do I return the children of recursive nodes in a python binary tree?

I currently have my code set up so I have a class that creates the first node of a binary search tree. Then, using a create_node method, I can add whatever node. How can I return the children of each created note?
When I run the following, I get an output of "Left child: None Right Child: None" when it should be "Left child: 3 Right Child: 7"
I'd assume it has something to do with the dictionary not being updated? If this is the case, how can I continually update it? Thank you!
totaldict = {}
class TreeNode:
def __init__(self, data):
self.data = data
self.left = None
self.right = None
def search(self, value):
if value < self.data:
if self.left == None:
return False
else:
return self.left.search(value)
elif value > self.data:
if self.right == None:
return False
else:
return self.right.search(value)
else:
return True
def create_node(self, value):
if value < self.data:
if self.left == None:
self.left = TreeNode(value)
totaldict[value] = TreeNode(value)
else:
return self.left.create_node(value)
elif value > self.data:
if self.right == None:
self.right = TreeNode(value)
totaldict[value] = TreeNode(value)
else:
return self.right.create_node(value)
else:
print("Node already exists")
def pos_child(self, value):
if self.search(value):
if value in totaldict:
return "Left child: " + str(totaldict[value].left) + " Right Child: " + str(totaldict[value].right)
else:
print("Node does not exist, use create_node method")
root = TreeNode(10)
root.create_node(5)
root.create_node(15)
root.create_node(3)
root.create_node(7)
print(root.pos_child(5))
The problem is here:
if self.right == None:
self.right = TreeNode(value)
totaldict[value] = TreeNode(value) # HERE
You create new TreeNode but it's not connected at all to root so it never gets any children. Change it to:
if self.right == None:
self.right = TreeNode(value)
totaldict[value] = self.right
And do the same for left subtree.

I'm getting a error on an AVL tree search problem

I'm trying to do a search function for an AVL-tree, when i try to search for a number that is in the tree the code works fine, but i'm getting the error
AttributeError: 'NoneType' object has no attribute 'search'
when a try to search for a number that isn't in the tree
This is the search function
def search(self, data):
if self is None:
return "the key doesn't exist"
elif data < self.data:
return self.left.busca(data)
elif data > self.data:
return self.right.busca(data)
else:
return "the key exist"
and the whole code(the name of the variables are in pt-br)
class No:
def __init__(self, data):
self.data = data
self.setaFilhos(None, None)
def setaFilhos(self, esquerda, direita):
self.esquerda = esquerda
self.direita = direita
def balanco(self):
prof_esq = 0
if self.esquerda:
prof_esq = self.esquerda.profundidade()
prof_dir = 0
if self.direita:
prof_dir = self.direita.profundidade()
return prof_esq - prof_dir
def profundidade(self):
prof_esq = 0
if self.esquerda:
prof_esq = self.esquerda.profundidade()
prof_dir = 0
if self.direita:
prof_dir = self.direita.profundidade()
return 1 + max(prof_esq, prof_dir)
def rotacaoEsquerda(self):
self.data, self.direita.data = self.direita.data, self.data
old_esquerda = self.esquerda
self.setaFilhos(self.direita, self.direita.direita)
self.esquerda.setaFilhos(old_esquerda, self.esquerda.esquerda)
def rotacaoDireita(self):
self.data, self.esquerda.data = self.esquerda.data, self.data
old_direita = self.direita
self.setaFilhos(self.esquerda.esquerda, self.esquerda)
self.direita.setaFilhos(self.direita.direita, old_direita)
def rotacaoEsquerdaDireita(self):
self.esquerda.rotacaoEsquerda()
self.rotacaoDireita()
def rotacaoDireitaEsquerda(self):
self.direita.rotacaoDireita()
self.rotacaoEsquerda()
def executaBalanco(self):
bal = self.balanco()
if bal > 1:
if self.esquerda.balanco() > 0:
self.rotacaoDireita()
else:
self.rotacaoEsquerdaDireita()
elif bal < -1:
if self.direita.balanco() < 0:
self.rotacaoEsquerda()
else:
self.rotacaoDireitaEsquerda()
def insere(self, data):
if data <= self.data:
if not self.esquerda:
self.esquerda = No(data)
else:
self.esquerda.insere(data)
else:
if not self.direita:
self.direita = No(data)
else:
self.direita.insere(data)
self.executaBalanco()
def remove(self, data):
if self.direita is None and self.esquerda is None:
return None
if data < self.data:
self.esquerda = self.esquerda.remove(data)
elif data > self.data:
self.direita = self.direita.remove(data)
else:
if self.direita is None:
return self.esquerda
if self.esquerda is None:
return self.direita
tmp = self.direita._min()
self.data = tmp.data
self.direita = self.direita.remove(tmp.data)
self.executaBalanco()
return self
def busca(self, data):
if self is None:
return "A chave não existe"
elif data < self.data:
return self.esquerda.busca(data)
elif data > self.data:
return self.direita.busca(data)
else:
return "A chave existe"
def _min(self):
if self.esquerda is None:
return self
else:
return self.esquerda._min()
def imprimeArvore(self, indent = 0):
print ( "-" * indent + "|" + str(self.data))
if self.esquerda:
self.esquerda.imprimeArvore(indent + 2)
if self.direita:
self.direita.imprimeArvore(indent + 2)
arvore = None
for data in [15, 27, 49, 10, 8, 67, 59, 9, 13, 20, 14]:
if arvore:
arvore.insere(data)
else:
arvore = No(data)
arvore.imprimeArvore()
arvore.busca(1)
I think the problem is the returning when the key is not found, but i not sure, none of the similar question that i tried to read helped me and i tried to look the code of other people and at least for me my code should work . What did i do wrong?There is another way to do it?
def search(self, data):
if self is None:
return "the key doesn't exist"
elif data < self.data:
return self.left.busca(data)
elif data > self.data:
return self.right.busca(data)
else:
return "the key exist"
If the search method is called successfully, self is not None.
You should check whether self.left is None or self.right is None before making the recursive call to search.
def search(self, data):
if data == self.data:
return "the key exists"
if data < self.data and self.left is not None:
return self.left.busca(data)
elif data > self.data and self.right is not None:
return self.right.busca(data)
else:
return "the key exist"

Why is calling function causing a NameError?

I am writing this code below but when I am trying to call the function size() it is throwing error
class Node:
def __init__(self,data):
self.data=data
self.left=None
self.right=None
def insert(self,data):
if self.data:
if data<self.data:
if self.left is None:
self.left=Node(data)
else:
self.left.insert(data)
else:
if self.right is None:
self.right=Node(data)
else:
self.right.insert(data)
else:
self.data=data
def size(node):
if node is None:
return 0
else:
return (size(node.left)+ 1 + size(node.right))
root=Node(4)
root.insert(5)
root.insert(3)
root.insert(8)
print(size(root))
The error below is getting thrown:
NameError Traceback (most recent call last)
<ipython-input-7-8c72ba7719dc> in <module>
41 root.insert(8)
42
---> 43 print(size(root))
44
45 #root.print()
NameError: name 'size' is not defined
Either define size after the class statement:
class Node:
def __init__(self,data):
self.data=data
self.left=None
self.right=None
def insert(self,data):
...
def size(node):
if node is None:
return 0
else:
return (size(node.left)+ 1 + size(node.right))
or make it a proper method:
class Node:
def __init__(self,data):
self.data=data
self.left=None
self.right=None
def insert(self,data):
...
def size(self):
rv = 1
if self.left is not None:
rv += self.left.size()
if self.right is not None:
rv += self.right.size()
return rv
In your Code, size is a method bound to a Node object, so you need to call root.size() (because root is a Node instance)
After some discussion with #ShadowRanger, here is what I came up with.
from __future__ import annotations
from dataclasses import dataclass
from typing import Any
#dataclass
class Node:
data: Any
left: Node = None
right: Node = None
def insert(self, data: Any) -> None:
if self.data:
if data < self.data:
if self.left is None:
self.left = Node(data)
else:
self.left.insert(data)
else:
if self.right is None:
self.right = Node(data)
else:
self.right.insert(data)
else:
self.data = data
def num_child_nodes(self) -> int:
num_nodes = 0
if self.left:
num_nodes += 1 + self.left.num_child_nodes()
if self.right:
num_nodes += 1 + self.right.num_child_nodes()
return num_nodes

Python Data structures binary search tree

I can't figure out the type of error that I'm getting.
Traceback (most recent call last):
File "C:/Users/Eli/.PyCharmCE2019.2/config/scratches/BinarySearchTree.py", line 43, in
bt.printTreePreOrder(bt.Root())
TypeError: 'NoneType' object is not callable
class BinaryTreeNode:
def __init__(self,key, data = None):
self.key = key
self.value = data
self.left = None
self.right = None
class BinarySearchTree:
def __init__(self):
self.Root = None
self.size = 0
def __len__(self):
return self.size
def root (self):
return self.Root
def insert(self,key,data):
new_node = BinaryTreeNode(key,data)
x = self.Root
y = None
while x != None:
y = x
if key < y.key:
x = x.left
else:
x = x.right
if y == None:
self. key < y.key
y.left = new_node
else:
y.right = new_node
self.size +=1
def printTreePreOrder(self,node):
print(node.key)
if node.left:
self.printTreePreOrder(node.left)
if node.right:
self.printTreePreOrder(node.right)
if __name__ == "__main__":
bt = BinarySearchTree()
bt.insert(12,'bill')
bt.insert(6,'Tom')
bt.insert(14,'jill')
bt.insert(3,'guy')
bt.printTreePreOrder(bt.Root())
You're attempting to call Root as if it were a function, but it's only a member variable of class BinaryTreeNode, therefore is not callable.
Furthermore, it is returning as NoneType because you initialize it to None and it is never assigned to any other value.
The way you have it implemented, you should do bt.printTreePreOrder(bt.Root)

How to implement a binary search tree in Python?

This is what I've got so far but it is not working:
class Node:
rChild,lChild,data = None,None,None
def __init__(self,key):
self.rChild = None
self.lChild = None
self.data = key
class Tree:
root,size = None,0
def __init__(self):
self.root = None
self.size = 0
def insert(self,node,someNumber):
if node is None:
node = Node(someNumber)
else:
if node.data > someNumber:
self.insert(node.rchild,someNumber)
else:
self.insert(node.rchild, someNumber)
return
def main():
t = Tree()
t.root = Node(4)
t.root.rchild = Node(5)
print t.root.data #this works
print t.root.rchild.data #this works too
t = Tree()
t.insert(t.root,4)
t.insert(t.root,5)
print t.root.data #this fails
print t.root.rchild.data #this fails too
if __name__ == '__main__':
main()
Here is a quick example of a binary insert:
class Node:
def __init__(self, val):
self.l_child = None
self.r_child = None
self.data = val
def binary_insert(root, node):
if root is None:
root = node
else:
if root.data > node.data:
if root.l_child is None:
root.l_child = node
else:
binary_insert(root.l_child, node)
else:
if root.r_child is None:
root.r_child = node
else:
binary_insert(root.r_child, node)
def in_order_print(root):
if not root:
return
in_order_print(root.l_child)
print root.data
in_order_print(root.r_child)
def pre_order_print(root):
if not root:
return
print root.data
pre_order_print(root.l_child)
pre_order_print(root.r_child)
r = Node(3)
binary_insert(r, Node(7))
binary_insert(r, Node(1))
binary_insert(r, Node(5))
3
/ \
1 7
/
5
print "in order:"
in_order_print(r)
print "pre order"
pre_order_print(r)
in order:
1
3
5
7
pre order
3
1
7
5
class Node:
rChild,lChild,data = None,None,None
This is wrong - it makes your variables class variables - that is, every instance of Node uses the same values (changing rChild of any node changes it for all nodes!). This is clearly not what you want; try
class Node:
def __init__(self, key):
self.rChild = None
self.lChild = None
self.data = key
now each node has its own set of variables. The same applies to your definition of Tree,
class Tree:
root,size = None,0 # <- lose this line!
def __init__(self):
self.root = None
self.size = 0
Further, each class should be a "new-style" class derived from the "object" class and should chain back to object.__init__():
class Node(object):
def __init__(self, data, rChild=None, lChild=None):
super(Node,self).__init__()
self.data = data
self.rChild = rChild
self.lChild = lChild
class Tree(object):
def __init__(self):
super(Tree,self).__init__()
self.root = None
self.size = 0
Also, main() is indented too far - as shown, it is a method of Tree which is uncallable because it does not accept a self argument.
Also, you are modifying the object's data directly (t.root = Node(4)) which kind of destroys encapsulation (the whole point of having classes in the first place); you should be doing something more like
def main():
t = Tree()
t.add(4) # <- let the tree create a data Node and insert it
t.add(5)
class Node:
rChild,lChild,parent,data = None,None,None,0
def __init__(self,key):
self.rChild = None
self.lChild = None
self.parent = None
self.data = key
class Tree:
root,size = None,0
def __init__(self):
self.root = None
self.size = 0
def insert(self,someNumber):
self.size = self.size+1
if self.root is None:
self.root = Node(someNumber)
else:
self.insertWithNode(self.root, someNumber)
def insertWithNode(self,node,someNumber):
if node.lChild is None and node.rChild is None:#external node
if someNumber > node.data:
newNode = Node(someNumber)
node.rChild = newNode
newNode.parent = node
else:
newNode = Node(someNumber)
node.lChild = newNode
newNode.parent = node
else: #not external
if someNumber > node.data:
if node.rChild is not None:
self.insertWithNode(node.rChild, someNumber)
else: #if empty node
newNode = Node(someNumber)
node.rChild = newNode
newNode.parent = node
else:
if node.lChild is not None:
self.insertWithNode(node.lChild, someNumber)
else:
newNode = Node(someNumber)
node.lChild = newNode
newNode.parent = node
def printTree(self,someNode):
if someNode is None:
pass
else:
self.printTree(someNode.lChild)
print someNode.data
self.printTree(someNode.rChild)
def main():
t = Tree()
t.insert(5)
t.insert(3)
t.insert(7)
t.insert(4)
t.insert(2)
t.insert(1)
t.insert(6)
t.printTree(t.root)
if __name__ == '__main__':
main()
My solution.
class BST:
def __init__(self, val=None):
self.left = None
self.right = None
self.val = val
def __str__(self):
return "[%s, %s, %s]" % (self.left, str(self.val), self.right)
def isEmpty(self):
return self.left == self.right == self.val == None
def insert(self, val):
if self.isEmpty():
self.val = val
elif val < self.val:
if self.left is None:
self.left = BST(val)
else:
self.left.insert(val)
else:
if self.right is None:
self.right = BST(val)
else:
self.right.insert(val)
a = BST(1)
a.insert(2)
a.insert(3)
a.insert(0)
print a
The Op's Tree.insert method qualifies for the "Gross Misnomer of the Week" award -- it doesn't insert anything. It creates a node which is not attached to any other node (not that there are any nodes to attach it to) and then the created node is trashed when the method returns.
For the edification of #Hugh Bothwell:
>>> class Foo(object):
... bar = None
...
>>> a = Foo()
>>> b = Foo()
>>> a.bar
>>> a.bar = 42
>>> b.bar
>>> b.bar = 666
>>> a.bar
42
>>> b.bar
666
>>>
The accepted answer neglects to set a parent attribute for each node inserted, without which one cannot implement a successor method which finds the successor in an in-order tree walk in O(h) time, where h is the height of the tree (as opposed to the O(n) time needed for the walk).
Here is an implementation based on the pseudocode given in Cormen et al., Introduction to Algorithms, including assignment of a parent attribute and a successor method:
class Node(object):
def __init__(self, key):
self.key = key
self.left = None
self.right = None
self.parent = None
class Tree(object):
def __init__(self, root=None):
self.root = root
def insert(self, z):
y = None
x = self.root
while x is not None:
y = x
if z.key < x.key:
x = x.left
else:
x = x.right
z.parent = y
if y is None:
self.root = z # Tree was empty
elif z.key < y.key:
y.left = z
else:
y.right = z
#staticmethod
def minimum(x):
while x.left is not None:
x = x.left
return x
#staticmethod
def successor(x):
if x.right is not None:
return Tree.minimum(x.right)
y = x.parent
while y is not None and x == y.right:
x = y
y = y.parent
return y
Here are some tests to show that the tree behaves as expected for the example given by DTing:
import pytest
#pytest.fixture
def tree():
t = Tree()
t.insert(Node(3))
t.insert(Node(1))
t.insert(Node(7))
t.insert(Node(5))
return t
def test_tree_insert(tree):
assert tree.root.key == 3
assert tree.root.left.key == 1
assert tree.root.right.key == 7
assert tree.root.right.left.key == 5
def test_tree_successor(tree):
assert Tree.successor(tree.root.left).key == 3
assert Tree.successor(tree.root.right.left).key == 7
if __name__ == "__main__":
pytest.main([__file__])
Just something to help you to start on.
A (simple idea of) binary tree search would be quite likely be implement in python according the lines:
def search(node, key):
if node is None: return None # key not found
if key< node.key: return search(node.left, key)
elif key> node.key: return search(node.right, key)
else: return node.value # found key
Now you just need to implement the scaffolding (tree creation and value inserts) and you are done.
I find the solutions a bit clumsy on the insert part. You could return the root reference and simplify it a bit:
def binary_insert(root, node):
if root is None:
return node
if root.data > node.data:
root.l_child = binary_insert(root.l_child, node)
else:
root.r_child = binary_insert(root.r_child, node)
return root
its easy to implement a BST using two classes, 1. Node and 2. Tree
Tree class will be just for user interface, and actual methods will be implemented in Node class.
class Node():
def __init__(self,val):
self.value = val
self.left = None
self.right = None
def _insert(self,data):
if data == self.value:
return False
elif data < self.value:
if self.left:
return self.left._insert(data)
else:
self.left = Node(data)
return True
else:
if self.right:
return self.right._insert(data)
else:
self.right = Node(data)
return True
def _inorder(self):
if self:
if self.left:
self.left._inorder()
print(self.value)
if self.right:
self.right._inorder()
class Tree():
def __init__(self):
self.root = None
def insert(self,data):
if self.root:
return self.root._insert(data)
else:
self.root = Node(data)
return True
def inorder(self):
if self.root is not None:
return self.root._inorder()
else:
return False
if __name__=="__main__":
a = Tree()
a.insert(16)
a.insert(8)
a.insert(24)
a.insert(6)
a.insert(12)
a.insert(19)
a.insert(29)
a.inorder()
Inorder function for checking whether BST is properly implemented.
Another Python BST with sort key (defaulting to value)
LEFT = 0
RIGHT = 1
VALUE = 2
SORT_KEY = -1
class BinarySearchTree(object):
def __init__(self, sort_key=None):
self._root = []
self._sort_key = sort_key
self._len = 0
def insert(self, val):
if self._sort_key is None:
sort_key = val // if no sort key, sort key is value
else:
sort_key = self._sort_key(val)
node = self._root
while node:
if sort_key < node[_SORT_KEY]:
node = node[LEFT]
else:
node = node[RIGHT]
if sort_key is val:
node[:] = [[], [], val]
else:
node[:] = [[], [], val, sort_key]
self._len += 1
def minimum(self):
return self._extreme_node(LEFT)[VALUE]
def maximum(self):
return self._extreme_node(RIGHT)[VALUE]
def find(self, sort_key):
return self._find(sort_key)[VALUE]
def _extreme_node(self, side):
if not self._root:
raise IndexError('Empty')
node = self._root
while node[side]:
node = node[side]
return node
def _find(self, sort_key):
node = self._root
while node:
node_key = node[SORT_KEY]
if sort_key < node_key:
node = node[LEFT]
elif sort_key > node_key:
node = node[RIGHT]
else:
return node
raise KeyError("%r not found" % sort_key)
Here is a compact, object oriented, recursive implementation:
class BTreeNode(object):
def __init__(self, data):
self.data = data
self.rChild = None
self.lChild = None
def __str__(self):
return (self.lChild.__str__() + '<-' if self.lChild != None else '') + self.data.__str__() + ('->' + self.rChild.__str__() if self.rChild != None else '')
def insert(self, btreeNode):
if self.data > btreeNode.data: #insert left
if self.lChild == None:
self.lChild = btreeNode
else:
self.lChild.insert(btreeNode)
else: #insert right
if self.rChild == None:
self.rChild = btreeNode
else:
self.rChild.insert(btreeNode)
def main():
btreeRoot = BTreeNode(5)
print 'inserted %s:' %5, btreeRoot
btreeRoot.insert(BTreeNode(7))
print 'inserted %s:' %7, btreeRoot
btreeRoot.insert(BTreeNode(3))
print 'inserted %s:' %3, btreeRoot
btreeRoot.insert(BTreeNode(1))
print 'inserted %s:' %1, btreeRoot
btreeRoot.insert(BTreeNode(2))
print 'inserted %s:' %2, btreeRoot
btreeRoot.insert(BTreeNode(4))
print 'inserted %s:' %4, btreeRoot
btreeRoot.insert(BTreeNode(6))
print 'inserted %s:' %6, btreeRoot
The output of the above main() is:
inserted 5: 5
inserted 7: 5->7
inserted 3: 3<-5->7
inserted 1: 1<-3<-5->7
inserted 2: 1->2<-3<-5->7
inserted 4: 1->2<-3->4<-5->7
inserted 6: 1->2<-3->4<-5->6<-7
Here is a working solution.
class BST:
def __init__(self,data):
self.root = data
self.left = None
self.right = None
def insert(self,data):
if self.root == None:
self.root = BST(data)
elif data > self.root:
if self.right == None:
self.right = BST(data)
else:
self.right.insert(data)
elif data < self.root:
if self.left == None:
self.left = BST(data)
else:
self.left.insert(data)
def inordertraversal(self):
if self.left != None:
self.left.inordertraversal()
print (self.root),
if self.right != None:
self.right.inordertraversal()
t = BST(4)
t.insert(1)
t.insert(7)
t.insert(3)
t.insert(6)
t.insert(2)
t.insert(5)
t.inordertraversal()
A simple, recursive method with only 1 function and using an array of values:
class TreeNode(object):
def __init__(self, value: int, left=None, right=None):
super().__init__()
self.value = value
self.left = left
self.right = right
def __str__(self):
return str(self.value)
def create_node(values, lower, upper) -> TreeNode:
if lower > upper:
return None
index = (lower + upper) // 2
value = values[index]
node = TreeNode(value=value)
node.left = create_node(values, lower, index - 1)
node.right = create_node(values, index + 1, upper)
return node
def print_bst(node: TreeNode):
if node:
# Simple pre-order traversal when printing the tree
print("node: {}".format(node))
print_bst(node.left)
print_bst(node.right)
if __name__ == '__main__':
vals = [0, 1, 2, 3, 4, 5, 6]
bst = create_node(vals, lower=0, upper=len(vals) - 1)
print_bst(bst)
As you can see, we really only need 1 method, which is recursive: create_node. We pass in the full values array in each create_node method call, however, we update the lower and upper index values every time that we make the recursive call.
Then, using the lower and upper index values, we calculate the index value of the current node and capture it in value. This value is the value for the current node, which we use to create a node.
From there, we set the values of left and right by recursively calling the function, until we reach the end state of the recursion call when lower is greater than upper.
Important: we update the value of upper when creating the left side of the tree. Conversely, we update the value of lower when creating the right side of the tree.
Hopefully this helps!
The following code is basic on #DTing‘s answer and what I learn from class, which uses a while loop to insert (indicated in the code).
class Node:
def __init__(self, val):
self.l_child = None
self.r_child = None
self.data = val
def binary_insert(root, node):
y = None
x = root
z = node
#while loop here
while x is not None:
y = x
if z.data < x.data:
x = x.l_child
else:
x = x.r_child
z.parent = y
if y == None:
root = z
elif z.data < y.data:
y.l_child = z
else:
y.r_child = z
def in_order_print(root):
if not root:
return
in_order_print(root.l_child)
print(root.data)
in_order_print(root.r_child)
r = Node(3)
binary_insert(r, Node(7))
binary_insert(r, Node(1))
binary_insert(r, Node(5))
in_order_print(r)
The problem, or at least one problem with your code is here:-
def insert(self,node,someNumber):
if node is None:
node = Node(someNumber)
else:
if node.data > someNumber:
self.insert(node.rchild,someNumber)
else:
self.insert(node.rchild, someNumber)
return
You see the statement "if node.data > someNumber:" and the associated "else:" statement both have the same code after them. i.e you do the same thing whether the if statement is true or false.
I'd suggest you probably intended to do different things here, perhaps one of these should say self.insert(node.lchild, someNumber) ?
Another Python BST solution
class Node(object):
def __init__(self, value):
self.left_node = None
self.right_node = None
self.value = value
def __str__(self):
return "[%s, %s, %s]" % (self.left_node, self.value, self.right_node)
def insertValue(self, new_value):
"""
1. if current Node doesnt have value then assign to self
2. new_value lower than current Node's value then go left
2. new_value greater than current Node's value then go right
:return:
"""
if self.value:
if new_value < self.value:
# add to left
if self.left_node is None: # reached start add value to start
self.left_node = Node(new_value)
else:
self.left_node.insertValue(new_value) # search
elif new_value > self.value:
# add to right
if self.right_node is None: # reached end add value to end
self.right_node = Node(new_value)
else:
self.right_node.insertValue(new_value) # search
else:
self.value = new_value
def findValue(self, value_to_find):
"""
1. value_to_find is equal to current Node's value then found
2. if value_to_find is lower than Node's value then go to left
3. if value_to_find is greater than Node's value then go to right
"""
if value_to_find == self.value:
return "Found"
elif value_to_find < self.value and self.left_node:
return self.left_node.findValue(value_to_find)
elif value_to_find > self.value and self.right_node:
return self.right_node.findValue(value_to_find)
return "Not Found"
def printTree(self):
"""
Nodes will be in sequence
1. Print LHS items
2. Print value of node
3. Print RHS items
"""
if self.left_node:
self.left_node.printTree()
print(self.value),
if self.right_node:
self.right_node.printTree()
def isEmpty(self):
return self.left_node == self.right_node == self.value == None
def main():
root_node = Node(12)
root_node.insertValue(6)
root_node.insertValue(3)
root_node.insertValue(7)
# should return 3 6 7 12
root_node.printTree()
# should return found
root_node.findValue(7)
# should return found
root_node.findValue(3)
# should return Not found
root_node.findValue(24)
if __name__ == '__main__':
main()
def BinaryST(list1,key):
start = 0
end = len(list1)
print("Length of List: ",end)
for i in range(end):
for j in range(0, end-i-1):
if(list1[j] > list1[j+1]):
temp = list1[j]
list1[j] = list1[j+1]
list1[j+1] = temp
print("Order List: ",list1)
mid = int((start+end)/2)
print("Mid Index: ",mid)
if(key == list1[mid]):
print(key," is on ",mid," Index")
elif(key > list1[mid]):
for rindex in range(mid+1,end):
if(key == list1[rindex]):
print(key," is on ",rindex," Index")
break
elif(rindex == end-1):
print("Given key: ",key," is not in List")
break
else:
continue
elif(key < list1[mid]):
for lindex in range(0,mid):
if(key == list1[lindex]):
print(key," is on ",lindex," Index")
break
elif(lindex == mid-1):
print("Given key: ",key," is not in List")
break
else:
continue
size = int(input("Enter Size of List: "))
list1 = []
for e in range(size):
ele = int(input("Enter Element in List: "))
list1.append(ele)
key = int(input("\nEnter Key for Search: "))
print("\nUnorder List: ",list1)
BinaryST(list1,key)
class TreeNode:
def __init__(self, value):
self.value = value
self.left = None
self.right = None
class BinaryTree:
def __init__(self, root=None):
self.root = root
def add_node(self, node, value):
"""
Node points to the left of value if node > value; right otherwise,
BST cannot have duplicate values
"""
if node is not None:
if value < node.value:
if node.left is None:
node.left = TreeNode(value)
else:
self.add_node(node.left, value)
else:
if node.right is None:
node.right = TreeNode(value)
else:
self.add_node(node.right, value)
else:
self.root = TreeNode(value)
def search(self, value):
"""
Value will be to the left of node if node > value; right otherwise.
"""
node = self.root
while node is not None:
if node.value == value:
return True # node.value
if node.value > value:
node = node.left
else:
node = node.right
return False
def traverse_inorder(self, node):
"""
Traverse the left subtree of a node as much as possible, then traverse
the right subtree, followed by the parent/root node.
"""
if node is not None:
self.traverse_inorder(node.left)
print(node.value)
self.traverse_inorder(node.right)
def main():
binary_tree = BinaryTree()
binary_tree.add_node(binary_tree.root, 200)
binary_tree.add_node(binary_tree.root, 300)
binary_tree.add_node(binary_tree.root, 100)
binary_tree.add_node(binary_tree.root, 30)
binary_tree.traverse_inorder(binary_tree.root)
print(binary_tree.search(200))
if __name__ == '__main__':
main()

Categories

Resources